Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/collision_detection/obb_tree_node.cc @ 5491

Last change on this file since 5491 was 5491, checked in by patrick, 19 years ago

orxonox/trunk/src/lib/cd: rebuilt the jacobi function. There are still some false reads in the function. There perhaps another bug also

File size: 36.9 KB
RevLine 
[4588]1/*
[4541]2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
[4617]11### File Specific:
[4541]12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
[4542]19#include "list.h"
20#include "obb.h"
[4616]21#include "obb_tree.h"
[4544]22#include "vector.h"
[4550]23#include "abstract_model.h"
[5028]24#include "world_entity.h"
[4541]25
[4543]26#include <math.h>
[5481]27#include "color.h"
[4543]28
[4638]29#include "stdincl.h"
[4627]30#include "lin_alg.h"
[5431]31#include "glincl.h"
[4572]32
33
34
[4541]35using namespace std;
36
[4622]37OBBTree*  OBBTreeNode::obbTree = NULL;
[4541]38
[5431]39float**  OBBTreeNode::coMat = NULL;
40float**  OBBTreeNode::eigvMat = NULL;
41float*   OBBTreeNode::eigvlMat = NULL;
42int*     OBBTreeNode::rotCount = NULL;
[5430]43GLUquadricObj* OBBTreeNode_sphereObj = NULL;
[4630]44
[4541]45/**
[4836]46 *  standard constructor
[4617]47 */
[4588]48OBBTreeNode::OBBTreeNode ()
[4541]49{
[4617]50  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
[4618]51  this->nodeLeft = NULL;
52  this->nodeRight = NULL;
[4814]53  this->bvElement = NULL;
[4630]54
[5431]55  if(OBBTreeNode::coMat == NULL)
[4630]56  {
[5431]57    OBBTreeNode::coMat = new float*[4];
[4630]58    for(int i = 0; i < 4; i++)
[5431]59      OBBTreeNode::coMat[i] = new float[4];
[4630]60  }
[5431]61  if(OBBTreeNode::eigvMat == NULL)
[4630]62  {
[5431]63    OBBTreeNode::eigvMat = new float*[4];
[4630]64    for(int i = 0; i < 4; i++)
[5431]65      OBBTreeNode::eigvMat[i] = new float[4];
[4630]66  }
[5431]67  if( OBBTreeNode::eigvlMat == NULL)
[4630]68  {
[5431]69    OBBTreeNode::eigvlMat = new float[4];
[4630]70  }
[5431]71  if( OBBTreeNode::rotCount == NULL)
72    OBBTreeNode::rotCount = new int;
[4638]73
[5430]74  if (OBBTreeNode_sphereObj == NULL)
75    OBBTreeNode_sphereObj = gluNewQuadric();
[4541]76}
77
78
79/**
[4836]80 *  standard deconstructor
[4617]81 */
[4588]82OBBTreeNode::~OBBTreeNode ()
[4541]83{
[4814]84  if( this->nodeLeft)
85  {
86    delete this->nodeLeft;
87    this->nodeLeft = NULL;
88  }
89  if( this->nodeRight)
90  {
91    delete this->nodeRight;
92    this->nodeRight = NULL;
93  }
94  if( this->bvElement)
95    delete this->bvElement;
96  this->bvElement = NULL;
[4541]97}
98
99
[4542]100
101/**
[4836]102 *  creates a new BVTree or BVTree partition
103 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
104 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
[4617]105 */
[4544]106void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
[4542]107{
[4717]108  PRINT(3)("\n");
[4638]109  this->treeIndex = this->obbTree->getID();
[4717]110  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
[4614]111  this->depth = depth;
112
[4638]113
[4630]114  this->bvElement = new OBB();
[4638]115  this->bvElement->vertices = verticesList;
116  this->bvElement->numOfVertices = length;
117  PRINTF(3)("Created OBBox\n");
[4632]118  this->calculateBoxCovariance(this->bvElement, verticesList, length);
[4638]119  PRINTF(3)("Calculated attributes1\n");
[4632]120  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
[4638]121  PRINTF(3)("Calculated attributes2\n");
[4632]122  this->calculateBoxAxis(this->bvElement, verticesList, length);
[4638]123  PRINTF(3)("Calculated attributes3\n");
[4617]124
[4814]125  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
126  if( this->treeIndex == 1)
