Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/collision_detection/obb_tree_node.cc @ 5029

Last change on this file since 5029 was 5029, checked in by patrick, 19 years ago

orxonox/trunk: some changes in the NPC interface class

File size: 35.1 KB
RevLine 
[4588]1/*
[4541]2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
[4617]11### File Specific:
[4541]12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
[4542]19#include "list.h"
20#include "obb.h"
[4616]21#include "obb_tree.h"
[4544]22#include "vector.h"
[4550]23#include "abstract_model.h"
[5028]24#include "world_entity.h"
[4541]25
[4543]26#include <math.h>
27
[4638]28#include "stdincl.h"
[4572]29
[4627]30#include "lin_alg.h"
[4572]31
32
33
[4627]34
[4541]35using namespace std;
36
[4622]37OBBTree*  OBBTreeNode::obbTree = NULL;
[4541]38
[4630]39float**  OBBTreeNode::coMat = NULL;
40float**  OBBTreeNode::eigvMat = NULL;
41float*   OBBTreeNode::eigvlMat = NULL;
42int*     OBBTreeNode::rotCount = NULL;
43
[4541]44/**
[4836]45 *  standard constructor
[4617]46 */
[4588]47OBBTreeNode::OBBTreeNode ()
[4541]48{
[4617]49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
[4618]50  this->nodeLeft = NULL;
51  this->nodeRight = NULL;
[4814]52  this->bvElement = NULL;
[4630]53
54  if(coMat == NULL)
55  {
56    coMat = new float*[4];
57    for(int i = 0; i < 4; i++)
58      coMat[i] = new float[4];
59  }
60  if(eigvMat == NULL)
61  {
62    eigvMat = new float*[4];
63    for(int i = 0; i < 4; i++)
64      eigvMat[i] = new float[4];
65  }
66  if( eigvlMat == NULL)
67  {
68    eigvlMat = new float[4];
69  }
70  if( rotCount == NULL)
71    rotCount = new int;
[4638]72
73  this->sphereObj = gluNewQuadric();
[4541]74}
75
76
77/**
[4836]78 *  standard deconstructor
[4617]79 */
[4588]80OBBTreeNode::~OBBTreeNode ()
[4541]81{
[4814]82  if( this->nodeLeft)
83  {
84    delete this->nodeLeft;
85    this->nodeLeft = NULL;
86  }
87  if( this->nodeRight)
88  {
89    delete this->nodeRight;
90    this->nodeRight = NULL;
91  }
92  if( this->bvElement)
93    delete this->bvElement;
94  this->bvElement = NULL;
[4541]95}
96
97
[4542]98
99/**
[4836]100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
[4617]103 */
[4544]104void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
[4542]105{
[4717]106  PRINT(3)("\n");
[4638]107  this->treeIndex = this->obbTree->getID();
[4717]108  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
[4614]109  this->depth = depth;
110
[4638]111
[4630]112  this->bvElement = new OBB();
[4638]113  this->bvElement->vertices = verticesList;
114  this->bvElement->numOfVertices = length;
115  PRINTF(3)("Created OBBox\n");
[4632]116  this->calculateBoxCovariance(this->bvElement, verticesList, length);
[4638]117  PRINTF(3)("Calculated attributes1\n");
[4632]118  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
[4638]119  PRINTF(3)("Calculated attributes2\n");
[4632]120  this->calculateBoxAxis(this->bvElement, verticesList, length);
[4638]121  PRINTF(3)("Calculated attributes3\n");
[4617]122
[4814]123  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
124  if( this->treeIndex == 1)
125    this->bvElement->bOrigVertices = true;
[4632]126
[4614]127  if( likely( this->depth > 0))
128  {
129    this->forkBox(this->bvElement);
[4626]130
[4630]131
[4710]132    if(this->tmpLen1 > 2)
[4638]133    {
134      OBBTreeNode* node1 = new OBBTreeNode();
135      this->nodeLeft = node1;
136      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
137    }
138    else
139    {
[4717]140      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
[4638]141    }
[4630]142
[4710]143    if( this->tmpLen2 > 2)
[4638]144    {
145      OBBTreeNode* node2 = new OBBTreeNode();
146      this->nodeRight = node2;
147      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
148    }
149    else
150    {
[4717]151      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
[4638]152    }
[4630]153
[4614]154  }
[4557]155}
156
157
158
[4632]159void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
[4557]160{
[4543]161  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
162  float     face;                                    //!< surface area of the entire convex hull
[4588]163  Vector    centroid[length];                        //!< centroid of the i'th convex hull
[4557]164  Vector    center;                                  //!< the center of the entire hull
[4544]165  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
[4545]166  Vector    t1, t2;                                  //!< temporary values
[4628]167  float     covariance[3][3];                        //!< the covariance matrix
[4674]168  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
[4588]169
[4553]170  this->numOfVertices = length;
171  this->vertices = verticesList;
172
[4562]173
[4648]174  if( likely(mode == 0))
175  {
176    /* fist compute all the convex hull face/facelets and centroids */
177    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
178    {
179      p = verticesList[i];
180      q = verticesList[i + 1];
181      r = verticesList[i + 2];
[4638]182
[4648]183      t1 = p - q; t2 = p - r;
[4638]184
