Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/collision_detection/obb_tree_node.cc @ 5349

Last change on this file since 5349 was 5210, checked in by bensch, 19 years ago

orxonox/trunk: other minor valgrid found error-fixes

File size: 35.3 KB
RevLine 
[4588]1/*
[4541]2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
[4617]11### File Specific:
[4541]12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
[4542]19#include "list.h"
20#include "obb.h"
[4616]21#include "obb_tree.h"
[4544]22#include "vector.h"
[4550]23#include "abstract_model.h"
[5028]24#include "world_entity.h"
[4541]25
[4543]26#include <math.h>
27
[4638]28#include "stdincl.h"
[4572]29
[4627]30#include "lin_alg.h"
[4572]31
32
33
[4627]34
[4541]35using namespace std;
36
[4622]37OBBTree*  OBBTreeNode::obbTree = NULL;
[4541]38
[4630]39float**  OBBTreeNode::coMat = NULL;
40float**  OBBTreeNode::eigvMat = NULL;
41float*   OBBTreeNode::eigvlMat = NULL;
42int*     OBBTreeNode::rotCount = NULL;
43
[4541]44/**
[4836]45 *  standard constructor
[4617]46 */
[4588]47OBBTreeNode::OBBTreeNode ()
[4541]48{
[4617]49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
[4618]50  this->nodeLeft = NULL;
51  this->nodeRight = NULL;
[4814]52  this->bvElement = NULL;
[4630]53
54  if(coMat == NULL)
55  {
56    coMat = new float*[4];
57    for(int i = 0; i < 4; i++)
58      coMat[i] = new float[4];
59  }
60  if(eigvMat == NULL)
61  {
62    eigvMat = new float*[4];
63    for(int i = 0; i < 4; i++)
64      eigvMat[i] = new float[4];
65  }
66  if( eigvlMat == NULL)
67  {
68    eigvlMat = new float[4];
69  }
70  if( rotCount == NULL)
71    rotCount = new int;
[4638]72
73  this->sphereObj = gluNewQuadric();
[4541]74}
75
76
77/**
[4836]78 *  standard deconstructor
[4617]79 */
[4588]80OBBTreeNode::~OBBTreeNode ()
[4541]81{
[4814]82  if( this->nodeLeft)
83  {
84    delete this->nodeLeft;
85    this->nodeLeft = NULL;
86  }
87  if( this->nodeRight)
88  {
89    delete this->nodeRight;
90    this->nodeRight = NULL;
91  }
92  if( this->bvElement)
93    delete this->bvElement;
94  this->bvElement = NULL;
[4541]95}
96
97
[4542]98
99/**
[4836]100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
[4617]103 */
[4544]104void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
[4542]105{
[4717]106  PRINT(3)("\n");
[4638]107  this->treeIndex = this->obbTree->getID();
[4717]108  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
[4614]109  this->depth = depth;
110
[4638]111
[4630]112  this->bvElement = new OBB();
[4638]113  this->bvElement->vertices = verticesList;
114  this->bvElement->numOfVertices = length;
115  PRINTF(3)("Created OBBox\n");
[4632]116  this->calculateBoxCovariance(this->bvElement, verticesList, length);
[4638]117  PRINTF(3)("Calculated attributes1\n");
[4632]118  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
[4638]119  PRINTF(3)("Calculated attributes2\n");
[4632]120  this->calculateBoxAxis(this->bvElement, verticesList, length);
[4638]121  PRINTF(3)("Calculated attributes3\n");
[4617]122
[4814]123  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
124  if( this->treeIndex == 1)
125    this->bvElement->bOrigVertices = true;
[4632]126
[4614]127  if( likely( this->depth > 0))
128  {
129    this->forkBox(this->bvElement);
[4626]130
[4630]131
[4710]132    if(this->tmpLen1 > 2)
[4638]133    {
134      OBBTreeNode* node1 = new OBBTreeNode();
135      this->nodeLeft = node1;
136      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
137    }
138    else
139    {
[4717]140      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
[4638]141    }
[4630]142
[4710]143    if( this->tmpLen2 > 2)
[4638]144    {
145      OBBTreeNode* node2 = new OBBTreeNode();
146      this->nodeRight = node2;
147      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
148    }
149    else
150    {
[4717]151      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
[4638]152    }
[4630]153
[4614]154  }
[4557]155}
156
157
158
[4632]159void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
[4557]160{
[4543]161  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
162  float     face;                                    //!< surface area of the entire convex hull
[4588]163  Vector    centroid[length];                        //!< centroid of the i'th convex hull
[4557]164  Vector    center;                                  //!< the center of the entire hull
[4544]165  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
[4545]166  Vector    t1, t2;                                  //!< temporary values
[4628]167  float     covariance[3][3];                        //!< the covariance matrix
[4674]168  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
[4588]169
[4553]170  this->numOfVertices = length;
171  this->vertices = verticesList;
172
[4562]173
[4648]174  if( likely(mode == 0))
175  {
176    /* fist compute all the convex hull face/facelets and centroids */
[5210]177    for(int i = 0; i+3 < length ; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4648]178    {
179      p = verticesList[i];
180      q = verticesList[i + 1];
181      r = verticesList[i + 2];
[4638]182
[4648]183      t1 = p - q; t2 = p - r;
[4638]184