127    this->bvElement->bOrigVertices = true;
[4632]128
[4614]129  if( likely( this->depth > 0))
130  {
131    this->forkBox(this->bvElement);
[4626]132
[4630]133
[4710]134    if(this->tmpLen1 > 2)
[4638]135    {
136      OBBTreeNode* node1 = new OBBTreeNode();
137      this->nodeLeft = node1;
138      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
139    }
140    else
141    {
[4717]142      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
[4638]143    }
[4630]144
[4710]145    if( this->tmpLen2 > 2)
[4638]146    {
147      OBBTreeNode* node2 = new OBBTreeNode();
148      this->nodeRight = node2;
149      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
150    }
151    else
152    {
[4717]153      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
[4638]154    }
[4630]155
[4614]156  }
[4557]157}
158
159
160
[4632]161void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
[4557]162{
[4543]163  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
[5428]164  float     face = 0.0f;                             //!< surface area of the entire convex hull
[4588]165  Vector    centroid[length];                        //!< centroid of the i'th convex hull
[4557]166  Vector    center;                                  //!< the center of the entire hull
[4544]167  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
[4545]168  Vector    t1, t2;                                  //!< temporary values
[4628]169  float     covariance[3][3];                        //!< the covariance matrix
[4674]170  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
[4588]171
[4553]172  this->numOfVertices = length;
173  this->vertices = verticesList;
174
[4562]175
[4648]176  if( likely(mode == 0))
177  {
178    /* fist compute all the convex hull face/facelets and centroids */
[5428]179    for( int i = 0; i+3 < length ; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4648]180    {
181      p = verticesList[i];
182      q = verticesList[i + 1];
183      r = verticesList[i + 2];
[4638]184
[4648]185      t1 = p - q; t2 = p - r;
[4638]186
[4648]187      /* finding the facelet surface via cross-product */
188      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
189      /* update the entire convex hull surface */
190      face += facelet[i];
191
192      /* calculate the cetroid of the hull triangles */
193      centroid[i] = (p + q + r) * 1/3;
194      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
195      center += centroid[i] * facelet[i];
196    }
197    /* take the average of the centroid sum */
198    center /= face;
199    PRINTF(3)("-- Calculated Center\n");
200
201
202    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
[5428]203    for( int j = 0; j < 3; ++j)
[4648]204    {
[5428]205      for( int k = 0; k < 3; ++k)
[4648]206      {
[5428]207        for( int i = 0; i + 3 < length; i+=3)
[4648]208        {
209          p = verticesList[i];
210          q = verticesList[i + 1];
211          r = verticesList[i + 2];
212
213          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
214              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
215        }
216      }
217    }
218    PRINTF(3)("-- Calculated Covariance\n");
219  }
220  else if( mode == 1)
[4617]221  {
[5428]222    for( int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4648]223    {
224      p = verticesList[i];
225      q = verticesList[i + 1];
226      r = verticesList[i + 2];
[4588]227
[4648]228      centroid[i] = (p + q + r) / 3.0f;
229      center += centroid[i];
230    }
231    center /= length;
[4588]232
[4648]233    for( int j = 0; j < 3; ++j)
234    {
235      for( int k = 0; k < 3; ++k)
236      {