[4648]185      /* finding the facelet surface via cross-product */
186      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
187      /* update the entire convex hull surface */
188      face += facelet[i];
189
190      /* calculate the cetroid of the hull triangles */
191      centroid[i] = (p + q + r) * 1/3;
192      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
193      center += centroid[i] * facelet[i];
194    }
195    /* take the average of the centroid sum */
196    center /= face;
197    PRINTF(3)("-- Calculated Center\n");
198
199
200    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
201    for(int j = 0; j < 3; ++j)
202    {
203      for(int k = 0; k < 3; ++k)
204      {
205        for(int i = 0; i < length; i+=3)
206        {
207          p = verticesList[i];
208          q = verticesList[i + 1];
209          r = verticesList[i + 2];
210
211          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
212              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
213        }
214      }
215    }
216    PRINTF(3)("-- Calculated Covariance\n");
217  }
218  else if( mode == 1)
[4617]219  {
[4648]220    for( int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
221    {
222      p = verticesList[i];
223      q = verticesList[i + 1];
224      r = verticesList[i + 2];
[4588]225
[4648]226      centroid[i] = (p + q + r) / 3.0f;
227      center += centroid[i];
228    }
229    center /= length;
[4588]230
[4648]231    for( int j = 0; j < 3; ++j)
232    {
233      for( int k = 0; k < 3; ++k)
234      {
235        for( int i = 0; i < length; i+=3)
236        {
237          p = verticesList[i];
238          q = verticesList[i +1];
239          r = verticesList[i + 2];
[4545]240
[4648]241          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
242        }
243        covariance[j][k] /= (3.0f * length);
244      }
245    }
246    PRINTF(3)("-- Calculated Covariance\n");
[4617]247  }
[4648]248  else if( mode == 2)
249  {
250    /* fist compute all the convex hull face/facelets and centroids */
251    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
252    {
253      p = verticesList[i];
254      q = verticesList[i + 1];
255      r = verticesList[i + 2];
[4562]256
[4648]257      t1 = p - q; t2 = p - r;
[4562]258
[4648]259      /* finding the facelet surface via cross-product */
260      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
261      /* update the entire convex hull surface */
262      face += facelet[i];
263
264      /* calculate the cetroid of the hull triangles */
265      centroid[i] = (p + q + r) * 1/3;
266      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
267      center += centroid[i] * facelet[i];
268    }
269    /* take the average of the centroid sum */
270    center /= face;
271    PRINTF(3)("-- Calculated Center\n");
272
273    for( int j = 0; j < 3; ++j)
274    {
275      for( int k = 0; k < 3; ++k)
276      {
277        for( int i = 0; i < length; i+=3)
278        {
279          p = verticesList[i];
280          q = verticesList[i +1];
281          r = verticesList[i + 2];
282
283          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
284        }
285        covariance[j][k] /= (3.0f * length);
286      }
287    }
288    PRINTF(3)("-- Calculated Covariance\n");
289  }
290  else
[4617]291  {
[4648]292    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4545]293    {
[4648]294      center += verticesList[i];
295    }
296    center /= length;
297
298    for( int j = 0; j < 3; ++j)
299    {
300      for( int k = 0; k < 3; ++k)
[4617]301      {
[4648]302        for( int i = 0; i < length; i+=3)
303        {
304          p = verticesList[i];
305          q = verticesList[i +1];
306          r = verticesList[i + 2];
[4544]307
[4648]308          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
309        }
310        covariance[j][k] /= (3.0f * length);
[4617]311      }
[4545]312    }
[4648]313    PRINTF(3)("-- Calculated Covariance\n");
[4617]314  }
[4562]315
[4648]316  PRINTF(3)("\nVertex Data:\n");
[4638]317  for(int i = 0; i < length; i++)
318  {
[4648]319    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
[4638]320  }
[4588]321
[4648]322
[4675]323  PRINTF(3)("\nCovariance Matrix:\n");
[4674]324  for(int j = 0; j < 3; ++j)
325  {
[4675]326    PRINT(3)(" |");
[4674]327    for(int k = 0; k < 3; ++k)
328    {
[4675]329      PRINT(3)(" \b%f ", covariance[j][k]);
[4674]330    }
[4675]331    PRINT(3)(" |\n");
[4674]332  }
333
[4638]334  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
[4553]335
[4588]336
[4674]337  for(int i = 0; i < 3; ++i)
338  {
339    box->covarianceMatrix[i][0] = covariance[i][0];
340    box->covarianceMatrix[i][1] = covariance[i][1];
341    box->covarianceMatrix[i][2] = covariance[i][2];
342  }
[4560]343  *box->center = center;
[4638]344  PRINTF(3)("-- Written Result to obb\n");
[4631]345}
[4557]346
[4631]347
348
[4632]349void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
[4631]350{
351
[4557]352  /* now getting spanning vectors of the sub-space:
[4617]353  the eigenvectors of a symmertric matrix, such as the
354  covarience matrix are mutually orthogonal.
