Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/collision_detection/obb_tree_node.cc @ 4717

Last change on this file since 4717 was 4717, checked in by patrick, 19 years ago

orxonox/trunk: some other md2 files to load

File size: 34.4 KB
RevLine 
[4588]1/*
[4541]2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
[4617]11### File Specific:
[4541]12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
[4542]19#include "list.h"
20#include "obb.h"
[4616]21#include "obb_tree.h"
[4544]22#include "vector.h"
[4550]23#include "abstract_model.h"
[4700]24#include "p_node.h"
[4541]25
[4543]26#include <math.h>
27
[4638]28#include "stdincl.h"
[4572]29
[4627]30#include "lin_alg.h"
[4572]31
32
33
[4627]34
[4541]35using namespace std;
36
[4622]37OBBTree*  OBBTreeNode::obbTree = NULL;
[4541]38
[4630]39float**  OBBTreeNode::coMat = NULL;
40float**  OBBTreeNode::eigvMat = NULL;
41float*   OBBTreeNode::eigvlMat = NULL;
42int*     OBBTreeNode::rotCount = NULL;
43
[4541]44/**
45   \brief standard constructor
[4617]46 */
[4588]47OBBTreeNode::OBBTreeNode ()
[4541]48{
[4617]49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
[4618]50  this->nodeLeft = NULL;
51  this->nodeRight = NULL;
[4630]52
53  if(coMat == NULL)
54  {
55    coMat = new float*[4];
56    for(int i = 0; i < 4; i++)
57      coMat[i] = new float[4];
58  }
59  if(eigvMat == NULL)
60  {
61    eigvMat = new float*[4];
62    for(int i = 0; i < 4; i++)
63      eigvMat[i] = new float[4];
64  }
65  if( eigvlMat == NULL)
66  {
67    eigvlMat = new float[4];
68  }
69  if( rotCount == NULL)
70    rotCount = new int;
[4638]71
72  this->sphereObj = gluNewQuadric();
[4541]73}
74
75
76/**
77   \brief standard deconstructor
[4617]78 */
[4588]79OBBTreeNode::~OBBTreeNode ()
[4541]80{
81  // delete what has to be deleted here
82}
83
84
[4542]85
86/**
87   \brief creates a new BVTree or BVTree partition
[4614]88   \param depth: how much more depth-steps to go: if == 1 don't go any deeper!
[4542]89   \param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
[4617]90 */
[4544]91void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
[4542]92{
[4717]93  PRINT(3)("\n");
[4638]94  this->treeIndex = this->obbTree->getID();
[4717]95  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
[4614]96  this->depth = depth;
97
[4638]98
[4630]99  this->bvElement = new OBB();
[4638]100  this->bvElement->vertices = verticesList;
101  this->bvElement->numOfVertices = length;
102  PRINTF(3)("Created OBBox\n");
[4632]103  this->calculateBoxCovariance(this->bvElement, verticesList, length);
[4638]104  PRINTF(3)("Calculated attributes1\n");
[4632]105  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
[4638]106  PRINTF(3)("Calculated attributes2\n");
[4632]107  this->calculateBoxAxis(this->bvElement, verticesList, length);
[4638]108  PRINTF(3)("Calculated attributes3\n");
[4617]109
[4632]110
[4614]111  if( likely( this->depth > 0))
112  {
113    this->forkBox(this->bvElement);
[4626]114
[4630]115
[4710]116    if(this->tmpLen1 > 2)
[4638]117    {
118      OBBTreeNode* node1 = new OBBTreeNode();
119      this->nodeLeft = node1;
120      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
121    }
122    else
123    {
[4717]124      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
[4638]125    }
[4630]126
[4710]127    if( this->tmpLen2 > 2)
[4638]128    {
129      OBBTreeNode* node2 = new OBBTreeNode();
130      this->nodeRight = node2;
131      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
132    }
133    else
134    {
[4717]135      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
[4638]136    }
[4630]137
[4614]138  }
[4557]139}
140
141
142
[4632]143void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
[4557]144{
[4543]145  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
146  float     face;                                    //!< surface area of the entire convex hull