[4648]185      /* finding the facelet surface via cross-product */
186      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
187      /* update the entire convex hull surface */
188      face += facelet[i];
189
190      /* calculate the cetroid of the hull triangles */
191      centroid[i] = (p + q + r) * 1/3;
192      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
193      center += centroid[i] * facelet[i];
194    }
195    /* take the average of the centroid sum */
196    center /= face;
197    PRINTF(3)("-- Calculated Center\n");
198
199
200    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
201    for(int j = 0; j < 3; ++j)
202    {
203      for(int k = 0; k < 3; ++k)
204      {
205        for(int i = 0; i < length; i+=3)
206        {
207          p = verticesList[i];
208          q = verticesList[i + 1];
209          r = verticesList[i + 2];
210
211          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
212              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
213        }
214      }
215    }
216    PRINTF(3)("-- Calculated Covariance\n");
217  }
218  else if( mode == 1)
[4617]219  {
[4648]220    for( int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
221    {
222      p = verticesList[i];
223      q = verticesList[i + 1];
224      r = verticesList[i + 2];
[4588]225
[4648]226      centroid[i] = (p + q + r) / 3.0f;
227      center += centroid[i];
228    }
229    center /= length;
[4588]230
[4648]231    for( int j = 0; j < 3; ++j)
232    {
233      for( int k = 0; k < 3; ++k)
234      {
235        for( int i = 0; i < length; i+=3)
236        {
237          p = verticesList[i];
238          q = verticesList[i +1];
239          r = verticesList[i + 2];
[4545]240
[4648]241          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
242        }
243        covariance[j][k] /= (3.0f * length);
244      }
245    }
246    PRINTF(3)("-- Calculated Covariance\n");
[4617]247  }
[4648]248  else if( mode == 2)
249  {
250    /* fist compute all the convex hull face/facelets and centroids */
251    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
252    {
253      p = verticesList[i];
254      q = verticesList[i + 1];
255      r = verticesList[i + 2];
[4562]256
[4648]257      t1 = p - q; t2 = p - r;
[4562]258
[4648]259      /* finding the facelet surface via cross-product */
260      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
261      /* update the entire convex hull surface */
262      face += facelet[i];
263
264      /* calculate the cetroid of the hull triangles */
265      centroid[i] = (p + q + r) * 1/3;
266      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
267      center += centroid[i] * facelet[i];
268    }
269    /* take the average of the centroid sum */
270    center /= face;
271    PRINTF(3)("-- Calculated Center\n");
272
273    for( int j = 0; j < 3; ++j)
274    {
275      for( int k = 0; k < 3; ++k)
276      {
277        for( int i = 0; i < length; i+=3)
278        {
279          p = verticesList[i];
280          q = verticesList[i +1];
281          r = verticesList[i + 2];
282
283          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
284        }
285        covariance[j][k] /= (3.0f * length);
286      }
287    }
288    PRINTF(3)("-- Calculated Covariance\n");
289  }
290  else
[4617]291  {
[4648]292    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4545]293    {
[4648]294      center += verticesList[i];
295    }
296    center /= length;
297
298    for( int j = 0; j < 3; ++j)
299    {
300      for( int k = 0; k < 3; ++k)
[4617]301      {
[4648]302        for( int i = 0; i < length; i+=3)
303        {
304          p = verticesList[i];
305          q = verticesList[i +1];
306          r = verticesList[i + 2];
[4544]307
[4648]308          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
309        }
310        covariance[j][k] /= (3.0f * length);
[4617]311      }
[4545]312    }
[4648]313    PRINTF(3)("-- Calculated Covariance\n");
[4617]314  }
[4562]315
[4648]316  PRINTF(3)("\nVertex Data:\n");
[4638]317  for(int i = 0; i < length; i++)
318  {
[4648]319    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
[4638]320  }
[4588]321
[4648]322
[4675]323  PRINTF(3)("\nCovariance Matrix:\n");
[4674]324  for(int j = 0; j < 3; ++j)
325  {
[4675]326    PRINT(3)(" |");
[4674]327    for(int k = 0; k < 3; ++k)
328    {
[4675]329      PRINT(3)(" \b%f ", covariance[j][k]);
[4674]330    }
[4675]331    PRINT(3)(" |\n");
[4674]332  }
333
[4638]334  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
[4553]335
[4588]336
[4674]337  for(int i = 0; i < 3; ++i)
338  {
339    box->covarianceMatrix[i][0] = covariance[i][0];
340    box->covarianceMatrix[i][1] = covariance[i][1];
341    box->covarianceMatrix[i][2] = covariance[i][2];
342  }
[4560]343  *box->center = center;
[4638]344  PRINTF(3)("-- Written Result to obb\n");
[4631]345}
[4557]346
[4631]347
348
[4632]349void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
[4631]350{
351
[4557]352  /* now getting spanning vectors of the sub-space:
[4617]353  the eigenvectors of a symmertric matrix, such as the
354  covarience matrix are mutually orthogonal.
355  after normalizing them, they can be used as a the basis
