Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/collision_detection/obb_tree_node.cc @ 5674

Last change on this file since 5674 was 5674, checked in by bensch, 18 years ago

orxonox/trunk: collision-detection with new Matrix-class

File size: 36.2 KB
RevLine 
[4588]1/*
[4541]2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
[4617]11### File Specific:
[4541]12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
[4542]19#include "list.h"
20#include "obb.h"
[4616]21#include "obb_tree.h"
[5674]22#include "matrix.h"
[4550]23#include "abstract_model.h"
[5028]24#include "world_entity.h"
[4541]25
[5481]26#include "color.h"
[4543]27
[5511]28#include "debug.h"
[4627]29#include "lin_alg.h"
[5431]30#include "glincl.h"
[4572]31
32
33
[4541]34using namespace std;
35
[4622]36OBBTree*  OBBTreeNode::obbTree = NULL;
[4541]37
[5431]38float**  OBBTreeNode::coMat = NULL;
39float**  OBBTreeNode::eigvMat = NULL;
40float*   OBBTreeNode::eigvlMat = NULL;
41int*     OBBTreeNode::rotCount = NULL;
[5430]42GLUquadricObj* OBBTreeNode_sphereObj = NULL;
[4630]43
[4541]44/**
[4836]45 *  standard constructor
[4617]46 */
[4588]47OBBTreeNode::OBBTreeNode ()
[4541]48{
[4617]49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
[4618]50  this->nodeLeft = NULL;
51  this->nodeRight = NULL;
[4814]52  this->bvElement = NULL;
[4630]53
[5431]54  if(OBBTreeNode::coMat == NULL)
[4630]55  {
[5431]56    OBBTreeNode::coMat = new float*[4];
[4630]57    for(int i = 0; i < 4; i++)
[5431]58      OBBTreeNode::coMat[i] = new float[4];
[4630]59  }
[5431]60  if(OBBTreeNode::eigvMat == NULL)
[4630]61  {
[5431]62    OBBTreeNode::eigvMat = new float*[4];
[4630]63    for(int i = 0; i < 4; i++)
[5431]64      OBBTreeNode::eigvMat[i] = new float[4];
[4630]65  }
[5431]66  if( OBBTreeNode::eigvlMat == NULL)
[4630]67  {
[5431]68    OBBTreeNode::eigvlMat = new float[4];
[4630]69  }
[5431]70  if( OBBTreeNode::rotCount == NULL)
71    OBBTreeNode::rotCount = new int;
[4638]72
[5430]73  if (OBBTreeNode_sphereObj == NULL)
74    OBBTreeNode_sphereObj = gluNewQuadric();
[4541]75}
76
77
78/**
[4836]79 *  standard deconstructor
[4617]80 */
[4588]81OBBTreeNode::~OBBTreeNode ()
[4541]82{
[4814]83  if( this->nodeLeft)
84  {
85    delete this->nodeLeft;
86    this->nodeLeft = NULL;
87  }
88  if( this->nodeRight)
89  {
90    delete this->nodeRight;
91    this->nodeRight = NULL;
92  }
93  if( this->bvElement)
94    delete this->bvElement;
95  this->bvElement = NULL;
[4541]96}
97
98
[4542]99
100/**
[4836]101 *  creates a new BVTree or BVTree partition
102 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
103 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
[4617]104 */
[4544]105void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
[4542]106{
[4717]107  PRINT(3)("\n");
[4638]108  this->treeIndex = this->obbTree->getID();
[4717]109  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
[4614]110  this->depth = depth;
111
[4638]112
[4630]113  this->bvElement = new OBB();
[4638]114  this->bvElement->vertices = verticesList;
115  this->bvElement->numOfVertices = length;
116  PRINTF(3)("Created OBBox\n");
[4632]117  this->calculateBoxCovariance(this->bvElement, verticesList, length);
[4638]118  PRINTF(3)("Calculated attributes1\n");
[4632]119  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
[4638]120  PRINTF(3)("Calculated attributes2\n");
[4632]121  this->calculateBoxAxis(this->bvElement, verticesList, length);
[4638]122  PRINTF(3)("Calculated attributes3\n");
[4617]123
[4814]124  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
125  if( this->treeIndex == 1)
126    this->bvElement->bOrigVertices = true;
[4632]127
