Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/collision_detection/obb_tree_node.cc @ 5678

Last change on this file since 5678 was 5678, checked in by bensch, 18 years ago

orxonox/trunk: removed old, obsolete, slow lin_alg

File size: 36.1 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "matrix.h"
23#include "abstract_model.h"
24#include "world_entity.h"
25
26#include "color.h"
27
28#include "debug.h"
29#include "glincl.h"
30
31
32
33using namespace std;
34
35OBBTree*  OBBTreeNode::obbTree = NULL;
36
37float**  OBBTreeNode::coMat = NULL;
38float**  OBBTreeNode::eigvMat = NULL;
39float*   OBBTreeNode::eigvlMat = NULL;
40int*     OBBTreeNode::rotCount = NULL;
41GLUquadricObj* OBBTreeNode_sphereObj = NULL;
42
43/**
44 *  standard constructor
45 */
46OBBTreeNode::OBBTreeNode ()
47{
48  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
49  this->nodeLeft = NULL;
50  this->nodeRight = NULL;
51  this->bvElement = NULL;
52
53  if(OBBTreeNode::coMat == NULL)
54  {
55    OBBTreeNode::coMat = new float*[4];
56    for(int i = 0; i < 4; i++)
57      OBBTreeNode::coMat[i] = new float[4];
58  }
59  if(OBBTreeNode::eigvMat == NULL)
60  {
61    OBBTreeNode::eigvMat = new float*[4];
62    for(int i = 0; i < 4; i++)
63      OBBTreeNode::eigvMat[i] = new float[4];
64  }
65  if( OBBTreeNode::eigvlMat == NULL)
66  {
67    OBBTreeNode::eigvlMat = new float[4];
68  }
69  if( OBBTreeNode::rotCount == NULL)
70    OBBTreeNode::rotCount = new int;
71
72  if (OBBTreeNode_sphereObj == NULL)
73    OBBTreeNode_sphereObj = gluNewQuadric();
74}
75
76
77/**
78 *  standard deconstructor
79 */
80OBBTreeNode::~OBBTreeNode ()
81{
82  if( this->nodeLeft)
83  {
84    delete this->nodeLeft;
85    this->nodeLeft = NULL;
86  }
87  if( this->nodeRight)
88  {
89    delete this->nodeRight;
90    this->nodeRight = NULL;
91  }
92  if( this->bvElement)
93    delete this->bvElement;
94  this->bvElement = NULL;
95}
96
97
98
99/**
100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
103 */
104void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
105{
106  PRINT(3)("\n");
107  this->treeIndex = this->obbTree->getID();
108  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
109  this->depth = depth;
110
111
112  this->bvElement = new OBB();
113  this->bvElement->vertices = verticesList;
114  this->bvElement->numOfVertices = length;
115  PRINTF(3)("Created OBBox\n");
116  this->calculateBoxCovariance(this->bvElement, verticesList, length);
117  PRINTF(3)("Calculated attributes1\n");
118  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
119  PRINTF(3)("Calculated attributes2\n");
120  this->calculateBoxAxis(this->bvElement, verticesList, length);
121  PRINTF(3)("Calculated attributes3\n");
122
123  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
124  if( this->treeIndex == 1)
125    this->bvElement->bOrigVertices = true;
126
127  if( likely( this->depth > 0))
128  {
129    this->forkBox(this->bvElement);
130
131
132    if(this->tmpLen1 > 2)
133    {
134      OBBTreeNode* node1 = new OBBTreeNode();
135      this->nodeLeft = node1;
136      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
137    }
138    else
139    {
140      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
141    }
142
143    if( this->tmpLen2 > 2)
144    {
145      OBBTreeNode* node2 = new OBBTreeNode();
146      this->nodeRight = node2;
147      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
148    }
149    else
150    {
151      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
152    }
153
154  }
155}
156
157
158
159void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
160{
161  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
162  float     face = 0.0f;                             //!< surface area of the entire convex hull
163  Vector    centroid[length];                        //!< centroid of the i'th convex hull
164  Vector    center;                                  //!< the center of the entire hull
165  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
166  Vector    t1, t2;                                  //!< temporary values
167  float     covariance[3][3];                        //!< the covariance matrix
168  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
169
170  this->numOfVertices = length;
171  this->vertices = verticesList;
172
173
174  if( likely(mode == 0))
175  {
176    /* fist compute all the convex hull face/facelets and centroids */
177    for( int i = 0; i+3 < length ; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
178    {
179      p = verticesList[i];
180      q = verticesList[i + 1];
181      r = verticesList[i + 2];
182
183      t1 = p - q; t2 = p - r;
184
185      /* finding the facelet surface via cross-product */
186      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