356  vectors
[4557]357  */
[4660]358  Vector*              axis = new Vector[3];                //!< the references to the obb axis
[4588]359
[4631]360  coMat[1][1] = box->covarianceMatrix[0][0]; coMat[1][2] = box->covarianceMatrix[0][1]; coMat[1][3] = box->covarianceMatrix[0][2];
361  coMat[2][1] = box->covarianceMatrix[1][0]; coMat[2][2] = box->covarianceMatrix[1][1]; coMat[2][3] = box->covarianceMatrix[1][2];
362  coMat[3][1] = box->covarianceMatrix[2][0]; coMat[3][2] = box->covarianceMatrix[2][1]; coMat[3][3] = box->covarianceMatrix[2][2];
[4627]363
[4630]364  /* new jacobi tests */
365  JacobI(coMat, 3, eigvlMat, eigvMat, rotCount);
[4638]366  PRINTF(3)("-- Done Jacobi Decomposition\n");
[4628]367
[4627]368
[4638]369//   PRINTF(3)("Jacobi\n");
[4629]370//   for(int j = 1; j < 4; ++j)
371//   {
[4638]372//     PRINTF(3)(" |");
[4629]373//     for(int k = 1; k < 4; ++k)
374//     {
[4638]375//       PRINTF(3)(" \b%f ", eigvMat[j][k]);
[4629]376//     }
[4638]377//     PRINTF(3)(" |\n");
[4629]378//   }
379
[4660]380  axis[0].x = eigvMat[1][1]; axis[0].y = eigvMat[2][1]; axis[0].z = eigvMat[3][1];
381  axis[1].x = eigvMat[1][2]; axis[1].y = eigvMat[2][2]; axis[1].z = eigvMat[3][2];
382  axis[2].x = eigvMat[1][3]; axis[2].y = eigvMat[2][3]; axis[2].z = eigvMat[3][3];
[4705]383  axis[0].normalize();
384  axis[1].normalize();
385  axis[2].normalize();
[4576]386  box->axis = axis;
[4660]387
[4638]388  PRINTF(3)("-- Got Axis\n");
[4588]389
[4675]390  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
391  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
392  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
[4632]393}
[4588]394
[4626]395
[4632]396void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
[4631]397{
[4630]398
[4576]399  /* now get the axis length */
[4578]400  Line                ax[3];                                 //!< the axis
401  float*              halfLength = new float[3];             //!< half length of the axis
402  float               tmpLength;                             //!< tmp save point for the length
[4660]403  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
404  Plane               p1(box->axis[1], *box->center);
405  Plane               p2(box->axis[2], *box->center);
[4658]406  float               maxLength[3];
407  float               minLength[3];
[4588]408
[4658]409
410  /* get a bad bounding box */
[4589]411  halfLength[0] = -1.0f;
[4585]412  for(int j = 0; j < length; ++j)
[4658]413    {
[4661]414      tmpLength = fabs(p0.distancePoint(vertices[j]));
[4658]415      if( tmpLength > halfLength[0])
[4659]416        halfLength[0] = tmpLength;
[4658]417    }
418
419  halfLength[1] = -1.0f;
420  for(int j = 0; j < length; ++j)
421    {
422      tmpLength = fabs(p1.distancePoint(vertices[j]));
423      if( tmpLength > halfLength[1])
[4659]424        halfLength[1] = tmpLength;
[4658]425    }
426
427  halfLength[2] = -1.0f;
428  for(int j = 0; j < length; ++j)
429    {
[4661]430      tmpLength = fabs(p2.distancePoint(vertices[j]));
[4658]431      if( tmpLength > halfLength[2])
[4659]432        halfLength[2] = tmpLength;
[4658]433    }
434
435
436
437  /* get the maximal dimensions of the body in all directions */
[4710]438    maxLength[0] = p0.distancePoint(vertices[0]);
439    minLength[0] = p0.distancePoint(vertices[0]);
[4660]440   for(int j = 0; j < length; ++j)
441   {
442     tmpLength = p0.distancePoint(vertices[j]);
443     if( tmpLength > maxLength[0])
444       maxLength[0] = tmpLength;
445     else if( tmpLength < minLength[0])
446       minLength[0] = tmpLength;
447   }
[4578]448
[4710]449   maxLength[1] = p1.distancePoint(vertices[0]);
450   minLength[1] = p1.distancePoint(vertices[0]);
[4660]451   for(int j = 0; j < length; ++j)
452   {
[4661]453     tmpLength = p1.distancePoint(vertices[j]);
[4660]454     if( tmpLength > maxLength[1])
455       maxLength[1] = tmpLength;
456     else if( tmpLength < minLength[1])
457       minLength[1] = tmpLength;
458   }
[4585]459
[4710]460   maxLength[2] = p2.distancePoint(vertices[0]);
461   minLength[2] = p2.distancePoint(vertices[0]);
[4660]462   for(int j = 0; j < length; ++j)
463   {
[4661]464     tmpLength = p2.distancePoint(vertices[j]);
[4660]465     if( tmpLength > maxLength[2])
466       maxLength[2] = tmpLength;
467     else if( tmpLength < minLength[2])
468       minLength[2] = tmpLength;
469   }
[4585]470
[4660]471
472   /* calculate the real centre of the body by using the axis length */
[4668]473   float centerOffset[3];
474   float newHalfLength[3];
[4660]475   for(int i = 0; i < 3; ++i)
476     {
[4674]477       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
[4710]478       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
479       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
[4668]480       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
481       halfLength[i] = newHalfLength[i];
[4660]482     }
483
484
485
[4586]486  box->halfLength = halfLength;
[4638]487  PRINTF(3)("-- Written Axis to obb\n");
488  PRINTF(3)("-- Finished Calculating Attributes\n");
[4585]489
[4542]490}
491
492
[4609]493
494/**
495  \brief this separates an ob-box in the middle
