Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/collision_detection/src/lib/collision_detection/obb_tree_node.cc @ 5927

Last change on this file since 5927 was 5927, checked in by patrick, 18 years ago

collision_deteciton: works again! but much more massivesvn diff now realy looks good

File size: 37.8 KB
RevLine 
[4588]1/*
[4541]2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
[4617]11### File Specific:
[4541]12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
[5713]16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION_DETECTION
[4541]17
18#include "obb_tree_node.h"
[5882]19#include "obb_tree.h"
[4542]20#include "obb.h"
[5882]21
[5674]22#include "matrix.h"
[4550]23#include "abstract_model.h"
[5028]24#include "world_entity.h"
[4541]25
[5481]26#include "color.h"
[5882]27#include "glincl.h"
[4543]28
[5882]29#include <list>
[5922]30#include <vector>
[5511]31#include "debug.h"
[4572]32
33
34
[4541]35using namespace std;
36
[5882]37
[5430]38GLUquadricObj* OBBTreeNode_sphereObj = NULL;
[4630]39
[5882]40
[4541]41/**
[4836]42 *  standard constructor
[5882]43 * @param tree: reference to the obb tree
44 * @param depth: the depth of the obb tree to generate
[4617]45 */
[5713]46OBBTreeNode::OBBTreeNode (const OBBTree& tree, unsigned int depth)
[5825]47    : BVTreeNode()
[4541]48{
[4617]49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
[5713]50
51  this->obbTree = &tree;
52  this->depth = depth;
53
[4618]54  this->nodeLeft = NULL;
55  this->nodeRight = NULL;
[4814]56  this->bvElement = NULL;
[5713]57
[5882]58  this->triangleIndexList1 = NULL;
59  this->triangleIndexList2 = NULL;
[4630]60
[5882]61  this->modelInf = NULL;
62  this->triangleIndexes = NULL;
[4638]63
[5693]64  if( OBBTreeNode_sphereObj == NULL)
[5430]65    OBBTreeNode_sphereObj = gluNewQuadric();
[4541]66}
67
[5716]68
[4541]69/**
[4836]70 *  standard deconstructor
[4617]71 */
[4588]72OBBTreeNode::~OBBTreeNode ()
[4541]73{
[4814]74  if( this->nodeLeft)
75    delete this->nodeLeft;
76  if( this->nodeRight)
77    delete this->nodeRight;
[5882]78
[4814]79  if( this->bvElement)
80    delete this->bvElement;
[5699]81
[5882]82  if( this->triangleIndexList1 != NULL)
83    delete [] this->triangleIndexList1;
84  if( this->triangleIndexList2 != NULL)
85    delete [] this->triangleIndexList2;
[4541]86}
87
88
[5684]89/**
90 *  creates a new BVTree or BVTree partition
91 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
92 * @param modInfo: model informations from the abstrac model
[5689]93 *
[5684]94 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
95 * on the triangle informations (triangle soup not polygon soup)
96 */
[5716]97void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, unsigned int length)
[5684]98{
[5882]99  PRINTF(3)("\n==============================Creating OBB Tree Node==================\n");
100  PRINT(3)(" OBB Tree Infos: \n");
[5920]101  PRINT(3)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, treeIndex, length);
[5684]102  this->depth = depth;
[4542]103
[5711]104  this->bvElement = new OBB();
[5702]105  this->bvElement->modelInf = &modelInf;
106  this->bvElement->triangleIndexes = triangleIndexes;
[5870]107  this->bvElement->triangleIndexesLength = length;
[5711]108
[5705]109  /* create the boxes in three steps */
[5712]110  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
111  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
112  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
[5684]113
[5705]114  /* do we need to descent further in the obb tree?*/
[5684]115  if( likely( this->depth > 0))
116  {
[5882]117    this->forkBox(*this->bvElement);
[5684]118
[5882]119    if( this->triangleIndexLength1 >= 3)
120    {
121      this->nodeLeft = new OBBTreeNode(*this->obbTree, depth - 1);
122      this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1);
123    }
124    if( this->triangleIndexLength2 >= 3)
125    {
126      this->nodeRight = new OBBTreeNode(*this->obbTree, depth - 1);
127      this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2);
128    }
[5684]129  }
130}