[4588]147  Vector    centroid[length];                        //!< centroid of the i'th convex hull
[4557]148  Vector    center;                                  //!< the center of the entire hull
[4544]149  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
[4545]150  Vector    t1, t2;                                  //!< temporary values
[4628]151  float     covariance[3][3];                        //!< the covariance matrix
[4674]152  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
[4588]153
[4553]154  this->numOfVertices = length;
155  this->vertices = verticesList;
156
[4562]157
[4648]158  if( likely(mode == 0))
159  {
160    /* fist compute all the convex hull face/facelets and centroids */
161    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
162    {
163      p = verticesList[i];
164      q = verticesList[i + 1];
165      r = verticesList[i + 2];
[4638]166
[4648]167      t1 = p - q; t2 = p - r;
[4638]168
[4648]169      /* finding the facelet surface via cross-product */
170      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
171      /* update the entire convex hull surface */
172      face += facelet[i];
173
174      /* calculate the cetroid of the hull triangles */
175      centroid[i] = (p + q + r) * 1/3;
176      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
177      center += centroid[i] * facelet[i];
178    }
179    /* take the average of the centroid sum */
180    center /= face;
181    PRINTF(3)("-- Calculated Center\n");
182
183
184    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
185    for(int j = 0; j < 3; ++j)
186    {
187      for(int k = 0; k < 3; ++k)
188      {
189        for(int i = 0; i < length; i+=3)
190        {
191          p = verticesList[i];
192          q = verticesList[i + 1];
193          r = verticesList[i + 2];
194
195          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
196              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
197        }
198      }
199    }
200    PRINTF(3)("-- Calculated Covariance\n");
201  }
202  else if( mode == 1)
[4617]203  {
[4648]204    for( int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
205    {
206      p = verticesList[i];
207      q = verticesList[i + 1];
208      r = verticesList[i + 2];
[4588]209
[4648]210      centroid[i] = (p + q + r) / 3.0f;
211      center += centroid[i];
212    }
213    center /= length;
[4588]214
[4648]215    for( int j = 0; j < 3; ++j)
216    {
217      for( int k = 0; k < 3; ++k)
218      {
219        for( int i = 0; i < length; i+=3)
220        {
221          p = verticesList[i];
222          q = verticesList[i +1];
223          r = verticesList[i + 2];
[4545]224
[4648]225          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
226        }
227        covariance[j][k] /= (3.0f * length);
228      }
229    }
230    PRINTF(3)("-- Calculated Covariance\n");
[4617]231  }
[4648]232  else if( mode == 2)
233  {
234    /* fist compute all the convex hull face/facelets and centroids */
235    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
236    {
237      p = verticesList[i];
238      q = verticesList[i + 1];
239      r = verticesList[i + 2];
[4562]240
[4648]241      t1 = p - q; t2 = p - r;
[4562]242
[4648]243      /* finding the facelet surface via cross-product */
244      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
245      /* update the entire convex hull surface */
246      face += facelet[i];
247
248      /* calculate the cetroid of the hull triangles */
249      centroid[i] = (p + q + r) * 1/3;
250      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
251      center += centroid[i] * facelet[i];
252    }
253    /* take the average of the centroid sum */
254    center /= face;
255    PRINTF(3)("-- Calculated Center\n");
256
257    for( int j = 0; j < 3; ++j)
258    {