[4836]496* @param box: the box to separate
[4609]497
498  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
499 */
[4557]500void OBBTreeNode::forkBox(OBB* box)
501{
502  /* get the longest axis of the box */
[4609]503  float               aLength = -1.0f;                     //!< the length of the longest axis
504  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
505
[4557]506  for(int i = 0; i < 3; ++i)
[4609]507  {
508    if( aLength < box->halfLength[i])
[4557]509    {
[4609]510      aLength = box->halfLength[i];
511      axisIndex = i;
[4557]512    }
[4609]513  }
[4588]514
[4688]515   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
[4609]516
517
[4557]518  /* get the closest vertex near the center */
[4611]519  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
[4609]520  float               tmpDist;                             //!< temporary distance
521  int                 vertexIndex;
[4660]522  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
[4588]523
[4660]524  vertexIndex = 0;
[4609]525  for(int i = 0; i < box->numOfVertices; ++i)
526  {
[4611]527    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
528    if( tmpDist < dist)
529    {
[4609]530      dist = tmpDist;
[4611]531      vertexIndex = i;
532    }
[4609]533  }
534
[4710]535  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
[4609]536
537
[4611]538  /* now definin the separation plane through this specified nearest point and partition
[4617]539  the points depending on which side they are located
[4611]540  */
541  tList<sVec3D>      partition1;                           //!< the vertex partition 1
542  tList<sVec3D>      partition2;                           //!< the vertex partition 2
543
[4710]544
[4695]545  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
[4660]546  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
[4632]547  this->sepPlaneCenter = &box->vertices[vertexIndex];
548  this->longestAxisIndex = axisIndex;
549
[4612]550  for(int i = 0; i < box->numOfVertices; ++i)
551  {
[4710]552    if( i == vertexIndex) continue;
553    tmpDist = this->separationPlane->distancePoint(box->vertices[i]);
554    if( tmpDist > 0.0)
555      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
[4612]556    else
[4710]557      partition2.add(&box->vertices[i]); /* negatice numbers */
[4612]558  }
[4613]559  partition1.add(&box->vertices[vertexIndex]);
[4710]560  partition2.add(&box->vertices[vertexIndex]);
[4611]561
[4710]562  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
[4612]563
[4613]564
565  /* now comes the separation into two different sVec3D arrays */
566  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
567  sVec3D*            element;                              //!< the elements
568  int                index;                                //!< index storage place
569  sVec3D*            vertList1;                            //!< the vertex list 1
570  sVec3D*            vertList2;                            //!< the vertex list 2
571
572  vertList1 = new sVec3D[partition1.getSize()];
573  vertList2 = new sVec3D[partition2.getSize()];
574
575  iterator = partition1.getIterator();
[5115]576  element = iterator->firstElement();
[4613]577  index = 0;
578  while( element != NULL)
579  {
580    vertList1[index][0] = element[0][0];
581    vertList1[index][1] = element[0][1];
582    vertList1[index][2] = element[0][2];
583    ++index;
584    element = iterator->nextElement();
585  }
586
[4638]587//   PRINTF(0)("\npartition 1:\n");
[4626]588//   for(int i = 0; i < partition1.getSize(); ++i)
589//   {
[4638]590//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
[4626]591//   }
[4613]592
593  iterator = partition2.getIterator();
[5115]594  element = iterator->firstElement();
[4613]595  index = 0;
596  while( element != NULL)
597  {
598    vertList2[index][0] = element[0][0];
599    vertList2[index][1] = element[0][1];
600    vertList2[index][2] = element[0][2];
601    ++index;
602    element = iterator->nextElement();
603  }
604
[4630]605  this->tmpVert1 = vertList1;
606  this->tmpVert2 = vertList2;
607  this->tmpLen1 = partition1.getSize();
608  this->tmpLen2 = partition2.getSize();
609
[4638]610  delete iterator;
611
612//   PRINTF(0)("\npartition 2:\n");
[4626]613//   for(int i = 0; i < partition2.getSize(); ++i)
614//   {
[4638]615//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
[4626]616//   }
[4557]617}
618
619
[4626]620
621
[5028]622void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]623{
[4705]624  PRINTF(3)("collideWith\n");
[4695]625  /* if the obb overlap, make subtests: check which node is realy overlaping  */
[4705]626  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
[4718]627  if( unlikely(treeNode == NULL)) return;
[5042]628
[4700]629  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4695]630  {
[5044]631    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
[5038]632
[4695]633    /* check if left node overlaps */
[4704]634    if( likely( this->nodeLeft != NULL))
635    {
[4705]636      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
[4700]637      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]638      {