131
132
[5882]133
[4542]134/**
[5882]135 *  calculate the box covariance matrix
136 * @param box: reference to the box
137 * @param modelInf: the model info structure of the model
138 * @param tirangleIndexes: an array with the indexes of the triangles inside this
139 * @param length: the length of the indexes array
[4617]140 */
[5867]141void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, unsigned int length)
[4557]142{
[4543]143  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
[5428]144  float     face = 0.0f;                             //!< surface area of the entire convex hull
[4588]145  Vector    centroid[length];                        //!< centroid of the i'th convex hull
[4557]146  Vector    center;                                  //!< the center of the entire hull
[4544]147  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
[4545]148  Vector    t1, t2;                                  //!< temporary values
[5692]149  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
[5710]150  sVec3D*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
[4588]151
[4553]152
[5706]153  /* fist compute all the convex hull face/facelets and centroids */
[5710]154  for( int i = 0; i < length ; ++i)
[4648]155  {
[5713]156    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
157    p = *tmpVec;
158    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
159    q = *tmpVec;
160    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
161    r = *tmpVec;
[4638]162
[5713]163    /* finding the facelet surface via cross-product */
[5825]164    t1 = p - q;
165    t2 = p - r;
[5706]166    facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
167    /* update the entire convex hull surface */
168    face += facelet[i];
[4648]169
[5706]170    /* calculate the cetroid of the hull triangles */
171    centroid[i] = (p + q + r) * 1/3;
172    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
173    center += centroid[i] * facelet[i];
[5922]174    /* the arithmetical center */
[4648]175  }
[5706]176  /* take the average of the centroid sum */
177  center /= face;
[4588]178
179
[5711]180  /* now calculate the covariance matrix - if not written in three for-loops,
[5706]181     it would compute faster: minor */
182  for( int j = 0; j < 3; ++j)
[4648]183  {
[5706]184    for( int k = 0; k < 3; ++k)
[4648]185    {
[5884]186      for( int i = 0; i < length; ++i)
[4648]187      {
[5713]188        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
189        p = *tmpVec;
190        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
191        q = *tmpVec;
192        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
193        r = *tmpVec;
[4648]194
[5706]195        covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
[5825]196                           q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
[4648]197      }
198    }
199  }
[5923]200  for(int i = 0; i < 3; ++i)
201  {
202    box.covarianceMatrix[i][0] = covariance[i][0];
203    box.covarianceMatrix[i][1] = covariance[i][1];
204    box.covarianceMatrix[i][2] = covariance[i][2];
205  }
206  box.center = center;
[4648]207
[5922]208
209  std::vector<int>           vertIndexVector;                           //!< vertex indexes list
210  int                        vertIndex;                                 //!< index to vertex
211  bool                       vertexFound;                               //!< vertex found flag
212  Vector                     arithCenter;                               //!< aritmetical center
213
214  /* calculate the arithmetical center of the box */
215
216  /* go thourgh all vertices, add only the used vertices indexes */
217  for( int i = 0; i < length; ++i)
218  {
219    for(int j = 0; j < 3; ++j)
220    {
221      vertIndex = modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j];
222
223      vertexFound = false;
224      for( int i = 0; i < vertIndexVector.size(); i++)
225      {
226        if( vertIndexVector[i] == vertIndex)
227          vertexFound = true;
228      }