259      for( int k = 0; k < 3; ++k)
260      {
261        for( int i = 0; i < length; i+=3)
262        {
263          p = verticesList[i];
264          q = verticesList[i +1];
265          r = verticesList[i + 2];
266
267          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
268        }
269        covariance[j][k] /= (3.0f * length);
270      }
271    }
272    PRINTF(3)("-- Calculated Covariance\n");
273  }
274  else
[4617]275  {
[4648]276    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4545]277    {
[4648]278      center += verticesList[i];
279    }
280    center /= length;
281
282    for( int j = 0; j < 3; ++j)
283    {
284      for( int k = 0; k < 3; ++k)
[4617]285      {
[4648]286        for( int i = 0; i < length; i+=3)
287        {
288          p = verticesList[i];
289          q = verticesList[i +1];
290          r = verticesList[i + 2];
[4544]291
[4648]292          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
293        }
294        covariance[j][k] /= (3.0f * length);
[4617]295      }
[4545]296    }
[4648]297    PRINTF(3)("-- Calculated Covariance\n");
[4617]298  }
[4562]299
[4648]300  PRINTF(3)("\nVertex Data:\n");
[4638]301  for(int i = 0; i < length; i++)
302  {
[4648]303    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
[4638]304  }
[4588]305
[4648]306
[4675]307  PRINTF(3)("\nCovariance Matrix:\n");
[4674]308  for(int j = 0; j < 3; ++j)
309  {
[4675]310    PRINT(3)(" |");
[4674]311    for(int k = 0; k < 3; ++k)
312    {
[4675]313      PRINT(3)(" \b%f ", covariance[j][k]);
[4674]314    }
[4675]315    PRINT(3)(" |\n");
[4674]316  }
317
[4638]318  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
[4553]319
[4588]320
[4674]321  for(int i = 0; i < 3; ++i)
322  {
323    box->covarianceMatrix[i][0] = covariance[i][0];
324    box->covarianceMatrix[i][1] = covariance[i][1];
325    box->covarianceMatrix[i][2] = covariance[i][2];
326  }
[4560]327  *box->center = center;
[4638]328  PRINTF(3)("-- Written Result to obb\n");
[4631]329}
[4557]330
[4631]331
332
[4632]333void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
[4631]334{
335
[4557]336  /* now getting spanning vectors of the sub-space:
[4617]337  the eigenvectors of a symmertric matrix, such as the
338  covarience matrix are mutually orthogonal.
339  after normalizing them, they can be used as a the basis
340  vectors
[4557]341  */
[4660]342  Vector*              axis = new Vector[3];                //!< the references to the obb axis
[4588]343
[4631]344  coMat[1][1] = box->covarianceMatrix[0][0]; coMat[1][2] = box->covarianceMatrix[0][1]; coMat[1][3] = box->covarianceMatrix[0][2];
345  coMat[2][1] = box->covarianceMatrix[1][0]; coMat[2][2] = box->covarianceMatrix[1][1]; coMat[2][3] = box->covarianceMatrix[1][2];
346  coMat[3][1] = box->covarianceMatrix[2][0]; coMat[3][2] = box->covarianceMatrix[2][1]; coMat[3][3] = box->covarianceMatrix[2][2];
[4627]347
[4630]348  /* new jacobi tests */
349  JacobI(coMat, 3, eigvlMat, eigvMat, rotCount);
[4638]350  PRINTF(3)("-- Done Jacobi Decomposition\n");
[4628]351
[4627]352
[4638]353//   PRINTF(3)("Jacobi\n");
[4629]354//   for(int j = 1; j < 4; ++j)
355//   {
[4638]356//     PRINTF(3)(" |");
[4629]357//     for(int k = 1; k < 4; ++k)
358//     {
[4638]359//       PRINTF(3)(" \b%f ", eigvMat[j][k]);
[4629]360//     }
[4638]361//     PRINTF(3)(" |\n");
[4629]362//   }
363
[4660]364  axis[0].x = eigvMat[1][1]; axis[0].y = eigvMat[2][1]; axis[0].z = eigvMat[3][1];
365  axis[1].x = eigvMat[1][2]; axis[1].y = eigvMat[2][2]; axis[1].z = eigvMat[3][2];
366  axis[2].x = eigvMat[1][3]; axis[2].y = eigvMat[2][3]; axis[2].z = eigvMat[3][3];
[4705]367  axis[0].normalize();
368  axis[1].normalize();
369  axis[2].normalize();
[4576]370  box->axis = axis;
[4660]371
[4638]372  PRINTF(3)("-- Got Axis\n");
[4588]373
[4675]374  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