[4700]639        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
[4704]640        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
641      }
642    }
[4695]643    /* check if right node overlaps */
[4704]644    if( likely( this->nodeRight != NULL))
645    {
[4705]646      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
[4700]647      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]648      {
649       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
650       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
651      }
[5044]652    }
[5028]653
[5044]654    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
655    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
656    {
[5046]657      nodeA->collidesWith(nodeB, *((OBBTreeNode*)treeNode)->bvElement->center);
658
659      nodeB->collidesWith(nodeA, *this->bvElement->center);
[4704]660    }
[5044]661
[4695]662  }
663}
[4542]664
665
[4626]666
[5028]667bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]668{
[4696]669  /* first check all axis */
[4708]670  Vector t;
[4700]671  float rA = 0.0f;
672  float rB = 0.0f;
673  Vector l;
[4708]674  Vector rotAxisA[3];
675  Vector rotAxisB[3];
[4626]676
[4708]677  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
678  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
679  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
680
681  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
682  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
683  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
684
685  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
686
687//   printf("\n");
688//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
689//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
690//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
691//
692//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
693//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
694//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
695
696
[4703]697  /* All 3 axis of the object A */
[4701]698  for( int j = 0; j < 3; ++j)
[4705]699  {
700    rA = 0.0f;
701    rB = 0.0f;
[4708]702    l = rotAxisA[j];
[4705]703
[4708]704    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
705    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
706    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4705]707
[4708]708    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
709    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
710    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4705]711
712    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
713
714    if( (rA + rB) < fabs(t.dot(l)))
[4700]715    {
[4705]716      PRINT(3)("keine Kollision\n");
717      return false;
718    }
719  }
[4700]720
[4705]721  /* All 3 axis of the object B */
722  for( int j = 0; j < 3; ++j)
723  {
724    rA = 0.0f;
725    rB = 0.0f;
[4708]726    l = rotAxisB[j];
[4701]727
[4708]728    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
729    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
730    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4700]731
[4708]732    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
733    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
734    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4703]735
[4705]736    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
737
738    if( (rA + rB) < fabs(t.dot(l)))
739    {
740      PRINT(3)("keine Kollision\n");
741      return false;
[4701]742    }
[4705]743  }
[4700]744
[4705]745
746  /* Now check for all face cross products */
747
748  for( int j = 0; j < 3; ++j)
749  {
750    for(int k = 0; k < 3; ++k )
[4701]751    {
752      rA = 0.0f;
753      rB = 0.0f;
[4708]754      l = rotAxisA[j].cross(rotAxisB[k]);
[4701]755
[4708]756      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
757      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
758      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4701]759
[4708]760      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
761      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
762      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4701]763
[4703]764      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
765
[4701]766      if( (rA + rB) < fabs(t.dot(l)))
767      {
[4705]768        PRINT(3)("keine Kollision\n");
[4701]769        return false;
770      }
[4703]771    }
[4705]772  }
[4701]773
774
[4705]775  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
776  boxB->bCollided = true;
777  PRINT(3)("Kollision!\n");
778  return true;
[4695]779}
780
781
[4696]782
[4708]783
784
[4702]785void OBBTreeNode::drawBV(int depth, int drawMode)
[4553]786{
[4638]787  this->obbTree->getMaterial(treeIndex)->select();
[4635]788
789  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
790  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
791  {
[4638]792    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4622]793    {
[4712]794      if( drawMode & DRAW_POINTS)
795        glBegin(GL_POINTS);
[4638]796      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