229      if( !vertexFound)
230        vertIndexVector.push_back(vertIndex);
231    }
232  }
233  /* now realy calculate the center */
234  for( int i = 0; i < vertIndexVector.size(); ++i)
235  {
236    tmpVec = (sVec3D*)(&modelInf.pVertices[vertIndexVector[i]]);
237    arithCenter += *tmpVec;
238  }
239  box.arithCenter = arithCenter / vertIndexVector.size();
240
241
242
[5923]243  /* debug output section*/
[5706]244  PRINTF(3)("\nOBB Covariance Matrix:\n");
[5825]245  for(int j = 0; j < 3; ++j)
246  {
[5882]247    PRINT(3)("\t\t");
[5825]248    for(int k = 0; k < 3; ++k)
249    {
[5882]250      PRINT(3)("%11.2f\t", covariance[j][k]);
[5825]251    }
[5882]252    PRINT(3)("\n");
[5825]253  }
[5922]254  PRINTF(3)("\nWeighteed OBB Center:\n\t\t%11.2f\t %11.2f\t %11.2f\n", center.x, center.y, center.z);
[5923]255  PRINTF(3)("\nArithmetical OBB Center:\n\t\t%11.2f\t %11.2f\t %11.2f\n", box.arithCenter.x, box.arithCenter.y, box.arithCenter.z);
[4588]256
[5825]257  /* write back the covariance matrix data to the object oriented bouning box */
[4631]258}
[4557]259
[4631]260
[5867]261
262/**
263 *  calculate the eigenvectors for the object oriented box
264 * @param box: reference to the box
265 * @param modelInf: the model info structure of the model
266 * @param tirangleIndexes: an array with the indexes of the triangles inside this
267 * @param length: the length of the indexes array
268 */
269void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modelInf,
[5825]270    const int* triangleIndexes, unsigned int length)
271{
[4631]272
[5825]273  Vector         axis[3];                            //!< the references to the obb axis
274  Matrix         covMat(  box.covarianceMatrix  );   //!< covariance matrix (in the matrix dataform)
275
276  /*
277  now getting spanning vectors of the sub-space:
[4617]278  the eigenvectors of a symmertric matrix, such as the
279  covarience matrix are mutually orthogonal.
280  after normalizing them, they can be used as a the basis
281  vectors
[4557]282  */
[4588]283
[5825]284  /* calculate the axis */
[5674]285  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
[5712]286  box.axis[0] = axis[0];
287  box.axis[1] = axis[1];
288  box.axis[2] = axis[2];
[4660]289
[5882]290  PRINTF(3)("Eigenvectors:\n");
291  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
292  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
293  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
[4632]294}
[4588]295
[4626]296
[5867]297
298
299/**
300 *  calculate the eigenvectors for the object oriented box
301 * @param box: reference to the box
302 * @param modelInf: the model info structure of the model
303 * @param tirangleIndexes: an array with the indexes of the triangles inside this
304 * @param length: the length of the indexes array
305 */
[5868]306void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, unsigned int length)
[5686]307{
[5684]308
[5882]309  PRINTF(3)("Calculate Box Axis\n");
[4576]310  /* now get the axis length */
[4578]311  Line                ax[3];                                 //!< the axis
[5699]312  float               halfLength[3];                         //!< half length of the axis
[4578]313  float               tmpLength;                             //!< tmp save point for the length
[5882]314  Plane               p0(box.axis[0], box.center);           //!< the axis planes
315  Plane               p1(box.axis[1], box.center);           //!< the axis planes
316  Plane               p2(box.axis[2], box.center);           //!< the axis planes
317  float               maxLength[3];                          //!< maximal lenth of the axis
318  float               minLength[3];                          //!< minimal length of the axis
319  const sVec3D*       tmpVec;                                //!< variable taking tmp vectors
[4588]320
[5868]321  /*
[5869]322  this step is split up in three: first there will be made a bounding box which is
323  very badly centered. In the section step there will be calculated a new center
[5868]324  and a better bounding box.