187      /* update the entire convex hull surface */
188      face += facelet[i];
189
190      /* calculate the cetroid of the hull triangles */
191      centroid[i] = (p + q + r) * 1/3;
192      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
193      center += centroid[i] * facelet[i];
194    }
195    /* take the average of the centroid sum */
196    center /= face;
197    PRINTF(3)("-- Calculated Center\n");
198
199
200    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
201    for( int j = 0; j < 3; ++j)
202    {
203      for( int k = 0; k < 3; ++k)
204      {
205        for( int i = 0; i + 3 < length; i+=3)
206        {
207          p = verticesList[i];
208          q = verticesList[i + 1];
209          r = verticesList[i + 2];
210
211          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
212              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
213        }
214      }
215    }
216    PRINTF(3)("-- Calculated Covariance\n");
217  }
218  else if( mode == 1)
219  {
220    for( int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
221    {
222      p = verticesList[i];
223      q = verticesList[i + 1];
224      r = verticesList[i + 2];
225
226      centroid[i] = (p + q + r) / 3.0f;
227      center += centroid[i];
228    }
229    center /= length;
230
231    for( int j = 0; j < 3; ++j)
232    {
233      for( int k = 0; k < 3; ++k)
234      {
235        for( int i = 0; i + 3 < length; i+=3)
236        {
237          p = verticesList[i];
238          q = verticesList[i +1];
239          r = verticesList[i + 2];
240
241          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
242        }
243        covariance[j][k] /= (3.0f * length);
244      }
245    }
246    PRINTF(3)("-- Calculated Covariance\n");
247  }
248  else if( mode == 2)
249  {
250    /* fist compute all the convex hull face/facelets and centroids */
251    for(int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
252    {
253      p = verticesList[i];
254      q = verticesList[i + 1];
255      r = verticesList[i + 2];
256
257      t1 = p - q; t2 = p - r;
258
259      /* finding the facelet surface via cross-product */
260      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
261      /* update the entire convex hull surface */
262      face += facelet[i];
263
264      /* calculate the cetroid of the hull triangles */
265      centroid[i] = (p + q + r) * 1/3;
266      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
267      center += centroid[i] * facelet[i];
268    }
269    /* take the average of the centroid sum */
270    center /= face;
271    PRINTF(3)("-- Calculated Center\n");
272
273    for( int j = 0; j < 3; ++j)
274    {
275      for( int k = 0; k < 3; ++k)
276      {
277        for( int i = 0; i + 3 < length; i+=3)
278        {
279          p = verticesList[i];
280          q = verticesList[i +1];
281          r = verticesList[i + 2];
282
283          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
284        }
285        covariance[j][k] /= (3.0f * length);
286      }
287    }
288    PRINTF(3)("-- Calculated Covariance\n");
289  }
290  else
291  {
292    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
293    {
294      center += verticesList[i];
295    }
296    center /= length;
297
298    for( int j = 0; j < 3; ++j)
299    {
300      for( int k = 0; k < 3; ++k)
301      {
302        for( int i = 0; i + 3 < length; i+=3)
303        {
304          p = verticesList[i];
305          q = verticesList[i +1];
306          r = verticesList[i + 2];
307
308          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
309        }
310        covariance[j][k] /= (3.0f * length);
311      }
312    }
313    PRINTF(3)("-- Calculated Covariance\n");
314  }
315
316  PRINTF(3)("\nVertex Data:\n");
317  for(int i = 0; i < length; i++)
318  {
319    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
320  }
321
322
323  PRINTF(3)("\nCovariance Matrix:\n");
324  for(int j = 0; j < 3; ++j)
325  {
326    PRINT(3)(" |");
327    for(int k = 0; k < 3; ++k)
328    {
329      PRINT(3)(" \b%f ", covariance[j][k]);
330    }
331    PRINT(3)(" |\n");
332  }
333
334  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
335
336
337  for(int i = 0; i < 3; ++i)
338  {
339    box->covarianceMatrix[i][0] = covariance[i][0];
340    box->covarianceMatrix[i][1] = covariance[i][1];
341    box->covarianceMatrix[i][2] = covariance[i][2];
342  }
343  *box->center = center;
344  PRINTF(3)("-- Written Result to obb\n");
345}
346
347
348
349void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
350{
351
352  /* now getting spanning vectors of the sub-space:
353  the eigenvectors of a symmertric matrix, such as the
354  covarience matrix are mutually orthogonal.