797      {
[4712]798        if( drawMode & DRAW_POINTS)
799          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
800        else
801        {
802          glPushMatrix();
803          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
804          gluSphere(this->sphereObj, 0.1, 10, 10);
805          glPopMatrix();
806        }
[4638]807      }
[4712]808      if( drawMode & DRAW_POINTS)
809        glEnd();
[4622]810    }
[4635]811  }
[4542]812
813
[4589]814  /* draw world axes */
[4676]815  if( drawMode & DRAW_BV_AXIS)
816  {
817    glBegin(GL_LINES);
818    glColor3f(0.0, 0.4, 0.3);
819    glVertex3f(0.0, 0.0, 0.0);
820    glVertex3f(3.0, 0.0, 0.0);
[4589]821
[4676]822    glVertex3f(0.0, 0.0, 0.0);
823    glVertex3f(0.0, 3.0, 0.0);
[4589]824
[4676]825    glVertex3f(0.0, 0.0, 0.0);
826    glVertex3f(0.0, 0.0, 3.0);
827    glEnd();
828  }
[4674]829
[4688]830
[4635]831  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
832  {
[4636]833    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]834    {
835      /* draw the obb axes */
836      glBegin(GL_LINES);
837      glColor3f(0.0, 0.4, 0.3);
838      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]839      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
840                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
841                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
[4589]842
[4635]843      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]844      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
845                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
846                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
[4588]847
[4635]848      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]849      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
850                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
851                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
[4635]852      glEnd();
853    }
854  }
[4581]855
[4588]856
[4674]857  /* DRAW POLYGONS */
[4673]858  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
[4635]859  {
[4711]860    if(this->nodeLeft == NULL || this->nodeRight == NULL)
[4710]861      depth = 0;
[4636]862    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]863    {
[4636]864    Vector cen = *this->bvElement->center;
[4660]865    Vector* axis = this->bvElement->axis;
[4636]866    float* len = this->bvElement->halfLength;
[4588]867
[4702]868    if( this->bvElement->bCollided)
869      this->obbTree->getCollisionMaterial()->select();
870    else if( drawMode & DRAW_BV_BLENDED)
[4670]871      this->obbTree->getTransparentMaterial(treeIndex)->select();
872
[4702]873
874
[4636]875    /* draw bounding box */
[4670]876    if( drawMode & DRAW_BV_BLENDED)
877      glBegin(GL_QUADS);
878    else
879      glBegin(GL_LINE_LOOP);
[4660]880    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
881               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
882               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
883    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
884               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
885               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
886    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
887               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
888               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
889    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
890               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
891               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]892    glEnd();
[4588]893
[4670]894    if( drawMode & DRAW_BV_BLENDED)
895      glBegin(GL_QUADS);
896    else
897      glBegin(GL_LINE_LOOP);
[4660]898    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
899               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
900               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
901    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
902               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
903               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
904    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
905               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
906               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
907    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
908               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
909               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]910    glEnd();
[4588]911
[4670]912    if( drawMode & DRAW_BV_BLENDED)
913      glBegin(GL_QUADS);
914    else
915      glBegin(GL_LINE_LOOP);
[4660]916    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
917               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
918               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
919    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
920               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