325  */
[4658]326
[5868]327  /* get a bad bounding box axis */
[5920]328//   halfLength[0] = -1.0f;
329//   for( int j = 0; j < length; ++j)
330//   {
331//     for( int i = 0; i < 3; ++i)
332//     {
333//       tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
334//       tmpLength = fabs(p0.distancePoint(*tmpVec));
335//       if( tmpLength > halfLength[0])
336//         halfLength[0] = tmpLength;
337//     }
338//   }
339//
340//   halfLength[1] = -1.0f;
341//   for( int j = 0; j < length; ++j)
342//   {
343//     for( int i = 0; i < 3; ++i)
344//     {
345//       tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
346//       tmpLength = fabs(p0.distancePoint(*tmpVec));
347//       if( tmpLength > halfLength[1])
348//         halfLength[1] = tmpLength;
349//     }
350//   }
351//
352//   halfLength[2] = -1.0f;
353//   for( int j = 0; j < length; ++j)
354//   {
355//     for( int i = 0; i < 3; ++i)
356//     {
357//       tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
358//       tmpLength = fabs(p0.distancePoint(*tmpVec));
359//       if( tmpLength > halfLength[2])
360//         halfLength[2] = tmpLength;
361//     }
362//   }
[4658]363
364
365
366  /* get the maximal dimensions of the body in all directions */
[5868]367  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
368  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
369  maxLength[0] = p0.distancePoint(*tmpVec);
370  minLength[0] = p0.distancePoint(*tmpVec);
371  for( int j = 0; j < length; ++j)
[5825]372  {
[5868]373    for( int i = 0; i < 3; ++i)
374    {
375      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
376      tmpLength = p0.distancePoint(*tmpVec);
377      if( tmpLength > maxLength[0])
378        maxLength[0] = tmpLength;
379      else if( tmpLength < minLength[0])
380        minLength[0] = tmpLength;
381    }
[5825]382  }
[4578]383
[5868]384  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
385  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
386  maxLength[1] = p1.distancePoint(*tmpVec);
387  minLength[1] = p1.distancePoint(*tmpVec);
388  for( int j = 0; j < length; ++j)
[5825]389  {
[5868]390    for( int i = 0; i < 3; ++i)
391    {
392      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
[5925]393      tmpLength = p1.distancePoint(*tmpVec);
[5868]394      if( tmpLength > maxLength[1])
395        maxLength[1] = tmpLength;
396      else if( tmpLength < minLength[1])
397        minLength[1] = tmpLength;
398    }
[5825]399  }
[4585]400
[5868]401  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
402  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
403  maxLength[2] = p2.distancePoint(*tmpVec);
404  minLength[2] = p2.distancePoint(*tmpVec);
405  for( int j = 0; j < length; ++j)
[5825]406  {
[5868]407    for( int i = 0; i < 3; ++i)
408    {
409      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
[5925]410      tmpLength = p2.distancePoint(*tmpVec);
[5868]411      if( tmpLength > maxLength[2])
412        maxLength[2] = tmpLength;
413      else if( tmpLength < minLength[2])
414        minLength[2] = tmpLength;
415    }
[5825]416  }
[4585]417
[4660]418
[5825]419  /* calculate the real centre of the body by using the axis length */
[5920]420  float               centerOffset[3];
421  float               newHalfLength[3];
422
[5922]423  for( int i = 0; i < 3; ++i)
[5825]424  {
425    centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
426    newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
[5882]427    box.center +=  (box.axis[i] * centerOffset[i]);               // update the new center vector
[5825]428    halfLength[i] = newHalfLength[i];
429  }
[5882]430  PRINTF(3)("\n");
[5920]431  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[0], maxLength[0], minLength[0]);
432  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[1], maxLength[1], minLength[1]);
433  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[2], maxLength[2], minLength[2]);
[4660]434
435
[5712]436  box.halfLength[0] = halfLength[0];
437  box.halfLength[1] = halfLength[1];
438  box.halfLength[2] = halfLength[2];
[4542]439}
440
441
[4609]442
443/**
[5869]444 *  this separates an ob-box in the middle
445 * @param box: the box to separate
446 *
447 * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
[4609]448 */
[5712]449void OBBTreeNode::forkBox(OBB& box)
[4557]450{
[5869]451
[5882]452  PRINTF(3)("Fork Box\n");
453  PRINTF(4)("Calculating the longest Axis\n");
[4557]454  /* get the longest axis of the box */
[5882]455  float               longestAxis = -1.0f;                 //!< the length of the longest axis
456  int                 longestAxisIndex = 0;                //!< this is the nr of the longest axis
[4609]457
[5882]458
459  /* now get the longest axis of the three exiting */
460  for( int i = 0; i < 3; ++i)
[4609]461  {
[5882]462    if( longestAxis < box.halfLength[i])
[4557]463    {
[5882]464      longestAxis = box.halfLength[i];
465      longestAxisIndex = i;
[4557]466    }
[4609]467  }
[5882]468  PRINTF(3)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis);
[4588]469
[4609]470
[5882]471  PRINTF(4)("Separating along the longest axis\n");
[4557]472  /* get the closest vertex near the center */
[4611]473  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
[5882]474  float               tmpDist;                             //!< variable to save diverse distances temporarily