[5428]237        for( int i = 0; i + 3 < length; i+=3)
[4648]238        {
239          p = verticesList[i];
240          q = verticesList[i +1];
241          r = verticesList[i + 2];
[4545]242
[4648]243          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
244        }
245        covariance[j][k] /= (3.0f * length);
246      }
247    }
248    PRINTF(3)("-- Calculated Covariance\n");
[4617]249  }
[4648]250  else if( mode == 2)
251  {
252    /* fist compute all the convex hull face/facelets and centroids */
[5428]253    for(int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4648]254    {
255      p = verticesList[i];
256      q = verticesList[i + 1];
257      r = verticesList[i + 2];
[4562]258
[4648]259      t1 = p - q; t2 = p - r;
[4562]260
[4648]261      /* finding the facelet surface via cross-product */
262      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
263      /* update the entire convex hull surface */
264      face += facelet[i];
265
266      /* calculate the cetroid of the hull triangles */
267      centroid[i] = (p + q + r) * 1/3;
268      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
269      center += centroid[i] * facelet[i];
270    }
271    /* take the average of the centroid sum */
272    center /= face;
273    PRINTF(3)("-- Calculated Center\n");
274
275    for( int j = 0; j < 3; ++j)
276    {
277      for( int k = 0; k < 3; ++k)
278      {
[5428]279        for( int i = 0; i + 3 < length; i+=3)
[4648]280        {
281          p = verticesList[i];
282          q = verticesList[i +1];
283          r = verticesList[i + 2];
284
285          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
286        }
287        covariance[j][k] /= (3.0f * length);
288      }
289    }
290    PRINTF(3)("-- Calculated Covariance\n");
291  }
292  else
[4617]293  {
[4648]294    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4545]295    {
[4648]296      center += verticesList[i];
297    }
298    center /= length;
299
300    for( int j = 0; j < 3; ++j)
301    {
302      for( int k = 0; k < 3; ++k)
[4617]303      {
[5428]304        for( int i = 0; i + 3 < length; i+=3)
[4648]305        {
306          p = verticesList[i];
307          q = verticesList[i +1];
308          r = verticesList[i + 2];
[4544]309
[4648]310          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
311        }
312        covariance[j][k] /= (3.0f * length);
[4617]313      }
[4545]314    }
[4648]315    PRINTF(3)("-- Calculated Covariance\n");
[4617]316  }
[4562]317
[4648]318  PRINTF(3)("\nVertex Data:\n");
[4638]319  for(int i = 0; i < length; i++)
320  {
[4648]321    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
[4638]322  }
[4588]323
[4648]324
[4675]325  PRINTF(3)("\nCovariance Matrix:\n");
[4674]326  for(int j = 0; j < 3; ++j)
327  {
[4675]328    PRINT(3)(" |");
[4674]329    for(int k = 0; k < 3; ++k)
330    {
[4675]331      PRINT(3)(" \b%f ", covariance[j][k]);
[4674]332    }
[4675]333    PRINT(3)(" |\n");
[4674]334  }
335
[4638]336  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
[4553]337
[4588]338
[4674]339  for(int i = 0; i < 3; ++i)
340  {
341    box->covarianceMatrix[i][0] = covariance[i][0];
342    box->covarianceMatrix[i][1] = covariance[i][1];
343    box->covarianceMatrix[i][2] = covariance[i][2];
344  }
[4560]345  *box->center = center;
[4638]346  PRINTF(3)("-- Written Result to obb\n");
[4631]347}
[4557]348
[4631]349
350
[4632]351void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
[4631]352{
353
[4557]354  /* now getting spanning vectors of the sub-space:
[4617]355  the eigenvectors of a symmertric matrix, such as the
356  covarience matrix are mutually orthogonal.