355  after normalizing them, they can be used as a the basis
356  vectors
357  */
358  Vector*              axis = new Vector[3];                //!< the references to the obb axis
359
360  Matrix covMat(  box->covarianceMatrix[0][0], box->covarianceMatrix[0][1], box->covarianceMatrix[0][2],
361                  box->covarianceMatrix[1][0], box->covarianceMatrix[1][1], box->covarianceMatrix[1][2],
362                  box->covarianceMatrix[2][0], box->covarianceMatrix[2][1], box->covarianceMatrix[2][2] );
363  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
364
365
366  /* new jacobi tests */
367//  JacobI(OBBTreeNode::coMat, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
368//  PRINTF(3)("-- Done Jacobi Decomposition\n");
369
370
371//   PRINTF(0)("Jacobi\n");
372//   for(int j = 0; j < 3; ++j)
373//   {
374//     printf(" |");
375//     for(int k = 0; k < 3; ++k)
376//     {
377//       printf(" \t%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
378//     }
379//     printf(" |\n");
380//   }
381
382/*  axis[0].x = OBBTreeNode::eigvMat[0][0]; axis[0].y = OBBTreeNode::eigvMat[1][0]; axis[0].z = OBBTreeNode::eigvMat[2][0];
383  axis[1].x = OBBTreeNode::eigvMat[0][1]; axis[1].y = OBBTreeNode::eigvMat[1][1]; axis[1].z = OBBTreeNode::eigvMat[2][1];
384  axis[2].x = OBBTreeNode::eigvMat[0][2]; axis[2].y = OBBTreeNode::eigvMat[1][2]; axis[2].z = OBBTreeNode::eigvMat[2][2];
385  axis[0].normalize();
386  axis[1].normalize();
387  axis[2].normalize();*/
388  box->axis = axis;
389
390//   PRINTF(0)("-- Got Axis\n");
391//
392//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
393//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
394//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
395}
396
397
398void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
399{
400
401  /* now get the axis length */
402  Line                ax[3];                                 //!< the axis
403  float*              halfLength = new float[3];             //!< half length of the axis
404  float               tmpLength;                             //!< tmp save point for the length
405  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
406  Plane               p1(box->axis[1], *box->center);
407  Plane               p2(box->axis[2], *box->center);
408  float               maxLength[3];
409  float               minLength[3];
410
411
412  /* get a bad bounding box */
413  halfLength[0] = -1.0f;
414  for(int j = 0; j < length; ++j)
415    {
416      tmpLength = fabs(p0.distancePoint(vertices[j]));
417      if( tmpLength > halfLength[0])
418        halfLength[0] = tmpLength;
419    }
420
421  halfLength[1] = -1.0f;
422  for(int j = 0; j < length; ++j)
423    {
424      tmpLength = fabs(p1.distancePoint(vertices[j]));
425      if( tmpLength > halfLength[1])
426        halfLength[1] = tmpLength;
427    }
428
429  halfLength[2] = -1.0f;
430  for(int j = 0; j < length; ++j)
431    {
432      tmpLength = fabs(p2.distancePoint(vertices[j]));
433      if( tmpLength > halfLength[2])
434        halfLength[2] = tmpLength;
435    }
436
437
438
439  /* get the maximal dimensions of the body in all directions */
440    maxLength[0] = p0.distancePoint(vertices[0]);
441    minLength[0] = p0.distancePoint(vertices[0]);
442   for(int j = 0; j < length; ++j)
443   {
444     tmpLength = p0.distancePoint(vertices[j]);
445     if( tmpLength > maxLength[0])
446       maxLength[0] = tmpLength;
447     else if( tmpLength < minLength[0])
448       minLength[0] = tmpLength;
449   }
450
451   maxLength[1] = p1.distancePoint(vertices[0]);
452   minLength[1] = p1.distancePoint(vertices[0]);
453   for(int j = 0; j < length; ++j)
454   {
455     tmpLength = p1.distancePoint(vertices[j]);
456     if( tmpLength > maxLength[1])
457       maxLength[1] = tmpLength;
458     else if( tmpLength < minLength[1])
459       minLength[1] = tmpLength;
460   }
461
462   maxLength[2] = p2.distancePoint(vertices[0]);
463   minLength[2] = p2.distancePoint(vertices[0]);
464   for(int j = 0; j < length; ++j)
465   {
466     tmpLength = p2.distancePoint(vertices[j]);
467     if( tmpLength > maxLength[2])
468       maxLength[2] = tmpLength;
469     else if( tmpLength < minLength[2])
470       minLength[2] = tmpLength;
471   }
472
473
474   /* calculate the real centre of the body by using the axis length */
475   float centerOffset[3];
476   float newHalfLength[3];
477   for(int i = 0; i < 3; ++i)
478     {
479       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
480       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
481       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
482       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
483       halfLength[i] = newHalfLength[i];
484     }
485
486
487
488  box->halfLength = halfLength;
489  PRINTF(3)("-- Written Axis to obb\n");
490  PRINTF(3)("-- Finished Calculating Attributes\n");
491
492}
493
494
495
496/**
497  \brief this separates an ob-box in the middle
498* @param box: the box to separate
499
500  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
501 */
502void OBBTreeNode::forkBox(OBB* box)
503{
504  /* get the longest axis of the box */
505  float               aLength = -1.0f;                     //!< the length of the longest axis
506  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
507
508  for(int i = 0; i < 3; ++i)
509  {
510    if( aLength < box->halfLength[i])
511    {
512      aLength = box->halfLength[i];
513      axisIndex = i;
514    }
515  }
516
517   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
518
519
520  /* get the closest vertex near the center */
521  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
522  float               tmpDist;                             //!< temporary distance
523  int                 vertexIndex;
524  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
525
526  vertexIndex = 0;
527  for(int i = 0; i < box->numOfVertices; ++i)
528  {
529    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
530    if( tmpDist < dist)
531    {
532      dist = tmpDist;
533      vertexIndex = i;
534    }
535  }
536
537  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
538