[4614]128  if( likely( this->depth > 0))
129  {
130    this->forkBox(this->bvElement);
[4626]131
[4630]132
[4710]133    if(this->tmpLen1 > 2)
[4638]134    {
135      OBBTreeNode* node1 = new OBBTreeNode();
136      this->nodeLeft = node1;
137      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
138    }
139    else
140    {
[4717]141      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
[4638]142    }
[4630]143
[4710]144    if( this->tmpLen2 > 2)
[4638]145    {
146      OBBTreeNode* node2 = new OBBTreeNode();
147      this->nodeRight = node2;
148      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
149    }
150    else
151    {
[4717]152      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
[4638]153    }
[4630]154
[4614]155  }
[4557]156}
157
158
159
[4632]160void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
[4557]161{
[4543]162  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
[5428]163  float     face = 0.0f;                             //!< surface area of the entire convex hull
[4588]164  Vector    centroid[length];                        //!< centroid of the i'th convex hull
[4557]165  Vector    center;                                  //!< the center of the entire hull
[4544]166  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
[4545]167  Vector    t1, t2;                                  //!< temporary values
[4628]168  float     covariance[3][3];                        //!< the covariance matrix
[4674]169  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
[4588]170
[4553]171  this->numOfVertices = length;
172  this->vertices = verticesList;
173
[4562]174
[4648]175  if( likely(mode == 0))
176  {
177    /* fist compute all the convex hull face/facelets and centroids */
[5428]178    for( int i = 0; i+3 < length ; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4648]179    {
180      p = verticesList[i];
181      q = verticesList[i + 1];
182      r = verticesList[i + 2];
[4638]183
[4648]184      t1 = p - q; t2 = p - r;
[4638]185
[4648]186      /* finding the facelet surface via cross-product */
187      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
188      /* update the entire convex hull surface */
189      face += facelet[i];
190
191      /* calculate the cetroid of the hull triangles */
192      centroid[i] = (p + q + r) * 1/3;
193      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
194      center += centroid[i] * facelet[i];
195    }
196    /* take the average of the centroid sum */
197    center /= face;
198    PRINTF(3)("-- Calculated Center\n");
199
200
201    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
[5428]202    for( int j = 0; j < 3; ++j)
[4648]203    {
[5428]204      for( int k = 0; k < 3; ++k)
[4648]205      {
[5428]206        for( int i = 0; i + 3 < length; i+=3)
[4648]207        {
208          p = verticesList[i];
209          q = verticesList[i + 1];
210          r = verticesList[i + 2];
211
212          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
213              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
214        }
215      }
216    }
217    PRINTF(3)("-- Calculated Covariance\n");
218  }
219  else if( mode == 1)
[4617]220  {
[5428]221    for( int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4648]222    {
223      p = verticesList[i];
224      q = verticesList[i + 1];
225      r = verticesList[i + 2];
[4588]226
[4648]227      centroid[i] = (p + q + r) / 3.0f;
228      center += centroid[i];
229    }
230    center /= length;
[4588]231
[4648]232    for( int j = 0; j < 3; ++j)
233    {
234      for( int k = 0; k < 3; ++k)
235      {
[5428]236        for( int i = 0; i + 3 < length; i+=3)