357  after normalizing them, they can be used as a the basis
358  vectors
[4557]359  */
[4660]360  Vector*              axis = new Vector[3];                //!< the references to the obb axis
[4588]361
[5449]362  OBBTreeNode::coMat[0][0] = box->covarianceMatrix[0][0];
363  OBBTreeNode::coMat[0][1] = box->covarianceMatrix[0][1];
364  OBBTreeNode::coMat[0][2] = box->covarianceMatrix[0][2];
[4627]365
[5449]366  OBBTreeNode::coMat[1][0] = box->covarianceMatrix[1][0];
367  OBBTreeNode::coMat[1][1] = box->covarianceMatrix[1][1];
368  OBBTreeNode::coMat[1][2] = box->covarianceMatrix[1][2];
369
370  OBBTreeNode::coMat[2][0] = box->covarianceMatrix[2][0];
371  OBBTreeNode::coMat[2][1] = box->covarianceMatrix[2][1];
372  OBBTreeNode::coMat[2][2] = box->covarianceMatrix[2][2];
373
[5429]374//   OBBTreeNode::coMat[0][0] = box->covarianceMatrix[0][0];
375//   OBBTreeNode::coMat[0][1] = box->covarianceMatrix[0][1];
376//   OBBTreeNode::coMat[0][2] = box->covarianceMatrix[0][2];
377//
378//   OBBTreeNode::coMat[1][0] = box->covarianceMatrix[1][0];
379//   OBBTreeNode::coMat[1][1] = box->covarianceMatrix[1][1];
380//   OBBTreeNode::coMat[1][3] = box->covarianceMatrix[1][2];
381//
382//   OBBTreeNode::coMat[2][0] = box->covarianceMatrix[2][0];
383//   OBBTreeNode::coMat[2][1] = box->covarianceMatrix[2][1];
384//   OBBTreeNode::coMat[2][2] = box->covarianceMatrix[2][2];
385
386
[4630]387  /* new jacobi tests */
[5488]388  JacobI(OBBTreeNode::coMat, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
[4638]389  PRINTF(3)("-- Done Jacobi Decomposition\n");
[4628]390
[4627]391
[5491]392//   PRINTF(0)("Jacobi\n");
393//   for(int j = 0; j < 3; ++j)
[4629]394//   {
[5491]395//     printf(" |");
396//     for(int k = 0; k < 3; ++k)
[4629]397//     {
[5491]398//       printf(" \t%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
[4629]399//     }
[5491]400//     printf(" |\n");
[4629]401//   }
402
[5449]403  axis[0].x = OBBTreeNode::eigvMat[0][0]; axis[0].y = OBBTreeNode::eigvMat[1][0]; axis[0].z = OBBTreeNode::eigvMat[2][0];
404  axis[1].x = OBBTreeNode::eigvMat[0][1]; axis[1].y = OBBTreeNode::eigvMat[1][1]; axis[1].z = OBBTreeNode::eigvMat[2][1];
405  axis[2].x = OBBTreeNode::eigvMat[0][2]; axis[2].y = OBBTreeNode::eigvMat[1][2]; axis[2].z = OBBTreeNode::eigvMat[2][2];
[4705]406  axis[0].normalize();
407  axis[1].normalize();
408  axis[2].normalize();
[4576]409  box->axis = axis;
[4660]410
[5491]411  PRINTF(0)("-- Got Axis\n");
[4588]412
[5491]413  PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
414  PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
415  PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
[4632]416}
[4588]417
[4626]418
[4632]419void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
[4631]420{
[4630]421
[4576]422  /* now get the axis length */
[4578]423  Line                ax[3];                                 //!< the axis
424  float*              halfLength = new float[3];             //!< half length of the axis
425  float               tmpLength;                             //!< tmp save point for the length
[4660]426  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
427  Plane               p1(box->axis[1], *box->center);
428  Plane               p2(box->axis[2], *box->center);
[4658]429  float               maxLength[3];
430  float               minLength[3];
[4588]431
[4658]432
433  /* get a bad bounding box */
[4589]434  halfLength[0] = -1.0f;
[4585]435  for(int j = 0; j < length; ++j)
[4658]436    {
[4661]437      tmpLength = fabs(p0.distancePoint(vertices[j]));
[4658]438      if( tmpLength > halfLength[0])
[4659]439        halfLength[0] = tmpLength;
[4658]440    }
441
442  halfLength[1] = -1.0f;
443  for(int j = 0; j < length; ++j)
444    {
445      tmpLength = fabs(p1.distancePoint(vertices[j]));
446      if( tmpLength > halfLength[1])
[4659]447        halfLength[1] = tmpLength;
[4658]448    }
449
450  halfLength[2] = -1.0f;
451  for(int j = 0; j < length; ++j)
452    {
[4661]453      tmpLength = fabs(p2.distancePoint(vertices[j]));
[4658]454      if( tmpLength > halfLength[2])
[4659]455        halfLength[2] = tmpLength;
[4658]456    }
457
458
459
460  /* get the maximal dimensions of the body in all directions */
[4710]461    maxLength[0] = p0.distancePoint(vertices[0]);
462    minLength[0] = p0.distancePoint(vertices[0]);
[4660]463   for(int j = 0; j < length; ++j)
464   {
465     tmpLength = p0.distancePoint(vertices[j]);
466     if( tmpLength > maxLength[0])
467       maxLength[0] = tmpLength;
468     else if( tmpLength < minLength[0])
469       minLength[0] = tmpLength;
470   }
[4578]471
[4710]472   maxLength[1] = p1.distancePoint(vertices[0]);
473   minLength[1] = p1.distancePoint(vertices[0]);
[4660]474   for(int j = 0; j < length; ++j)
475   {
[4661]476     tmpLength = p1.distancePoint(vertices[j]);
[4660]477     if( tmpLength > maxLength[1])
478       maxLength[1] = tmpLength;
479     else if( tmpLength < minLength[1])
480       minLength[1] = tmpLength;
481   }
[4585]482
[4710]483   maxLength[2] = p2.distancePoint(vertices[0]);
484   minLength[2] = p2.distancePoint(vertices[0]);
[4660]485   for(int j = 0; j < length; ++j)
486   {
[4661]487     tmpLength = p2.distancePoint(vertices[j]);
[4660]488     if( tmpLength > maxLength[2])
489       maxLength[2] = tmpLength;
490     else if( tmpLength < minLength[2])
491       minLength[2] = tmpLength;
492   }
[4585]493
[4660]494
495   /* calculate the real centre of the body by using the axis length */
[4668]496   float centerOffset[3];