375  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
376  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
[4632]377}
[4588]378
[4626]379
[4632]380void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
[4631]381{
[4630]382
[4576]383  /* now get the axis length */
[4578]384  Line                ax[3];                                 //!< the axis
385  float*              halfLength = new float[3];             //!< half length of the axis
386  float               tmpLength;                             //!< tmp save point for the length
[4660]387  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
388  Plane               p1(box->axis[1], *box->center);
389  Plane               p2(box->axis[2], *box->center);
[4658]390  float               maxLength[3];
391  float               minLength[3];
[4588]392
[4658]393
394  /* get a bad bounding box */
[4589]395  halfLength[0] = -1.0f;
[4585]396  for(int j = 0; j < length; ++j)
[4658]397    {
[4661]398      tmpLength = fabs(p0.distancePoint(vertices[j]));
[4658]399      if( tmpLength > halfLength[0])
[4659]400        halfLength[0] = tmpLength;
[4658]401    }
402
403  halfLength[1] = -1.0f;
404  for(int j = 0; j < length; ++j)
405    {
406      tmpLength = fabs(p1.distancePoint(vertices[j]));
407      if( tmpLength > halfLength[1])
[4659]408        halfLength[1] = tmpLength;
[4658]409    }
410
411  halfLength[2] = -1.0f;
412  for(int j = 0; j < length; ++j)
413    {
[4661]414      tmpLength = fabs(p2.distancePoint(vertices[j]));
[4658]415      if( tmpLength > halfLength[2])
[4659]416        halfLength[2] = tmpLength;
[4658]417    }
418
419
420
421  /* get the maximal dimensions of the body in all directions */
[4710]422    maxLength[0] = p0.distancePoint(vertices[0]);
423    minLength[0] = p0.distancePoint(vertices[0]);
[4660]424   for(int j = 0; j < length; ++j)
425   {
426     tmpLength = p0.distancePoint(vertices[j]);
427     if( tmpLength > maxLength[0])
428       maxLength[0] = tmpLength;
429     else if( tmpLength < minLength[0])
430       minLength[0] = tmpLength;
431   }
[4578]432
[4710]433   maxLength[1] = p1.distancePoint(vertices[0]);
434   minLength[1] = p1.distancePoint(vertices[0]);
[4660]435   for(int j = 0; j < length; ++j)
436   {
[4661]437     tmpLength = p1.distancePoint(vertices[j]);
[4660]438     if( tmpLength > maxLength[1])
439       maxLength[1] = tmpLength;
440     else if( tmpLength < minLength[1])
441       minLength[1] = tmpLength;
442   }
[4585]443
[4710]444   maxLength[2] = p2.distancePoint(vertices[0]);
445   minLength[2] = p2.distancePoint(vertices[0]);
[4660]446   for(int j = 0; j < length; ++j)
447   {
[4661]448     tmpLength = p2.distancePoint(vertices[j]);
[4660]449     if( tmpLength > maxLength[2])
450       maxLength[2] = tmpLength;
451     else if( tmpLength < minLength[2])
452       minLength[2] = tmpLength;
453   }
[4585]454
[4660]455
456   /* calculate the real centre of the body by using the axis length */
[4668]457   float centerOffset[3];
458   float newHalfLength[3];
[4660]459   for(int i = 0; i < 3; ++i)
460     {
[4674]461       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
[4710]462       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
463       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
[4668]464       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
465       halfLength[i] = newHalfLength[i];
[4660]466     }
467
468
469
[4586]470  box->halfLength = halfLength;
[4638]471  PRINTF(3)("-- Written Axis to obb\n");
472  PRINTF(3)("-- Finished Calculating Attributes\n");
[4585]473
[4542]474}
475
476
[4609]477
478/**
479  \brief this separates an ob-box in the middle
480  \param box: the box to separate
481
482  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
483 */
[4557]484void OBBTreeNode::forkBox(OBB* box)
485{
486  /* get the longest axis of the box */