539
540  /* now definin the separation plane through this specified nearest point and partition
541  the points depending on which side they are located
542  */
543  tList<sVec3D>      partition1;                           //!< the vertex partition 1
544  tList<sVec3D>      partition2;                           //!< the vertex partition 2
545
546
547  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
548  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
549  this->sepPlaneCenter = &box->vertices[vertexIndex];
550  this->longestAxisIndex = axisIndex;
551
552  for(int i = 0; i < box->numOfVertices; ++i)
553  {
554    if( i == vertexIndex) continue;
555    tmpDist = this->separationPlane->distancePoint(box->vertices[i]);
556    if( tmpDist > 0.0)
557      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
558    else
559      partition2.add(&box->vertices[i]); /* negatice numbers */
560  }
561  partition1.add(&box->vertices[vertexIndex]);
562  partition2.add(&box->vertices[vertexIndex]);
563
564  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
565
566
567  /* now comes the separation into two different sVec3D arrays */
568  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
569  sVec3D*            element;                              //!< the elements
570  int                index;                                //!< index storage place
571  sVec3D*            vertList1;                            //!< the vertex list 1
572  sVec3D*            vertList2;                            //!< the vertex list 2
573
574  vertList1 = new sVec3D[partition1.getSize()];
575  vertList2 = new sVec3D[partition2.getSize()];
576
577  iterator = partition1.getIterator();
578  element = iterator->firstElement();
579  index = 0;
580  while( element != NULL)
581  {
582    vertList1[index][0] = element[0][0];
583    vertList1[index][1] = element[0][1];
584    vertList1[index][2] = element[0][2];
585    ++index;
586    element = iterator->nextElement();
587  }
588
589//   PRINTF(0)("\npartition 1:\n");
590//   for(int i = 0; i < partition1.getSize(); ++i)
591//   {
592//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
593//   }
594
595  iterator = partition2.getIterator();
596  element = iterator->firstElement();
597  index = 0;
598  while( element != NULL)
599  {
600    vertList2[index][0] = element[0][0];
601    vertList2[index][1] = element[0][1];
602    vertList2[index][2] = element[0][2];
603    ++index;
604    element = iterator->nextElement();
605  }
606
607  this->tmpVert1 = vertList1;
608  this->tmpVert2 = vertList2;
609  this->tmpLen1 = partition1.getSize();
610  this->tmpLen2 = partition2.getSize();
611
612  delete iterator;
613
614//   PRINTF(0)("\npartition 2:\n");
615//   for(int i = 0; i < partition2.getSize(); ++i)
616//   {
617//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
618//   }
619}
620
621
622
623
624void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
625{
626  PRINTF(3)("collideWith\n");
627  /* if the obb overlap, make subtests: check which node is realy overlaping  */
628  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
629  if( unlikely(treeNode == NULL)) return;
630
631  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
632  {
633    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
634
635    /* check if left node overlaps */
636    if( likely( this->nodeLeft != NULL))
637    {
638      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
639      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
640      {
641        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
642        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
643      }
644    }
645    /* check if right node overlaps */
646    if( likely( this->nodeRight != NULL))
647    {
648      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
649      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
650      {
651       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
652       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
653      }
654    }
655
656    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
657    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
658    {
659      nodeA->collidesWith(nodeB, *((OBBTreeNode*)treeNode)->bvElement->center);
660
661      nodeB->collidesWith(nodeA, *this->bvElement->center);
662    }
663
664  }
665}
666
667
668
669bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
670{
671  /* first check all axis */
672  Vector t;
673  float rA = 0.0f;
674  float rB = 0.0f;
675  Vector l;
676  Vector rotAxisA[3];
677  Vector rotAxisB[3];
678
679  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
680  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
681  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
682
683  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
684  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
685  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
686
687  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
688
689//   printf("\n");
690//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
691//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
692//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
693//
694//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
695//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
696//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
697
698
699  /* All 3 axis of the object A */
700  for( int j = 0; j < 3; ++j)
701  {
702    rA = 0.0f;
703    rB = 0.0f;
704    l = rotAxisA[j];
705
706    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
707    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
708    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
709
710    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
711    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
712    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
713
714    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
715
716    if( (rA + rB) < fabs(t.dot(l)))
717    {
718      PRINT(3)("keine Kollision\n");
719      return false;
720    }
721  }
722
723  /* All 3 axis of the object B */