497   float newHalfLength[3];
[4660]498   for(int i = 0; i < 3; ++i)
499     {
[4674]500       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
[4710]501       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
502       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
[4668]503       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
504       halfLength[i] = newHalfLength[i];
[4660]505     }
506
507
508
[4586]509  box->halfLength = halfLength;
[4638]510  PRINTF(3)("-- Written Axis to obb\n");
511  PRINTF(3)("-- Finished Calculating Attributes\n");
[4585]512
[4542]513}
514
515
[4609]516
517/**
518  \brief this separates an ob-box in the middle
[4836]519* @param box: the box to separate
[4609]520
521  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
522 */
[4557]523void OBBTreeNode::forkBox(OBB* box)
524{
525  /* get the longest axis of the box */
[4609]526  float               aLength = -1.0f;                     //!< the length of the longest axis
527  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
528
[4557]529  for(int i = 0; i < 3; ++i)
[4609]530  {
531    if( aLength < box->halfLength[i])
[4557]532    {
[4609]533      aLength = box->halfLength[i];
534      axisIndex = i;
[4557]535    }
[4609]536  }
[4588]537
[4688]538   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
[4609]539
540
[4557]541  /* get the closest vertex near the center */
[4611]542  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
[4609]543  float               tmpDist;                             //!< temporary distance
544  int                 vertexIndex;
[4660]545  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
[4588]546
[4660]547  vertexIndex = 0;
[4609]548  for(int i = 0; i < box->numOfVertices; ++i)
549  {
[4611]550    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
551    if( tmpDist < dist)
552    {
[4609]553      dist = tmpDist;
[4611]554      vertexIndex = i;
555    }
[4609]556  }
557
[4710]558  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
[4609]559
560
[4611]561  /* now definin the separation plane through this specified nearest point and partition
[4617]562  the points depending on which side they are located
[4611]563  */
564  tList<sVec3D>      partition1;                           //!< the vertex partition 1
565  tList<sVec3D>      partition2;                           //!< the vertex partition 2
566
[4710]567
[4695]568  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
[4660]569  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
[4632]570  this->sepPlaneCenter = &box->vertices[vertexIndex];
571  this->longestAxisIndex = axisIndex;
572
[4612]573  for(int i = 0; i < box->numOfVertices; ++i)
574  {
[4710]575    if( i == vertexIndex) continue;
576    tmpDist = this->separationPlane->distancePoint(box->vertices[i]);
577    if( tmpDist > 0.0)
578      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
[4612]579    else
[4710]580      partition2.add(&box->vertices[i]); /* negatice numbers */
[4612]581  }
[4613]582  partition1.add(&box->vertices[vertexIndex]);
[4710]583  partition2.add(&box->vertices[vertexIndex]);
[4611]584
[4710]585  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
[4612]586
[4613]587
588  /* now comes the separation into two different sVec3D arrays */
589  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
590  sVec3D*            element;                              //!< the elements
591  int                index;                                //!< index storage place
592  sVec3D*            vertList1;                            //!< the vertex list 1
593  sVec3D*            vertList2;                            //!< the vertex list 2
594
595  vertList1 = new sVec3D[partition1.getSize()];
596  vertList2 = new sVec3D[partition2.getSize()];
597
598  iterator = partition1.getIterator();
[5115]599  element = iterator->firstElement();
[4613]600  index = 0;
601  while( element != NULL)
602  {
603    vertList1[index][0] = element[0][0];
604    vertList1[index][1] = element[0][1];
605    vertList1[index][2] = element[0][2];
606    ++index;
607    element = iterator->nextElement();
608  }
609
[4638]610//   PRINTF(0)("\npartition 1:\n");
[4626]611//   for(int i = 0; i < partition1.getSize(); ++i)
612//   {
[4638]613//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
[4626]614//   }
[4613]615
616  iterator = partition2.getIterator();
[5115]617  element = iterator->firstElement();
[4613]618  index = 0;
619  while( element != NULL)
620  {
621    vertList2[index][0] = element[0][0];
622    vertList2[index][1] = element[0][1];
623    vertList2[index][2] = element[0][2];
624    ++index;
625    element = iterator->nextElement();
626  }
627
[4630]628  this->tmpVert1 = vertList1;
629  this->tmpVert2 = vertList2;
630  this->tmpLen1 = partition1.getSize();
631  this->tmpLen2 = partition2.getSize();
632
[4638]633  delete iterator;
634
635//   PRINTF(0)("\npartition 2:\n");
[4626]636//   for(int i = 0; i < partition2.getSize(); ++i)
637//   {
[4638]638//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
[4626]639//   }
[4557]640}
641
642
[4626]643
644
[5028]645void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]646{
[4705]647  PRINTF(3)("collideWith\n");
[4695]648  /* if the obb overlap, make subtests: check which node is realy overlaping  */
[4705]649  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
[4718]650  if( unlikely(treeNode == NULL)) return;
[5042]651
[4700]652  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4695]653  {