355  after normalizing them, they can be used as a the basis
356  vectors
[4557]357  */
[4660]358  Vector*              axis = new Vector[3];                //!< the references to the obb axis
[4588]359
[4631]360  coMat[1][1] = box->covarianceMatrix[0][0]; coMat[1][2] = box->covarianceMatrix[0][1]; coMat[1][3] = box->covarianceMatrix[0][2];
361  coMat[2][1] = box->covarianceMatrix[1][0]; coMat[2][2] = box->covarianceMatrix[1][1]; coMat[2][3] = box->covarianceMatrix[1][2];
362  coMat[3][1] = box->covarianceMatrix[2][0]; coMat[3][2] = box->covarianceMatrix[2][1]; coMat[3][3] = box->covarianceMatrix[2][2];
[4627]363
[4630]364  /* new jacobi tests */
365  JacobI(coMat, 3, eigvlMat, eigvMat, rotCount);
[4638]366  PRINTF(3)("-- Done Jacobi Decomposition\n");
[4628]367
[4627]368
[4638]369//   PRINTF(3)("Jacobi\n");
[4629]370//   for(int j = 1; j < 4; ++j)
371//   {
[4638]372//     PRINTF(3)(" |");
[4629]373//     for(int k = 1; k < 4; ++k)
374//     {
[4638]375//       PRINTF(3)(" \b%f ", eigvMat[j][k]);
[4629]376//     }
[4638]377//     PRINTF(3)(" |\n");
[4629]378//   }
379
[4660]380  axis[0].x = eigvMat[1][1]; axis[0].y = eigvMat[2][1]; axis[0].z = eigvMat[3][1];
381  axis[1].x = eigvMat[1][2]; axis[1].y = eigvMat[2][2]; axis[1].z = eigvMat[3][2];
382  axis[2].x = eigvMat[1][3]; axis[2].y = eigvMat[2][3]; axis[2].z = eigvMat[3][3];
[4705]383  axis[0].normalize();
384  axis[1].normalize();
385  axis[2].normalize();
[4576]386  box->axis = axis;
[4660]387
[4638]388  PRINTF(3)("-- Got Axis\n");
[4588]389
[4675]390  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
391  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
392  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
[4632]393}
[4588]394
[4626]395
[4632]396void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
[4631]397{
[4630]398
[4576]399  /* now get the axis length */
[4578]400  Line                ax[3];                                 //!< the axis
401  float*              halfLength = new float[3];             //!< half length of the axis
402  float               tmpLength;                             //!< tmp save point for the length
[4660]403  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
404  Plane               p1(box->axis[1], *box->center);
405  Plane               p2(box->axis[2], *box->center);
[4658]406  float               maxLength[3];
407  float               minLength[3];
[4588]408
[4658]409
410  /* get a bad bounding box */
[4589]411  halfLength[0] = -1.0f;
[4585]412  for(int j = 0; j < length; ++j)
[4658]413    {
[4661]414      tmpLength = fabs(p0.distancePoint(vertices[j]));
[4658]415      if( tmpLength > halfLength[0])
[4659]416        halfLength[0] = tmpLength;
[4658]417    }
418
419  halfLength[1] = -1.0f;
420  for(int j = 0; j < length; ++j)
421    {
422      tmpLength = fabs(p1.distancePoint(vertices[j]));
423      if( tmpLength > halfLength[1])
[4659]424        halfLength[1] = tmpLength;
[4658]425    }
426
427  halfLength[2] = -1.0f;
428  for(int j = 0; j < length; ++j)
429    {
[4661]430      tmpLength = fabs(p2.distancePoint(vertices[j]));
[4658]431      if( tmpLength > halfLength[2])
[4659]432        halfLength[2] = tmpLength;
[4658]433    }
434
435
436
437  /* get the maximal dimensions of the body in all directions */
[4710]438    maxLength[0] = p0.distancePoint(vertices[0]);
439    minLength[0] = p0.distancePoint(vertices[0]);
[4660]440   for(int j = 0; j < length; ++j)
441   {
442     tmpLength = p0.distancePoint(vertices[j]);
443     if( tmpLength > maxLength[0])
444       maxLength[0] = tmpLength;
445     else if( tmpLength < minLength[0])
446       minLength[0] = tmpLength;
447   }
[4578]448
[4710]449   maxLength[1] = p1.distancePoint(vertices[0]);
450   minLength[1] = p1.distancePoint(vertices[0]);
[4660]451   for(int j = 0; j < length; ++j)
452   {
[4661]453     tmpLength = p1.distancePoint(vertices[j]);
[4660]454     if( tmpLength > maxLength[1])
455       maxLength[1] = tmpLength;
456     else if( tmpLength < minLength[1])
457       minLength[1] = tmpLength;
458   }
[4585]459
[4710]460   maxLength[2] = p2.distancePoint(vertices[0]);
461   minLength[2] = p2.distancePoint(vertices[0]);
[4660]462   for(int j = 0; j < length; ++j)
463   {
[4661]464     tmpLength = p2.distancePoint(vertices[j]);
[4660]465     if( tmpLength > maxLength[2])
466       maxLength[2] = tmpLength;
467     else if( tmpLength < minLength[2])
468       minLength[2] = tmpLength;
469   }
[4585]470
[4660]471
472   /* calculate the real centre of the body by using the axis length */
[4668]473   float centerOffset[3];
474   float newHalfLength[3];
[4660]475   for(int i = 0; i < 3; ++i)
476     {
[4674]477       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
[4710]478       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
479       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
[4668]480       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
481       halfLength[i] = newHalfLength[i];
[4660]482     }
483
484
485
[4586]486  box->halfLength = halfLength;
[4638]487  PRINTF(3)("-- Written Axis to obb\n");
488  PRINTF(3)("-- Finished Calculating Attributes\n");
[4585]489
[4542]490}