[4648]237        {
238          p = verticesList[i];
239          q = verticesList[i +1];
240          r = verticesList[i + 2];
[4545]241
[4648]242          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
243        }
244        covariance[j][k] /= (3.0f * length);
245      }
246    }
247    PRINTF(3)("-- Calculated Covariance\n");
[4617]248  }
[4648]249  else if( mode == 2)
250  {
251    /* fist compute all the convex hull face/facelets and centroids */
[5428]252    for(int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4648]253    {
254      p = verticesList[i];
255      q = verticesList[i + 1];
256      r = verticesList[i + 2];
[4562]257
[4648]258      t1 = p - q; t2 = p - r;
[4562]259
[4648]260      /* finding the facelet surface via cross-product */
261      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
262      /* update the entire convex hull surface */
263      face += facelet[i];
264
265      /* calculate the cetroid of the hull triangles */
266      centroid[i] = (p + q + r) * 1/3;
267      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
268      center += centroid[i] * facelet[i];
269    }
270    /* take the average of the centroid sum */
271    center /= face;
272    PRINTF(3)("-- Calculated Center\n");
273
274    for( int j = 0; j < 3; ++j)
275    {
276      for( int k = 0; k < 3; ++k)
277      {
[5428]278        for( int i = 0; i + 3 < length; i+=3)
[4648]279        {
280          p = verticesList[i];
281          q = verticesList[i +1];
282          r = verticesList[i + 2];
283
284          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
285        }
286        covariance[j][k] /= (3.0f * length);
287      }
288    }
289    PRINTF(3)("-- Calculated Covariance\n");
290  }
291  else
[4617]292  {
[4648]293    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4545]294    {
[4648]295      center += verticesList[i];
296    }
297    center /= length;
298
299    for( int j = 0; j < 3; ++j)
300    {
301      for( int k = 0; k < 3; ++k)
[4617]302      {
[5428]303        for( int i = 0; i + 3 < length; i+=3)
[4648]304        {
305          p = verticesList[i];
306          q = verticesList[i +1];
307          r = verticesList[i + 2];
[4544]308
[4648]309          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
310        }
311        covariance[j][k] /= (3.0f * length);
[4617]312      }
[4545]313    }
[4648]314    PRINTF(3)("-- Calculated Covariance\n");
[4617]315  }
[4562]316
[4648]317  PRINTF(3)("\nVertex Data:\n");
[4638]318  for(int i = 0; i < length; i++)
319  {
[4648]320    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
[4638]321  }
[4588]322
[4648]323
[4675]324  PRINTF(3)("\nCovariance Matrix:\n");
[4674]325  for(int j = 0; j < 3; ++j)
326  {
[4675]327    PRINT(3)(" |");
[4674]328    for(int k = 0; k < 3; ++k)
329    {
[4675]330      PRINT(3)(" \b%f ", covariance[j][k]);
[4674]331    }
[4675]332    PRINT(3)(" |\n");
[4674]333  }
334
[4638]335  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
[4553]336
[4588]337
[4674]338  for(int i = 0; i < 3; ++i)
339  {
340    box->covarianceMatrix[i][0] = covariance[i][0];
341    box->covarianceMatrix[i][1] = covariance[i][1];
342    box->covarianceMatrix[i][2] = covariance[i][2];
343  }
[4560]344  *box->center = center;
[4638]345  PRINTF(3)("-- Written Result to obb\n");
[4631]346}
[4557]347
[4631]348
349
[4632]350void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
[4631]351{
352
[4557]353  /* now getting spanning vectors of the sub-space:
[4617]354  the eigenvectors of a symmertric matrix, such as the
355  covarience matrix are mutually orthogonal.