475  int                 vertexIndex;                         //!< index of the vertex near the center
476  Plane               middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane
477  const sVec3D*       tmpVec;                              //!< temp simple 3D vector
[4588]478
[4609]479
[4611]480  /* now definin the separation plane through this specified nearest point and partition
[4617]481  the points depending on which side they are located
[4611]482  */
[5882]483  std::list<int>           partition1;                           //!< the vertex partition 1
484  std::list<int>           partition2;                           //!< the vertex partition 2
[5927]485  float*                   triangleCenter = new float[3];        //!< the center of the triangle
[5882]486  const float*             a;                                    //!< triangle  edge a
487  const float*             b;                                    //!< triangle  edge b
488  const float*             c;                                    //!< triangle  edge c
[4611]489
[5920]490
[5922]491  /* find the center of the box */
[5920]492
[5882]493  this->separationPlane = Plane(box.axis[longestAxisIndex], box.center);
494  this->sepPlaneCenter[0] = box.center.x;
495  this->sepPlaneCenter[1] = box.center.y;
496  this->sepPlaneCenter[2] = box.center.z;
497  this->longestAxisIndex = longestAxisIndex;
[4710]498
[5882]499  for( int i = 0; i < box.triangleIndexesLength; ++i)
500  {
501    /* first calculate the middle of the triangle */
502    a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]];
503    b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]];
504    c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]];
[5869]505
[5927]506    triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f;
507    triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f;
508    triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f;
509    tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter));
[5869]510
[5882]511    if( tmpDist > 0.0f)
[5927]512      partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */
[4612]513    else
[5927]514      partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */
[4612]515  }
[5882]516  PRINTF(3)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size());
[4611]517
[4612]518
[4613]519  /* now comes the separation into two different sVec3D arrays */
520  int                index;                                //!< index storage place
[5882]521  int*               triangleIndexList1;                   //!< the vertex list 1
522  int*               triangleIndexList2;                   //!< the vertex list 2
523  std::list<int>::iterator element;                        //!< the list iterator
[4613]524
[5882]525  triangleIndexList1 = new int[partition1.size()];
526  triangleIndexList2 = new int[partition2.size()];
[4613]527
[5882]528  for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++)
529    triangleIndexList1[index] = (*element);
[5869]530
[5882]531  for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++)
532    triangleIndexList2[index] = (*element);
[5869]533
[5882]534  if( this->triangleIndexList1!= NULL)
535    delete[] this->triangleIndexList1;
536  this->triangleIndexList1 = triangleIndexList1;
537  this->triangleIndexLength1 = partition1.size();
[4613]538
[5882]539  if( this->triangleIndexList2 != NULL)
540    delete[] this->triangleIndexList2;
541  this->triangleIndexList2 = triangleIndexList2;
542  this->triangleIndexLength2 = partition2.size();
[4557]543}
544
545
[4626]546
547
[5718]548void OBBTreeNode::collideWith(const BVTreeNode& treeNode, const WorldEntity& nodeA, const WorldEntity& nodeB) const
[4695]549{
[4705]550  PRINTF(3)("collideWith\n");
[4695]551  /* if the obb overlap, make subtests: check which node is realy overlaping  */
[5718]552  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode.getIndex());
[5825]553  //   if( unlikely(treeNode == NULL)) return;
[5042]554
[5718]555
556  if( this->overlapTest(*this->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
[4695]557  {
[5718]558    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA.getClassName(), nodeB.getClassName(), this->nodeLeft, this->nodeRight);
[5038]559
[4695]560    /* check if left node overlaps */
[4704]561    if( likely( this->nodeLeft != NULL))
562    {
[5718]563      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode.getIndex());
564      if( this->overlapTest(*this->nodeLeft->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
[4704]565      {
[5718]566        this->nodeLeft->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeLeft), nodeA, nodeB);
567        this->nodeLeft->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeRight), nodeA, nodeB);
[4704]568      }
569    }
[4695]570    /* check if right node overlaps */
[4704]571    if( likely( this->nodeRight != NULL))
572    {
[5718]573      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode.getIndex());
574      if(this->overlapTest(*this->nodeRight->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
[4704]575      {
[5718]576        this->nodeRight->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeLeft), nodeA, nodeB);
577        this->nodeRight->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeRight), nodeA, nodeB);
[4704]578      }
[5044]579    }
[5028]580
[5044]581    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