491
492
[4609]493
494/**
495  \brief this separates an ob-box in the middle
[4836]496* @param box: the box to separate
[4609]497
498  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
499 */
[4557]500void OBBTreeNode::forkBox(OBB* box)
501{
502  /* get the longest axis of the box */
[4609]503  float               aLength = -1.0f;                     //!< the length of the longest axis
504  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
505
[4557]506  for(int i = 0; i < 3; ++i)
[4609]507  {
508    if( aLength < box->halfLength[i])
[4557]509    {
[4609]510      aLength = box->halfLength[i];
511      axisIndex = i;
[4557]512    }
[4609]513  }
[4588]514
[4688]515   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
[4609]516
517
[4557]518  /* get the closest vertex near the center */
[4611]519  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
[4609]520  float               tmpDist;                             //!< temporary distance
521  int                 vertexIndex;
[4660]522  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
[4588]523
[4660]524  vertexIndex = 0;
[4609]525  for(int i = 0; i < box->numOfVertices; ++i)
526  {
[4611]527    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
528    if( tmpDist < dist)
529    {
[4609]530      dist = tmpDist;
[4611]531      vertexIndex = i;
532    }
[4609]533  }
534
[4710]535  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
[4609]536
537
[4611]538  /* now definin the separation plane through this specified nearest point and partition
[4617]539  the points depending on which side they are located
[4611]540  */
541  tList<sVec3D>      partition1;                           //!< the vertex partition 1
542  tList<sVec3D>      partition2;                           //!< the vertex partition 2
543
[4710]544
[4695]545  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
[4660]546  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
[4632]547  this->sepPlaneCenter = &box->vertices[vertexIndex];
548  this->longestAxisIndex = axisIndex;
549
[4612]550  for(int i = 0; i < box->numOfVertices; ++i)
551  {
[4710]552    if( i == vertexIndex) continue;
553    tmpDist = this->separationPlane->distancePoint(box->vertices[i]);
554    if( tmpDist > 0.0)
555      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
[4612]556    else
[4710]557      partition2.add(&box->vertices[i]); /* negatice numbers */
[4612]558  }
[4613]559  partition1.add(&box->vertices[vertexIndex]);
[4710]560  partition2.add(&box->vertices[vertexIndex]);
[4611]561
[4710]562  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
[4612]563
[4613]564
565  /* now comes the separation into two different sVec3D arrays */
566  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
567  sVec3D*            element;                              //!< the elements
568  int                index;                                //!< index storage place
569  sVec3D*            vertList1;                            //!< the vertex list 1
570  sVec3D*            vertList2;                            //!< the vertex list 2
571
572  vertList1 = new sVec3D[partition1.getSize()];
573  vertList2 = new sVec3D[partition2.getSize()];
574
575  iterator = partition1.getIterator();
576  element = iterator->nextElement();
577  index = 0;
578  while( element != NULL)
579  {
580    vertList1[index][0] = element[0][0];
581    vertList1[index][1] = element[0][1];
582    vertList1[index][2] = element[0][2];
583    ++index;
584    element = iterator->nextElement();
585  }
586
[4638]587//   PRINTF(0)("\npartition 1:\n");
[4626]588//   for(int i = 0; i < partition1.getSize(); ++i)
589//   {
[4638]590//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
[4626]591//   }
[4613]592
593  iterator = partition2.getIterator();
594  element = iterator->nextElement();
595  index = 0;
596  while( element != NULL)
597  {
598    vertList2[index][0] = element[0][0];
599    vertList2[index][1] = element[0][1];
600    vertList2[index][2] = element[0][2];
601    ++index;
602    element = iterator->nextElement();
603  }
604
[4630]605  this->tmpVert1 = vertList1;
606  this->tmpVert2 = vertList2;
607  this->tmpLen1 = partition1.getSize();
608  this->tmpLen2 = partition2.getSize();
609
[4638]610  delete iterator;
611
612//   PRINTF(0)("\npartition 2:\n");
[4626]613//   for(int i = 0; i < partition2.getSize(); ++i)
614//   {
[4638]615//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
[4626]616//   }
[4557]617}
618
619
[4626]620
621
[5028]622void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]623{
[4705]624  PRINTF(3)("collideWith\n");
[4695]625  /* if the obb overlap, make subtests: check which node is realy overlaping  */
[4705]626  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
[4718]627  if( unlikely(treeNode == NULL)) return;
[4700]628  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4695]629  {
630    /* check if left node overlaps */
[4704]631    if( likely( this->nodeLeft != NULL))
632    {
[4705]633      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
[4700]634      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]635      {