356  after normalizing them, they can be used as a the basis
357  vectors
[4557]358  */
[4660]359  Vector*              axis = new Vector[3];                //!< the references to the obb axis
[4588]360
[5674]361  Matrix covMat(  box->covarianceMatrix[0][0], box->covarianceMatrix[0][1], box->covarianceMatrix[0][2],
362                  box->covarianceMatrix[1][0], box->covarianceMatrix[1][1], box->covarianceMatrix[1][2],
363                  box->covarianceMatrix[2][0], box->covarianceMatrix[2][1], box->covarianceMatrix[2][2] );
364  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
[4627]365
[5449]366
[4630]367  /* new jacobi tests */
[5674]368//  JacobI(OBBTreeNode::coMat, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
369//  PRINTF(3)("-- Done Jacobi Decomposition\n");
[4628]370
[4627]371
[5491]372//   PRINTF(0)("Jacobi\n");
373//   for(int j = 0; j < 3; ++j)
[4629]374//   {
[5491]375//     printf(" |");
376//     for(int k = 0; k < 3; ++k)
[4629]377//     {
[5491]378//       printf(" \t%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
[4629]379//     }
[5491]380//     printf(" |\n");
[4629]381//   }
382
[5674]383/*  axis[0].x = OBBTreeNode::eigvMat[0][0]; axis[0].y = OBBTreeNode::eigvMat[1][0]; axis[0].z = OBBTreeNode::eigvMat[2][0];
[5449]384  axis[1].x = OBBTreeNode::eigvMat[0][1]; axis[1].y = OBBTreeNode::eigvMat[1][1]; axis[1].z = OBBTreeNode::eigvMat[2][1];
385  axis[2].x = OBBTreeNode::eigvMat[0][2]; axis[2].y = OBBTreeNode::eigvMat[1][2]; axis[2].z = OBBTreeNode::eigvMat[2][2];
[4705]386  axis[0].normalize();
387  axis[1].normalize();
[5674]388  axis[2].normalize();*/
[4576]389  box->axis = axis;
[4660]390
[5492]391//   PRINTF(0)("-- Got Axis\n");
392//
393//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
394//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
395//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
[4632]396}
[4588]397
[4626]398
[4632]399void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
[4631]400{
[4630]401
[4576]402  /* now get the axis length */
[4578]403  Line                ax[3];                                 //!< the axis
404  float*              halfLength = new float[3];             //!< half length of the axis
405  float               tmpLength;                             //!< tmp save point for the length
[4660]406  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
407  Plane               p1(box->axis[1], *box->center);
408  Plane               p2(box->axis[2], *box->center);
[4658]409  float               maxLength[3];
410  float               minLength[3];
[4588]411
[4658]412
413  /* get a bad bounding box */
[4589]414  halfLength[0] = -1.0f;
[4585]415  for(int j = 0; j < length; ++j)
[4658]416    {
[4661]417      tmpLength = fabs(p0.distancePoint(vertices[j]));
[4658]418      if( tmpLength > halfLength[0])
[4659]419        halfLength[0] = tmpLength;
[4658]420    }
421
422  halfLength[1] = -1.0f;
423  for(int j = 0; j < length; ++j)
424    {
425      tmpLength = fabs(p1.distancePoint(vertices[j]));
426      if( tmpLength > halfLength[1])
[4659]427        halfLength[1] = tmpLength;
[4658]428    }
429
430  halfLength[2] = -1.0f;
431  for(int j = 0; j < length; ++j)
432    {
[4661]433      tmpLength = fabs(p2.distancePoint(vertices[j]));
[4658]434      if( tmpLength > halfLength[2])
[4659]435        halfLength[2] = tmpLength;
[4658]436    }
437
438
439
440  /* get the maximal dimensions of the body in all directions */
[4710]441    maxLength[0] = p0.distancePoint(vertices[0]);
442    minLength[0] = p0.distancePoint(vertices[0]);
[4660]443   for(int j = 0; j < length; ++j)
444   {
445     tmpLength = p0.distancePoint(vertices[j]);
446     if( tmpLength > maxLength[0])
447       maxLength[0] = tmpLength;
448     else if( tmpLength < minLength[0])
449       minLength[0] = tmpLength;
450   }
[4578]451
[4710]452   maxLength[1] = p1.distancePoint(vertices[0]);
453   minLength[1] = p1.distancePoint(vertices[0]);
[4660]454   for(int j = 0; j < length; ++j)
455   {
[4661]456     tmpLength = p1.distancePoint(vertices[j]);
[4660]457     if( tmpLength > maxLength[1])
458       maxLength[1] = tmpLength;
459     else if( tmpLength < minLength[1])
460       minLength[1] = tmpLength;
461   }
[4585]462
[4710]463   maxLength[2] = p2.distancePoint(vertices[0]);
464   minLength[2] = p2.distancePoint(vertices[0]);
[4660]465   for(int j = 0; j < length; ++j)
466   {
[4661]467     tmpLength = p2.distancePoint(vertices[j]);
[4660]468     if( tmpLength > maxLength[2])
469       maxLength[2] = tmpLength;
470     else if( tmpLength < minLength[2])
471       minLength[2] = tmpLength;
472   }
[4585]473
[4660]474
475   /* calculate the real centre of the body by using the axis length */
[4668]476   float centerOffset[3];
477   float newHalfLength[3];
[4660]478   for(int i = 0; i < 3; ++i)
479     {
[4674]480       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
[4710]481       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
482       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
[4668]483       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
484       halfLength[i] = newHalfLength[i];
[4660]485     }
486
487
488
[4586]489  box->halfLength = halfLength;
[4638]490  PRINTF(3)("-- Written Axis to obb\n");
491  PRINTF(3)("-- Finished Calculating Attributes\n");