[5718]582    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
[5044]583    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
584    {
[5718]585      nodeA.collidesWith(nodeB, (((const OBBTreeNode*)&treeNode)->bvElement->center));
[5046]586
[5718]587      nodeB.collidesWith(nodeA, this->bvElement->center);
[4704]588    }
[5044]589
[4695]590  }
591}
[4542]592
593
[4626]594
[5718]595bool OBBTreeNode::overlapTest(const OBB& boxA, const OBB& boxB, const WorldEntity& nodeA, const WorldEntity& nodeB) const
[4695]596{
[5825]597  //   if( boxB == NULL || boxA == NULL)
598  //     return false;
[5711]599
[4696]600  /* first check all axis */
[4708]601  Vector t;
[4700]602  float rA = 0.0f;
603  float rB = 0.0f;
604  Vector l;
[4708]605  Vector rotAxisA[3];
606  Vector rotAxisB[3];
[4626]607
[5718]608  rotAxisA[0] =  nodeA.getAbsDir().apply(boxA.axis[0]);
609  rotAxisA[1] =  nodeA.getAbsDir().apply(boxA.axis[1]);
610  rotAxisA[2] =  nodeA.getAbsDir().apply(boxA.axis[2]);
[4708]611
[5718]612  rotAxisB[0] =  nodeB.getAbsDir().apply(boxB.axis[0]);
613  rotAxisB[1] =  nodeB.getAbsDir().apply(boxB.axis[1]);
614  rotAxisB[2] =  nodeB.getAbsDir().apply(boxB.axis[2]);
[4708]615
616
[5718]617  t = nodeA.getAbsCoor() + nodeA.getAbsDir().apply(boxA.center) - ( nodeB.getAbsCoor() + nodeB.getAbsDir().apply(boxB.center));
[5706]618
[5825]619  //   printf("\n");
620  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
621  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
622  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
623  //
624  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
625  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
626  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
[4708]627
628
[4703]629  /* All 3 axis of the object A */
[4701]630  for( int j = 0; j < 3; ++j)
[4705]631  {
632    rA = 0.0f;
633    rB = 0.0f;
[4708]634    l = rotAxisA[j];
[4705]635
[5718]636    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
637    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
638    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
[4705]639
[5718]640    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
641    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
642    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
[4705]643
644    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
645
646    if( (rA + rB) < fabs(t.dot(l)))
[4700]647    {
[5713]648      PRINTF(3)("no Collision\n");
[4705]649      return false;
650    }
651  }
[4700]652
[4705]653  /* All 3 axis of the object B */
654  for( int j = 0; j < 3; ++j)
655  {
656    rA = 0.0f;
657    rB = 0.0f;
[4708]658    l = rotAxisB[j];
[4701]659
[5718]660    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
661    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
662    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
[4700]663
[5718]664    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
665    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
666    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
[4703]667
[4705]668    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
669
670    if( (rA + rB) < fabs(t.dot(l)))
671    {
[5713]672      PRINTF(3)("no Collision\n");
[4705]673      return false;
[4701]674    }
[4705]675  }
[4700]676
[4705]677
678  /* Now check for all face cross products */
679
680  for( int j = 0; j < 3; ++j)
681  {
682    for(int k = 0; k < 3; ++k )
[4701]683    {
684      rA = 0.0f;
685      rB = 0.0f;
[4708]686      l = rotAxisA[j].cross(rotAxisB[k]);
[4701]687
[5718]688      rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
689      rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
690      rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
[4701]691
[5718]692      rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
693      rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
694      rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
[4701]695
[4703]696      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
697
[4701]698      if( (rA + rB) < fabs(t.dot(l)))
699      {
[5713]700        PRINTF(3)("keine Kollision\n");
[4701]701        return false;
702      }
[4703]703    }
[4705]704  }
[4701]705
[5718]706  /* FIXME: there is no collision mark set now */
[5825]707  //   boxA.bCollided = true; /* use this ONLY(!!!!) for drawing operations */
708  //   boxB.bCollided = true;
[4701]709
[5718]710
[5713]711  PRINTF(3)("Kollision!\n");
[4705]712  return true;
[4695]713}
714
715
[4696]716
[4708]717
718
[5481]719void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
[4553]720{
[4635]721
722  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
723  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
724  {
[4638]725    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4622]726    {
[4712]727      if( drawMode & DRAW_POINTS)
728        glBegin(GL_POINTS);
[5882]729      for( int i = 0; i < this->bvElement->modelInf->numVertices; i+=3)
[4638]730      {
[4712]731        if( drawMode & DRAW_POINTS)
[5882]732          glVertex3f(this->bvElement->modelInf->pVertices[i], this->bvElement->modelInf->pVertices[i+1], this->bvElement->modelInf->pVertices[i+2]);
[4712]733        else
734        {
735          glPushMatrix();
[5882]736          glVertex3f(this->bvElement->modelInf->pVertices[i], this->bvElement->modelInf->pVertices[i+1], this->bvElement->modelInf->pVertices[i+2]);