[4700]636        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
[4704]637        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
638      }
639    }
[4695]640    /* check if right node overlaps */
[4704]641    if( likely( this->nodeRight != NULL))
642    {
[4705]643      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
[4700]644      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]645      {
646       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
647       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
648      }
[5028]649
650      /* so there is a collision and this is the last box in the tree (i.e. leaf) */
651      if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
652      {
[5029]653        nodeA->collidesWith(nodeB);
654        nodeB->collidesWith(nodeA);
[5028]655      }
[4704]656    }
[4695]657  }
658}
[4542]659
660
[4626]661
[5028]662bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
[4695]663{
[4696]664  /* first check all axis */
[4708]665  Vector t;
[4700]666  float rA = 0.0f;
667  float rB = 0.0f;
668  Vector l;
[4708]669  Vector rotAxisA[3];
670  Vector rotAxisB[3];
[4626]671
[4708]672  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
673  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
674  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
675
676  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
677  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
678  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
679
680  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
681
682//   printf("\n");
683//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
684//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
685//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
686//
687//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
688//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
689//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
690
691
[4703]692  /* All 3 axis of the object A */
[4701]693  for( int j = 0; j < 3; ++j)
[4705]694  {
695    rA = 0.0f;
696    rB = 0.0f;
[4708]697    l = rotAxisA[j];
[4705]698
[4708]699    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
700    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
701    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4705]702
[4708]703    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
704    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
705    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4705]706
707    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
708
709    if( (rA + rB) < fabs(t.dot(l)))
[4700]710    {
[4705]711      PRINT(3)("keine Kollision\n");
712      return false;
713    }
714  }
[4700]715
[4705]716  /* All 3 axis of the object B */
717  for( int j = 0; j < 3; ++j)
718  {
719    rA = 0.0f;
720    rB = 0.0f;
[4708]721    l = rotAxisB[j];
[4701]722
[4708]723    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
724    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
725    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4700]726
[4708]727    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
728    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
729    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4703]730
[4705]731    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
732
733    if( (rA + rB) < fabs(t.dot(l)))
734    {
735      PRINT(3)("keine Kollision\n");
736      return false;
[4701]737    }
[4705]738  }
[4700]739
[4705]740
741  /* Now check for all face cross products */
742
743  for( int j = 0; j < 3; ++j)
744  {
745    for(int k = 0; k < 3; ++k )
[4701]746    {
747      rA = 0.0f;
748      rB = 0.0f;
[4708]749      l = rotAxisA[j].cross(rotAxisB[k]);
[4701]750
[4708]751      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
752      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
753      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4701]754
[4708]755      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
756      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
757      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4701]758
[4703]759      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
760
[4701]761      if( (rA + rB) < fabs(t.dot(l)))
762      {
[4705]763        PRINT(3)("keine Kollision\n");
[4701]764        return false;
765      }
[4703]766    }
[4705]767  }
[4701]768
769
[4705]770  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
771  boxB->bCollided = true;
772  PRINT(3)("Kollision!\n");
773  return true;
[4695]774}
775
776
[4696]777
[4708]778
779
[4702]780void OBBTreeNode::drawBV(int depth, int drawMode)
[4553]781{
[4638]782  this->obbTree->getMaterial(treeIndex)->select();
[4635]783
784  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
785  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
786  {
[4638]787    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4622]788    {
[4712]789      if( drawMode & DRAW_POINTS)
790        glBegin(GL_POINTS);
[4638]791      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
792      {
[4712]793        if( drawMode & DRAW_POINTS)