[4585]492
[4542]493}
494
495
[4609]496
497/**
498  \brief this separates an ob-box in the middle
[4836]499* @param box: the box to separate
[4609]500
501  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
502 */
[4557]503void OBBTreeNode::forkBox(OBB* box)
504{
505  /* get the longest axis of the box */
[4609]506  float               aLength = -1.0f;                     //!< the length of the longest axis
507  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
508
[4557]509  for(int i = 0; i < 3; ++i)
[4609]510  {
511    if( aLength < box->halfLength[i])
[4557]512    {
[4609]513      aLength = box->halfLength[i];
514      axisIndex = i;
[4557]515    }
[4609]516  }
[4588]517
[4688]518   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
[4609]519
520
[4557]521  /* get the closest vertex near the center */
[4611]522  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
[4609]523  float               tmpDist;                             //!< temporary distance
524  int                 vertexIndex;
[4660]525  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
[4588]526
[4660]527  vertexIndex = 0;
[4609]528  for(int i = 0; i < box->numOfVertices; ++i)
529  {
[4611]530    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
531    if( tmpDist < dist)
532    {
[4609]533      dist = tmpDist;
[4611]534      vertexIndex = i;
535    }
[4609]536  }
537
[4710]538  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
[4609]539
540
[4611]541  /* now definin the separation plane through this specified nearest point and partition
[4617]542  the points depending on which side they are located
[4611]543  */
544  tList<sVec3D>      partition1;                           //!< the vertex partition 1
545  tList<sVec3D>      partition2;                           //!< the vertex partition 2
546
[4710]547
[4695]548  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
[4660]549  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
[4632]550  this->sepPlaneCenter = &box->vertices[vertexIndex];
551  this->longestAxisIndex = axisIndex;
552
[4612]553  for(int i = 0; i < box->numOfVertices; ++i)
554  {
[4710]555    if( i == vertexIndex) continue;
556    tmpDist = this->separationPlane->distancePoint(box->vertices[i]);
557    if( tmpDist > 0.0)
558      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
[4612]559    else
[4710]560      partition2.add(&box->vertices[i]); /* negatice numbers */
[4612]561  }
[4613]562  partition1.add(&box->vertices[vertexIndex]);
[4710]563  partition2.add(&box->vertices[vertexIndex]);
[4611]564
[4710]565  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
[4612]566
[4613]567
568  /* now comes the separation into two different sVec3D arrays */
569  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
570  sVec3D*            element;                              //!< the elements
571  int                index;                                //!< index storage place
572  sVec3D*            vertList1;                            //!< the vertex list 1
573  sVec3D*            vertList2;                            //!< the vertex list 2
574
575  vertList1 = new sVec3D[partition1.getSize()];
576  vertList2 = new sVec3D[partition2.getSize()];
577
578  iterator = partition1.getIterator();
[5115]579  element = iterator->firstElement();
[4613]580  index = 0;
581  while( element != NULL)
582  {
583    vertList1[index][0] = element[0][0];
584    vertList1[index][1] = element[0][1];
585    vertList1[index][2] = element[0][2];
586    ++index;
587    element = iterator->nextElement();
588  }
589
[4638]590//   PRINTF(0)("\npartition 1:\n");
[4626]591//   for(int i = 0; i < partition1.getSize(); ++i)
592//   {
[4638]593//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
[4626]594//   }
[4613]595
596  iterator = partition2.getIterator();
[5115]597  element = iterator->firstElement();
[4613]598  index = 0;
599  while( element != NULL)
600  {
601    vertList2[index][0] = element[0][0];
602    vertList2[index][1] = element[0][1];
603    vertList2[index][2] = element[0][2];
604    ++index;
605    element = iterator->nextElement();
606  }
607
[4630]608  this->tmpVert1 = vertList1;
609  this->tmpVert2 = vertList2;
610  this->tmpLen1 = partition1.getSize();
611  this->tmpLen2 = partition2.getSize();
612
[4638]613  delete iterator;
614
615//   PRINTF(0)("\npartition 2:\n");
[4626]616//   for(int i = 0; i < partition2.getSize(); ++i)
617//   {
[4638]618//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
[4626]619//   }
[4557]620}
621
622
[4626]623
624
[5028]625void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]626{
[4705]627  PRINTF(3)("collideWith\n");
[4695]628  /* if the obb overlap, make subtests: check which node is realy overlaping  */
[4705]629  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
[4718]630  if( unlikely(treeNode == NULL)) return;
[5042]631
[4700]632  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4695]633  {
[5044]634    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
[5038]635
[4695]636    /* check if left node overlaps */
[4704]637    if( likely( this->nodeLeft != NULL))
638    {
[4705]639      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
[4700]640      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]641      {
[4700]642        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