[5044]654    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
[5038]655
[4695]656    /* check if left node overlaps */
[4704]657    if( likely( this->nodeLeft != NULL))
658    {
[4705]659      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
[4700]660      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]661      {
[4700]662        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
[4704]663        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
664      }
665    }
[4695]666    /* check if right node overlaps */
[4704]667    if( likely( this->nodeRight != NULL))
668    {
[4705]669      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
[4700]670      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]671      {
672       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
673       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
674      }
[5044]675    }
[5028]676
[5044]677    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
678    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
679    {
[5046]680      nodeA->collidesWith(nodeB, *((OBBTreeNode*)treeNode)->bvElement->center);
681
682      nodeB->collidesWith(nodeA, *this->bvElement->center);
[4704]683    }
[5044]684
[4695]685  }
686}
[4542]687
688
[4626]689
[5028]690bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]691{
[4696]692  /* first check all axis */
[4708]693  Vector t;
[4700]694  float rA = 0.0f;
695  float rB = 0.0f;
696  Vector l;
[4708]697  Vector rotAxisA[3];
698  Vector rotAxisB[3];
[4626]699
[4708]700  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
701  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
702  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
703
704  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
705  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
706  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
707
708  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
709
710//   printf("\n");
711//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
712//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
713//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
714//
715//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
716//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
717//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
718
719
[4703]720  /* All 3 axis of the object A */
[4701]721  for( int j = 0; j < 3; ++j)
[4705]722  {
723    rA = 0.0f;
724    rB = 0.0f;
[4708]725    l = rotAxisA[j];
[4705]726
[4708]727    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
728    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
729    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4705]730
[4708]731    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
732    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
733    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4705]734
735    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
736
737    if( (rA + rB) < fabs(t.dot(l)))
[4700]738    {
[4705]739      PRINT(3)("keine Kollision\n");
740      return false;
741    }
742  }
[4700]743
[4705]744  /* All 3 axis of the object B */
745  for( int j = 0; j < 3; ++j)
746  {
747    rA = 0.0f;
748    rB = 0.0f;
[4708]749    l = rotAxisB[j];
[4701]750
[4708]751    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
752    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
753    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4700]754
[4708]755    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
756    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
757    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4703]758
[4705]759    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
760
761    if( (rA + rB) < fabs(t.dot(l)))
762    {
763      PRINT(3)("keine Kollision\n");
764      return false;
[4701]765    }
[4705]766  }
[4700]767
[4705]768
769  /* Now check for all face cross products */
770
771  for( int j = 0; j < 3; ++j)
772  {
773    for(int k = 0; k < 3; ++k )
[4701]774    {
775      rA = 0.0f;
776      rB = 0.0f;
[4708]777      l = rotAxisA[j].cross(rotAxisB[k]);
[4701]778
[4708]779      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
780      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
781      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4701]782
[4708]783      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
784      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
785      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4701]786
[4703]787      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
788
[4701]789      if( (rA + rB) < fabs(t.dot(l)))
790      {
[4705]791        PRINT(3)("keine Kollision\n");
[4701]792        return false;
793      }
[4703]794    }
[4705]795  }
[4701]796
797
[4705]798  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
799  boxB->bCollided = true;
800  PRINT(3)("Kollision!\n");
801  return true;
[4695]802}
803
804
[4696]805
[4708]806
807
[5481]808void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
[4553]809{
[4635]810
811  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
812  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
813  {
[4638]814    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4622]815    {
[4712]816      if( drawMode & DRAW_POINTS)
817        glBegin(GL_POINTS);
[4638]818      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
819      {
[4712]820        if( drawMode & DRAW_POINTS)
821          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