794          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
795        else
796        {
797          glPushMatrix();
798          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
799          gluSphere(this->sphereObj, 0.1, 10, 10);
800          glPopMatrix();
801        }
[4638]802      }
[4712]803      if( drawMode & DRAW_POINTS)
804        glEnd();
[4622]805    }
[4635]806  }
[4542]807
808
[4589]809  /* draw world axes */
[4676]810  if( drawMode & DRAW_BV_AXIS)
811  {
812    glBegin(GL_LINES);
813    glColor3f(0.0, 0.4, 0.3);
814    glVertex3f(0.0, 0.0, 0.0);
815    glVertex3f(3.0, 0.0, 0.0);
[4589]816
[4676]817    glVertex3f(0.0, 0.0, 0.0);
818    glVertex3f(0.0, 3.0, 0.0);
[4589]819
[4676]820    glVertex3f(0.0, 0.0, 0.0);
821    glVertex3f(0.0, 0.0, 3.0);
822    glEnd();
823  }
[4674]824
[4688]825
[4635]826  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
827  {
[4636]828    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]829    {
830      /* draw the obb axes */
831      glBegin(GL_LINES);
832      glColor3f(0.0, 0.4, 0.3);
833      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]834      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
835                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
836                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
[4589]837
[4635]838      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]839      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
840                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
841                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
[4588]842
[4635]843      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]844      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
845                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
846                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
[4635]847      glEnd();
848    }
849  }
[4581]850
[4588]851
[4674]852  /* DRAW POLYGONS */
[4673]853  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
[4635]854  {
[4711]855    if(this->nodeLeft == NULL || this->nodeRight == NULL)
[4710]856      depth = 0;
[4636]857    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]858    {
[4636]859    Vector cen = *this->bvElement->center;
[4660]860    Vector* axis = this->bvElement->axis;
[4636]861    float* len = this->bvElement->halfLength;
[4588]862
[4702]863    if( this->bvElement->bCollided)
864      this->obbTree->getCollisionMaterial()->select();
865    else if( drawMode & DRAW_BV_BLENDED)
[4670]866      this->obbTree->getTransparentMaterial(treeIndex)->select();
867
[4702]868
869
[4636]870    /* draw bounding box */
[4670]871    if( drawMode & DRAW_BV_BLENDED)
872      glBegin(GL_QUADS);
873    else
874      glBegin(GL_LINE_LOOP);
[4660]875    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
876               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
877               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
878    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
879               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
880               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
881    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
882               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
883               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
884    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
885               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
886               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]887    glEnd();
[4588]888
[4670]889    if( drawMode & DRAW_BV_BLENDED)
890      glBegin(GL_QUADS);
891    else
892      glBegin(GL_LINE_LOOP);
[4660]893    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
894               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
895               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
896    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
897               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
898               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
899    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
900               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
901               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
902    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
903               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
904               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]905    glEnd();
[4588]906
[4670]907    if( drawMode & DRAW_BV_BLENDED)
908      glBegin(GL_QUADS);
909    else
910      glBegin(GL_LINE_LOOP);
[4660]911    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
912               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
913               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
914    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
915               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
916               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