[4704]643        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
644      }
645    }
[4695]646    /* check if right node overlaps */
[4704]647    if( likely( this->nodeRight != NULL))
648    {
[4705]649      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
[4700]650      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]651      {
652       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
653       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
654      }
[5044]655    }
[5028]656
[5044]657    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
658    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
659    {
[5046]660      nodeA->collidesWith(nodeB, *((OBBTreeNode*)treeNode)->bvElement->center);
661
662      nodeB->collidesWith(nodeA, *this->bvElement->center);
[4704]663    }
[5044]664
[4695]665  }
666}
[4542]667
668
[4626]669
[5028]670bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]671{
[4696]672  /* first check all axis */
[4708]673  Vector t;
[4700]674  float rA = 0.0f;
675  float rB = 0.0f;
676  Vector l;
[4708]677  Vector rotAxisA[3];
678  Vector rotAxisB[3];
[4626]679
[4708]680  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
681  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
682  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
683
684  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
685  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
686  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
687
688  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
689
690//   printf("\n");
691//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
692//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
693//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
694//
695//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
696//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
697//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
698
699
[4703]700  /* All 3 axis of the object A */
[4701]701  for( int j = 0; j < 3; ++j)
[4705]702  {
703    rA = 0.0f;
704    rB = 0.0f;
[4708]705    l = rotAxisA[j];
[4705]706
[4708]707    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
708    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
709    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4705]710
[4708]711    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
712    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
713    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4705]714
715    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
716
717    if( (rA + rB) < fabs(t.dot(l)))
[4700]718    {
[4705]719      PRINT(3)("keine Kollision\n");
720      return false;
721    }
722  }
[4700]723
[4705]724  /* All 3 axis of the object B */
725  for( int j = 0; j < 3; ++j)
726  {
727    rA = 0.0f;
728    rB = 0.0f;
[4708]729    l = rotAxisB[j];
[4701]730
[4708]731    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
732    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
733    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4700]734
[4708]735    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
736    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
737    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4703]738
[4705]739    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
740
741    if( (rA + rB) < fabs(t.dot(l)))
742    {
743      PRINT(3)("keine Kollision\n");
744      return false;
[4701]745    }
[4705]746  }
[4700]747
[4705]748
749  /* Now check for all face cross products */
750
751  for( int j = 0; j < 3; ++j)
752  {
753    for(int k = 0; k < 3; ++k )
[4701]754    {
755      rA = 0.0f;
756      rB = 0.0f;
[4708]757      l = rotAxisA[j].cross(rotAxisB[k]);
[4701]758
[4708]759      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
760      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
761      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4701]762
[4708]763      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
764      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
765      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4701]766
[4703]767      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
768
[4701]769      if( (rA + rB) < fabs(t.dot(l)))
770      {
[4705]771        PRINT(3)("keine Kollision\n");
[4701]772        return false;
773      }
[4703]774    }
[4705]775  }
[4701]776
777
[4705]778  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
779  boxB->bCollided = true;
780  PRINT(3)("Kollision!\n");
781  return true;
[4695]782}
783
784
[4696]785
[4708]786
787
[5481]788void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
[4553]789{
[4635]790
791  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
792  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
793  {
[4638]794    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4622]795    {
[4712]796      if( drawMode & DRAW_POINTS)
797        glBegin(GL_POINTS);
[4638]798      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
799      {
[4712]800        if( drawMode & DRAW_POINTS)
801          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
802        else
803        {
804          glPushMatrix();
805          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