921               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
922    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
923               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
924               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
925    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
926               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
927               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4636]928    glEnd();
[4588]929
[4670]930    if( drawMode & DRAW_BV_BLENDED)
931      glBegin(GL_QUADS);
932    else
933      glBegin(GL_LINE_LOOP);
[4660]934    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
935               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
936               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
937    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
938               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
939               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
940    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
941               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
942               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
943    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
944               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
945               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4636]946    glEnd();
[4670]947
[4671]948
[4670]949    if( drawMode & DRAW_BV_BLENDED)
[4671]950    {
951      glBegin(GL_QUADS);
952      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
953                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
954                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
955      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
956                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
957                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
958      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
959                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
960                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
961      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
962                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
963                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
964      glEnd();
965
966      glBegin(GL_QUADS);
967      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
968                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
969                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
970      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
971                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
972                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
973      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
974                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
975                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
976      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
977                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
978                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
979      glEnd();
980    }
981
982
983    if( drawMode & DRAW_BV_BLENDED)
[4670]984      this->obbTree->getMaterial(treeIndex)->select();
[4635]985    }
[4636]986
[4635]987  }
[4588]988
[4674]989  /* DRAW SEPARATING PLANE */
[4635]990  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
[4632]991  {
[4636]992    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]993    {
[4671]994      if( drawMode & DRAW_BV_BLENDED)
995        this->obbTree->getTransparentMaterial(treeIndex)->select();
996
[4636]997    /* now draw the separation plane */
[4660]998    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
999    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
[4636]1000    Vector c = *this->bvElement->center;
1001    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1002    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1003    glBegin(GL_QUADS);
1004    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1005    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1006    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1007    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1008    glEnd();
[4671]1009
1010    if( drawMode & DRAW_BV_BLENDED)
1011      this->obbTree->getMaterial(treeIndex)->select();
1012
[4635]1013    }
[4632]1014  }
[4588]1015
[4702]1016
1017
[4622]1018  if( this->nodeLeft != NULL && depth != 0 )
[4635]1019    this->nodeLeft->drawBV(depth - 1, drawMode);
[4618]1020  if( this->nodeRight != NULL && depth != 0)
[4635]1021    this->nodeRight->drawBV(depth - 1, drawMode);
[4588]1022
[4702]1023  this->bvElement->bCollided = false;
[4557]1024}
[4542]1025
1026
[4568]1027
[4746]1028void OBBTreeNode::debug() const
[4568]1029{
1030
1031  /*
1032  for(int i = 0; i < length; i++)
[4617]1033  {
[4638]1034  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
[4617]1035}
[4568]1036  */
1037}
Note: See TracBrowser for help on using the repository browser.