822        else
823        {
824          glPushMatrix();
825          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
[5430]826          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
[4712]827          glPopMatrix();
828        }
[4638]829      }
[4712]830      if( drawMode & DRAW_POINTS)
831        glEnd();
[4622]832    }
[4635]833  }
[4542]834
[5481]835  if (top)
836  {
837    glPushAttrib(GL_ENABLE_BIT);
838    glDisable(GL_LIGHTING);
839    glDisable(GL_TEXTURE_2D);
840  }
841  glColor3f(color.x, color.y, color.z);
[4542]842
[5481]843
[4589]844  /* draw world axes */
[4676]845  if( drawMode & DRAW_BV_AXIS)
846  {
847    glBegin(GL_LINES);
[5481]848    glColor3f(1.0, 0.0, 0.0);
[4676]849    glVertex3f(0.0, 0.0, 0.0);
850    glVertex3f(3.0, 0.0, 0.0);
[4589]851
[5481]852    glColor3f(0.0, 1.0, 0.0);
[4676]853    glVertex3f(0.0, 0.0, 0.0);
854    glVertex3f(0.0, 3.0, 0.0);
[4589]855
[5481]856    glColor3f(0.0, 0.0, 1.0);
[4676]857    glVertex3f(0.0, 0.0, 0.0);
858    glVertex3f(0.0, 0.0, 3.0);
859    glEnd();
860  }
[4674]861
[4688]862
[4635]863  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
864  {
[4636]865    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]866    {
867      /* draw the obb axes */
868      glBegin(GL_LINES);
869      glColor3f(0.0, 0.4, 0.3);
870      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]871      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
872                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
873                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
[4589]874
[4635]875      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]876      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
877                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
878                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
[4588]879
[4635]880      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]881      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
882                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
883                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
[4635]884      glEnd();
885    }
886  }
[4581]887
[4588]888
[4674]889  /* DRAW POLYGONS */
[4673]890  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
[4635]891  {
[5487]892    if (top)
893    {
894      glEnable(GL_BLEND);
895      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
896    }
897
[4711]898    if(this->nodeLeft == NULL || this->nodeRight == NULL)
[4710]899      depth = 0;
[4636]900    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]901    {
[4636]902    Vector cen = *this->bvElement->center;
[4660]903    Vector* axis = this->bvElement->axis;
[4636]904    float* len = this->bvElement->halfLength;
[4588]905
[4702]906    if( this->bvElement->bCollided)
[5481]907    {
[5487]908      glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
[5481]909    }
[4702]910    else if( drawMode & DRAW_BV_BLENDED)
[5481]911    {
912      glColor4f(color.x, color.y, color.z, .5);
913    }
[4670]914
[4636]915    /* draw bounding box */
[4670]916    if( drawMode & DRAW_BV_BLENDED)
917      glBegin(GL_QUADS);
918    else
919      glBegin(GL_LINE_LOOP);
[4660]920    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
921               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
922               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
923    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
924               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
925               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
926    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
927               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
928               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
929    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
930               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
931               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]932    glEnd();
[4588]933
[4670]934    if( drawMode & DRAW_BV_BLENDED)
935      glBegin(GL_QUADS);
936    else
937      glBegin(GL_LINE_LOOP);
[4660]938    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
939               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
940               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
941    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
942               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
943               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
944    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
945               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
946               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
947    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
948               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
949               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]950    glEnd();
[4588]951
[4670]952    if( drawMode & DRAW_BV_BLENDED)
953      glBegin(GL_QUADS);
954    else
955      glBegin(GL_LINE_LOOP);
[4660]956    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
957               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
958               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
959    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
960               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