[5430]806          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
[4712]807          glPopMatrix();
808        }
[4638]809      }
[4712]810      if( drawMode & DRAW_POINTS)
811        glEnd();
[4622]812    }
[4635]813  }
[4542]814
[5481]815  if (top)
816  {
817    glPushAttrib(GL_ENABLE_BIT);
818    glDisable(GL_LIGHTING);
819    glDisable(GL_TEXTURE_2D);
820  }
821  glColor3f(color.x, color.y, color.z);
[4542]822
[5481]823
[4589]824  /* draw world axes */
[4676]825  if( drawMode & DRAW_BV_AXIS)
826  {
827    glBegin(GL_LINES);
[5481]828    glColor3f(1.0, 0.0, 0.0);
[4676]829    glVertex3f(0.0, 0.0, 0.0);
830    glVertex3f(3.0, 0.0, 0.0);
[4589]831
[5481]832    glColor3f(0.0, 1.0, 0.0);
[4676]833    glVertex3f(0.0, 0.0, 0.0);
834    glVertex3f(0.0, 3.0, 0.0);
[4589]835
[5481]836    glColor3f(0.0, 0.0, 1.0);
[4676]837    glVertex3f(0.0, 0.0, 0.0);
838    glVertex3f(0.0, 0.0, 3.0);
839    glEnd();
840  }
[4674]841
[4688]842
[4635]843  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
844  {
[4636]845    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]846    {
847      /* draw the obb axes */
848      glBegin(GL_LINES);
849      glColor3f(0.0, 0.4, 0.3);
850      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]851      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
852                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
853                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
[4589]854
[4635]855      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]856      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
857                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
858                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
[4588]859
[4635]860      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]861      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
862                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
863                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
[4635]864      glEnd();
865    }
866  }
[4581]867
[4588]868
[4674]869  /* DRAW POLYGONS */
[4673]870  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
[4635]871  {
[5487]872    if (top)
873    {
874      glEnable(GL_BLEND);
875      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
876    }
877
[4711]878    if(this->nodeLeft == NULL || this->nodeRight == NULL)
[4710]879      depth = 0;
[4636]880    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]881    {
[4636]882    Vector cen = *this->bvElement->center;
[4660]883    Vector* axis = this->bvElement->axis;
[4636]884    float* len = this->bvElement->halfLength;
[4588]885
[4702]886    if( this->bvElement->bCollided)
[5481]887    {
[5487]888      glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
[5481]889    }
[4702]890    else if( drawMode & DRAW_BV_BLENDED)
[5481]891    {
892      glColor4f(color.x, color.y, color.z, .5);
893    }
[4670]894
[4636]895    /* draw bounding box */
[4670]896    if( drawMode & DRAW_BV_BLENDED)
897      glBegin(GL_QUADS);
898    else
899      glBegin(GL_LINE_LOOP);
[4660]900    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
901               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
902               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
903    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
904               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
905               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
906    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
907               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
908               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
909    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
910               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
911               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]912    glEnd();
[4588]913
[4670]914    if( drawMode & DRAW_BV_BLENDED)
915      glBegin(GL_QUADS);
916    else
917      glBegin(GL_LINE_LOOP);
[4660]918    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
919               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
920               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
921    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
922               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
923               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
924    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
925               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
926               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
927    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
928               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
929               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]930    glEnd();
[4588]931
[4670]932    if( drawMode & DRAW_BV_BLENDED)
933      glBegin(GL_QUADS);
934    else
935      glBegin(GL_LINE_LOOP);
[4660]936    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
937               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
938               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
939    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
940               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