917    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
918               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
919               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
920    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
921               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
922               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4636]923    glEnd();
[4588]924
[4670]925    if( drawMode & DRAW_BV_BLENDED)
926      glBegin(GL_QUADS);
927    else
928      glBegin(GL_LINE_LOOP);
[4660]929    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
930               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
931               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
932    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
933               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
934               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
935    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
936               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
937               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
938    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
939               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
940               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4636]941    glEnd();
[4670]942
[4671]943
[4670]944    if( drawMode & DRAW_BV_BLENDED)
[4671]945    {
946      glBegin(GL_QUADS);
947      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
948                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
949                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
950      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
951                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
952                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
953      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
954                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
955                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
956      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
957                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
958                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
959      glEnd();
960
961      glBegin(GL_QUADS);
962      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
963                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
964                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
965      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
966                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
967                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
968      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
969                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
970                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
971      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
972                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
973                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
974      glEnd();
975    }
976
977
978    if( drawMode & DRAW_BV_BLENDED)
[4670]979      this->obbTree->getMaterial(treeIndex)->select();
[4635]980    }
[4636]981
[4635]982  }
[4588]983
[4674]984  /* DRAW SEPARATING PLANE */
[4635]985  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
[4632]986  {
[4636]987    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]988    {
[4671]989      if( drawMode & DRAW_BV_BLENDED)
990        this->obbTree->getTransparentMaterial(treeIndex)->select();
991
[4636]992    /* now draw the separation plane */
[4660]993    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
994    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
[4636]995    Vector c = *this->bvElement->center;
996    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
997    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
998    glBegin(GL_QUADS);
999    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1000    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1001    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1002    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1003    glEnd();
[4671]1004
1005    if( drawMode & DRAW_BV_BLENDED)
1006      this->obbTree->getMaterial(treeIndex)->select();
1007
[4635]1008    }
[4632]1009  }
[4588]1010
[4702]1011
1012
[4622]1013  if( this->nodeLeft != NULL && depth != 0 )
[4635]1014    this->nodeLeft->drawBV(depth - 1, drawMode);
[4618]1015  if( this->nodeRight != NULL && depth != 0)
[4635]1016    this->nodeRight->drawBV(depth - 1, drawMode);
[4588]1017
[4702]1018  this->bvElement->bCollided = false;
[4557]1019}
[4542]1020
1021
[4568]1022
[4746]1023void OBBTreeNode::debug() const
[4568]1024{
1025
1026  /*
1027  for(int i = 0; i < length; i++)
[4617]1028  {
[4638]1029  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
[4617]1030}
[4568]1031  */
1032}
Note: See TracBrowser for help on using the repository browser.