[5430]737          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
[4712]738          glPopMatrix();
739        }
[4638]740      }
[4712]741      if( drawMode & DRAW_POINTS)
742        glEnd();
[4622]743    }
[4635]744  }
[4542]745
[5481]746  if (top)
747  {
748    glPushAttrib(GL_ENABLE_BIT);
749    glDisable(GL_LIGHTING);
750    glDisable(GL_TEXTURE_2D);
751  }
752  glColor3f(color.x, color.y, color.z);
[4542]753
[5481]754
[4589]755  /* draw world axes */
[4676]756  if( drawMode & DRAW_BV_AXIS)
757  {
758    glBegin(GL_LINES);
[5481]759    glColor3f(1.0, 0.0, 0.0);
[4676]760    glVertex3f(0.0, 0.0, 0.0);
761    glVertex3f(3.0, 0.0, 0.0);
[4589]762
[5481]763    glColor3f(0.0, 1.0, 0.0);
[4676]764    glVertex3f(0.0, 0.0, 0.0);
765    glVertex3f(0.0, 3.0, 0.0);
[4589]766
[5481]767    glColor3f(0.0, 0.0, 1.0);
[4676]768    glVertex3f(0.0, 0.0, 0.0);
769    glVertex3f(0.0, 0.0, 3.0);
770    glEnd();
771  }
[4674]772
[4688]773
[4635]774  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
775  {
[4636]776    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]777    {
778      /* draw the obb axes */
779      glBegin(GL_LINES);
780      glColor3f(0.0, 0.4, 0.3);
[5706]781      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
782      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
783                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
784                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
[4589]785
[5706]786      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
787      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
788                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
789                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
[4588]790
[5706]791      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
792      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
793                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
794                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
[4635]795      glEnd();
796    }
797  }
[4581]798
[4588]799
[4674]800  /* DRAW POLYGONS */
[4673]801  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
[4635]802  {
[5487]803    if (top)
804    {
805      glEnable(GL_BLEND);
806      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
807    }
808
[4711]809    if(this->nodeLeft == NULL || this->nodeRight == NULL)
[4710]810      depth = 0;
[4636]811    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]812    {
[5825]813      Vector cen = this->bvElement->center;
814      Vector* axis = this->bvElement->axis;
815      float* len = this->bvElement->halfLength;
[4588]816
[5825]817      if( this->bvElement->bCollided)
818      {
819        glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
820      }
821      else if( drawMode & DRAW_BV_BLENDED)
822      {
823        glColor4f(color.x, color.y, color.z, .5);
824      }
[4670]825
[5825]826      /* draw bounding box */
827      if( drawMode & DRAW_BV_BLENDED)
828        glBegin(GL_QUADS);
829      else
830        glBegin(GL_LINE_LOOP);
831      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
832                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
833                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4671]834      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
835                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
836                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
837      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
838                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
839                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
[5825]840      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
841                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
842                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
843      glEnd();
844
845      if( drawMode & DRAW_BV_BLENDED)
846        glBegin(GL_QUADS);
847      else
848        glBegin(GL_LINE_LOOP);
849      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
850                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
851                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
852      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
853                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
854                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
[4671]855      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
856                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
857                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
[5825]858      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
859                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
860                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4671]861      glEnd();
862
[5825]863      if( drawMode & DRAW_BV_BLENDED)
864        glBegin(GL_QUADS);
865      else
866        glBegin(GL_LINE_LOOP);
867      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
868                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
869                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
870      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