724  for( int j = 0; j < 3; ++j)
725  {
726    rA = 0.0f;
727    rB = 0.0f;
728    l = rotAxisB[j];
729
730    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
731    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
732    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
733
734    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
735    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
736    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
737
738    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
739
740    if( (rA + rB) < fabs(t.dot(l)))
741    {
742      PRINT(3)("keine Kollision\n");
743      return false;
744    }
745  }
746
747
748  /* Now check for all face cross products */
749
750  for( int j = 0; j < 3; ++j)
751  {
752    for(int k = 0; k < 3; ++k )
753    {
754      rA = 0.0f;
755      rB = 0.0f;
756      l = rotAxisA[j].cross(rotAxisB[k]);
757
758      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
759      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
760      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
761
762      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
763      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
764      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
765
766      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
767
768      if( (rA + rB) < fabs(t.dot(l)))
769      {
770        PRINT(3)("keine Kollision\n");
771        return false;
772      }
773    }
774  }
775
776
777  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
778  boxB->bCollided = true;
779  PRINT(3)("Kollision!\n");
780  return true;
781}
782
783
784
785
786
787void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
788{
789
790  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
791  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
792  {
793    if( !(drawMode & DRAW_SINGLE && depth != 0))
794    {
795      if( drawMode & DRAW_POINTS)
796        glBegin(GL_POINTS);
797      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
798      {
799        if( drawMode & DRAW_POINTS)
800          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
801        else
802        {
803          glPushMatrix();
804          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
805          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
806          glPopMatrix();
807        }
808      }
809      if( drawMode & DRAW_POINTS)
810        glEnd();
811    }
812  }
813
814  if (top)
815  {
816    glPushAttrib(GL_ENABLE_BIT);
817    glDisable(GL_LIGHTING);
818    glDisable(GL_TEXTURE_2D);
819  }
820  glColor3f(color.x, color.y, color.z);
821
822
823  /* draw world axes */
824  if( drawMode & DRAW_BV_AXIS)
825  {
826    glBegin(GL_LINES);
827    glColor3f(1.0, 0.0, 0.0);
828    glVertex3f(0.0, 0.0, 0.0);
829    glVertex3f(3.0, 0.0, 0.0);
830
831    glColor3f(0.0, 1.0, 0.0);
832    glVertex3f(0.0, 0.0, 0.0);
833    glVertex3f(0.0, 3.0, 0.0);
834
835    glColor3f(0.0, 0.0, 1.0);
836    glVertex3f(0.0, 0.0, 0.0);
837    glVertex3f(0.0, 0.0, 3.0);
838    glEnd();
839  }
840
841
842  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
843  {
844    if( !(drawMode & DRAW_SINGLE && depth != 0))
845    {
846      /* draw the obb axes */
847      glBegin(GL_LINES);
848      glColor3f(0.0, 0.4, 0.3);
849      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
850      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
851                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
852                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
853
854      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
855      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
856                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
857                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
858
859      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
860      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
861                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
862                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
863      glEnd();
864    }
865  }
866
867
868  /* DRAW POLYGONS */
869  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
870  {
871    if (top)
872    {
873      glEnable(GL_BLEND);
874      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
875    }
876
877    if(this->nodeLeft == NULL || this->nodeRight == NULL)
878      depth = 0;
879    if( !(drawMode & DRAW_SINGLE && depth != 0))
880    {
881    Vector cen = *this->bvElement->center;
882    Vector* axis = this->bvElement->axis;
883    float* len = this->bvElement->halfLength;
884
885    if( this->bvElement->bCollided)
886    {
887      glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
888    }
889    else if( drawMode & DRAW_BV_BLENDED)
890    {
891      glColor4f(color.x, color.y, color.z, .5);
892    }
893
894    /* draw bounding box */
895    if( drawMode & DRAW_BV_BLENDED)
896      glBegin(GL_QUADS);
897    else
898      glBegin(GL_LINE_LOOP);
899    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
900               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
901               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
902    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
903               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
904               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
905    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
906               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
907               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
908    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
909               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
910               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
911    glEnd();
912
913    if( drawMode & DRAW_BV_BLENDED)
914      glBegin(GL_QUADS);
915    else
916      glBegin(GL_LINE_LOOP);
917    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
918               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