941               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
942    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
943               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
944               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
945    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
946               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
947               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4636]948    glEnd();
[4588]949
[4670]950    if( drawMode & DRAW_BV_BLENDED)
951      glBegin(GL_QUADS);
952    else
953      glBegin(GL_LINE_LOOP);
[4660]954    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
955               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
956               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
957    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
958               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
959               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
960    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
961               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
962               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
963    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
964               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
965               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4636]966    glEnd();
[4670]967
[4671]968
[4670]969    if( drawMode & DRAW_BV_BLENDED)
[4671]970    {
971      glBegin(GL_QUADS);
972      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
973                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
974                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
975      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
976                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
977                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
978      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
979                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
980                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
981      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
982                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
983                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
984      glEnd();
985
986      glBegin(GL_QUADS);
987      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
988                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
989                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
990      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
991                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
992                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
993      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
994                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
995                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
996      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
997                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
998                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
999      glEnd();
1000    }
1001
1002
1003    if( drawMode & DRAW_BV_BLENDED)
[5481]1004      glColor3f(color.x, color.y, color.z);
[4635]1005    }
[4636]1006
[4635]1007  }
[4588]1008
[4674]1009  /* DRAW SEPARATING PLANE */
[4635]1010  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
[4632]1011  {
[4636]1012    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]1013    {
[4671]1014      if( drawMode & DRAW_BV_BLENDED)
[5481]1015        glColor4f(color.x, color.y, color.z, .6);
[4671]1016
[4636]1017    /* now draw the separation plane */
[4660]1018    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1019    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
[4636]1020    Vector c = *this->bvElement->center;
1021    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1022    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1023    glBegin(GL_QUADS);
1024    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1025    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1026    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1027    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1028    glEnd();
[4671]1029
1030    if( drawMode & DRAW_BV_BLENDED)
[5481]1031      glColor4f(color.x, color.y, color.z, 1.0);
[4671]1032
[4635]1033    }
[4632]1034  }
[4588]1035
[4702]1036
1037
[5481]1038  if (depth > 0)
1039  {
1040    if( this->nodeLeft != NULL)
[5494]1041      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
[5481]1042    if( this->nodeRight != NULL)
[5494]1043      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
[5481]1044  }
1045  this->bvElement->bCollided = false;
[4588]1046
[5481]1047  if (top)
1048    glPopAttrib();
[4557]1049}
[4542]1050
1051
[4568]1052
[4746]1053void OBBTreeNode::debug() const
[4568]1054{
1055
1056  /*
1057  for(int i = 0; i < length; i++)
[4617]1058  {
[4638]1059  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
[4617]1060}
[4568]1061  */
1062}
Note: See TracBrowser for help on using the repository browser.