871                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
872                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
873      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
874                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
875                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4671]876      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
877                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
878                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[5825]879      glEnd();
880
881      if( drawMode & DRAW_BV_BLENDED)
882        glBegin(GL_QUADS);
883      else
884        glBegin(GL_LINE_LOOP);
885      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
886                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
887                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
888      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
889                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
890                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4671]891      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
892                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
893                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[5825]894      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
895                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
896                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4671]897      glEnd();
898
899
[5825]900      if( drawMode & DRAW_BV_BLENDED)
901      {
902        glBegin(GL_QUADS);
903        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
904                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
905                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
906        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
907                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
908                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
909        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
910                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
911                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
912        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
913                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
914                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
915        glEnd();
916
917        glBegin(GL_QUADS);
918        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
919                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
920                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
921        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
922                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
923                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
924        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
925                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
926                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
927        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
928                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
929                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
930        glEnd();
931      }
932
933
934      if( drawMode & DRAW_BV_BLENDED)
935        glColor3f(color.x, color.y, color.z);
[4635]936    }
[4636]937
[4635]938  }
[4588]939
[4674]940  /* DRAW SEPARATING PLANE */
[4635]941  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
[4632]942  {
[4636]943    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]944    {
[4671]945      if( drawMode & DRAW_BV_BLENDED)
[5481]946        glColor4f(color.x, color.y, color.z, .6);
[4671]947
[5825]948      /* now draw the separation plane */
949      Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
950      Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
951      Vector c = this->bvElement->center;
952      float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
953      float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
954      glBegin(GL_QUADS);
955      glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
956      glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
957      glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
958      glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
959      glEnd();
[4671]960
[5825]961      if( drawMode & DRAW_BV_BLENDED)
962        glColor4f(color.x, color.y, color.z, 1.0);
[4671]963
[4635]964    }
[4632]965  }
[4588]966
[4702]967
968
[5481]969  if (depth > 0)
970  {
971    if( this->nodeLeft != NULL)
[5494]972      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
[5481]973    if( this->nodeRight != NULL)
[5494]974      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
[5481]975  }
976  this->bvElement->bCollided = false;
[4588]977
[5481]978  if (top)
979    glPopAttrib();
[4557]980}
[4542]981
982
[4568]983
[4746]984void OBBTreeNode::debug() const
[4568]985{
[5825]986  PRINT(0)("========OBBTreeNode::debug()=====\n");
987  PRINT(0)(" Current depth: %i", this->depth);
988  PRINT(0)(" ");
989  PRINT(0)("=================================\n");
[4617]990}
Note: See TracBrowser for help on using the repository browser.