919               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
920    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
921               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
922               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
923    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
924               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
925               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
926    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
927               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
928               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
929    glEnd();
930
931    if( drawMode & DRAW_BV_BLENDED)
932      glBegin(GL_QUADS);
933    else
934      glBegin(GL_LINE_LOOP);
935    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
936               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
937               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
938    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
939               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
940               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
941    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
942               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
943               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
944    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
945               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
946               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
947    glEnd();
948
949    if( drawMode & DRAW_BV_BLENDED)
950      glBegin(GL_QUADS);
951    else
952      glBegin(GL_LINE_LOOP);
953    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
954               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
955               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
956    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
957               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
958               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
959    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
960               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
961               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
962    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
963               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
964               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
965    glEnd();
966
967
968    if( drawMode & DRAW_BV_BLENDED)
969    {
970      glBegin(GL_QUADS);
971      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
972                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
973                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
974      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
975                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
976                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
977      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
978                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
979                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
980      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
981                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
982                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
983      glEnd();
984
985      glBegin(GL_QUADS);
986      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
987                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
988                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
989      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
990                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
991                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
992      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
993                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
994                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
995      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
996                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
997                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
998      glEnd();
999    }
1000
1001
1002    if( drawMode & DRAW_BV_BLENDED)
1003      glColor3f(color.x, color.y, color.z);
1004    }
1005
1006  }
1007
1008  /* DRAW SEPARATING PLANE */
1009  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
1010  {
1011    if( !(drawMode & DRAW_SINGLE && depth != 0))
1012    {
1013      if( drawMode & DRAW_BV_BLENDED)
1014        glColor4f(color.x, color.y, color.z, .6);
1015
1016    /* now draw the separation plane */
1017    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1018    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
1019    Vector c = *this->bvElement->center;
1020    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1021    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1022    glBegin(GL_QUADS);
1023    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1024    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1025    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1026    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1027    glEnd();
1028
1029    if( drawMode & DRAW_BV_BLENDED)
1030      glColor4f(color.x, color.y, color.z, 1.0);
1031
1032    }
1033  }
1034
1035
1036
1037  if (depth > 0)
1038  {
1039    if( this->nodeLeft != NULL)
1040      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
1041    if( this->nodeRight != NULL)
1042      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
1043  }
1044  this->bvElement->bCollided = false;
1045
1046  if (top)
1047    glPopAttrib();
1048}
1049
1050
1051
1052void OBBTreeNode::debug() const
1053{
1054
1055  /*
1056  for(int i = 0; i < length; i++)
1057  {
1058  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
1059}
1060  */
1061}
Note: See TracBrowser for help on using the repository browser.