961               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
962    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
963               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
964               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
965    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
966               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
967               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4636]968    glEnd();
[4588]969
[4670]970    if( drawMode & DRAW_BV_BLENDED)
971      glBegin(GL_QUADS);
972    else
973      glBegin(GL_LINE_LOOP);
[4660]974    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
975               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
976               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
977    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
978               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
979               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
980    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
981               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
982               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
983    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
984               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
985               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4636]986    glEnd();
[4670]987
[4671]988
[4670]989    if( drawMode & DRAW_BV_BLENDED)
[4671]990    {
991      glBegin(GL_QUADS);
992      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
993                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
994                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
995      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
996                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
997                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
998      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
999                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1000                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1001      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1002                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1003                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1004      glEnd();
1005
1006      glBegin(GL_QUADS);
1007      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1008                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1009                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1010      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1011                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1012                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1013      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1014                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1015                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1016      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1017                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1018                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1019      glEnd();
1020    }
1021
1022
1023    if( drawMode & DRAW_BV_BLENDED)
[5481]1024      glColor3f(color.x, color.y, color.z);
[4635]1025    }
[4636]1026
[4635]1027  }
[4588]1028
[4674]1029  /* DRAW SEPARATING PLANE */
[4635]1030  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
[4632]1031  {
[4636]1032    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]1033    {
[4671]1034      if( drawMode & DRAW_BV_BLENDED)
[5481]1035        glColor4f(color.x, color.y, color.z, .6);
[4671]1036
[4636]1037    /* now draw the separation plane */
[4660]1038    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1039    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
[4636]1040    Vector c = *this->bvElement->center;
1041    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1042    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1043    glBegin(GL_QUADS);
1044    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1045    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1046    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1047    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1048    glEnd();
[4671]1049
1050    if( drawMode & DRAW_BV_BLENDED)
[5481]1051      glColor4f(color.x, color.y, color.z, 1.0);
[4671]1052
[4635]1053    }
[4632]1054  }
[4588]1055
[4702]1056
1057
[5481]1058  if (depth > 0)
1059  {
[5487]1060    Vector childColor1 =  Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(10.0,0.0,0.0));
1061    Vector childColor2 =  Color::HSVtoRGB(Color::RGBtoHSV(color)-Vector(10.0,0.0,0.0));
[5481]1062    if( this->nodeLeft != NULL)
[5487]1063      this->nodeLeft->drawBV(depth - 1, drawMode, childColor1, false);
[5481]1064    if( this->nodeRight != NULL)
[5487]1065      this->nodeRight->drawBV(depth - 1, drawMode, childColor2, false);
[5481]1066  }
1067  this->bvElement->bCollided = false;
[4588]1068
[5481]1069  if (top)
1070    glPopAttrib();
[4557]1071}
[4542]1072
1073
[4568]1074
[4746]1075void OBBTreeNode::debug() const
[4568]1076{
1077
1078  /*
1079  for(int i = 0; i < length; i++)
[4617]1080  {
[4638]1081  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
[4617]1082}
[4568]1083  */
1084}
Note: See TracBrowser for help on using the repository browser.