[4609]487  float               aLength = -1.0f;                     //!< the length of the longest axis
488  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
489
[4557]490  for(int i = 0; i < 3; ++i)
[4609]491  {
492    if( aLength < box->halfLength[i])
[4557]493    {
[4609]494      aLength = box->halfLength[i];
495      axisIndex = i;
[4557]496    }
[4609]497  }
[4588]498
[4688]499   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
[4609]500
501
[4557]502  /* get the closest vertex near the center */
[4611]503  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
[4609]504  float               tmpDist;                             //!< temporary distance
505  int                 vertexIndex;
[4660]506  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
[4588]507
[4660]508  vertexIndex = 0;
[4609]509  for(int i = 0; i < box->numOfVertices; ++i)
510  {
[4611]511    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
512    if( tmpDist < dist)
513    {
[4609]514      dist = tmpDist;
[4611]515      vertexIndex = i;
516    }
[4609]517  }
518
[4710]519  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
[4609]520
521
[4611]522  /* now definin the separation plane through this specified nearest point and partition
[4617]523  the points depending on which side they are located
[4611]524  */
525  tList<sVec3D>      partition1;                           //!< the vertex partition 1
526  tList<sVec3D>      partition2;                           //!< the vertex partition 2
527
[4710]528
[4695]529  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
[4660]530  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
[4632]531  this->sepPlaneCenter = &box->vertices[vertexIndex];
532  this->longestAxisIndex = axisIndex;
533
[4612]534  for(int i = 0; i < box->numOfVertices; ++i)
535  {
[4710]536    if( i == vertexIndex) continue;
537    tmpDist = this->separationPlane->distancePoint(box->vertices[i]);
538    if( tmpDist > 0.0)
539      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
[4612]540    else
[4710]541      partition2.add(&box->vertices[i]); /* negatice numbers */
[4612]542  }
[4613]543  partition1.add(&box->vertices[vertexIndex]);
[4710]544  partition2.add(&box->vertices[vertexIndex]);
[4611]545
[4710]546  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
[4612]547
[4613]548
549  /* now comes the separation into two different sVec3D arrays */
550  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
551  sVec3D*            element;                              //!< the elements
552  int                index;                                //!< index storage place
553  sVec3D*            vertList1;                            //!< the vertex list 1
554  sVec3D*            vertList2;                            //!< the vertex list 2
555
556  vertList1 = new sVec3D[partition1.getSize()];
557  vertList2 = new sVec3D[partition2.getSize()];
558
559  iterator = partition1.getIterator();
560  element = iterator->nextElement();
561  index = 0;
562  while( element != NULL)
563  {
564    vertList1[index][0] = element[0][0];
565    vertList1[index][1] = element[0][1];
566    vertList1[index][2] = element[0][2];
567    ++index;
568    element = iterator->nextElement();
569  }
570
[4638]571//   PRINTF(0)("\npartition 1:\n");
[4626]572//   for(int i = 0; i < partition1.getSize(); ++i)
573//   {
[4638]574//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
[4626]575//   }
[4613]576
577  iterator = partition2.getIterator();
578  element = iterator->nextElement();
579  index = 0;
580  while( element != NULL)
581  {
582    vertList2[index][0] = element[0][0];
583    vertList2[index][1] = element[0][1];
584    vertList2[index][2] = element[0][2];
585    ++index;
586    element = iterator->nextElement();
587  }
588
[4630]589  this->tmpVert1 = vertList1;
590  this->tmpVert2 = vertList2;
591  this->tmpLen1 = partition1.getSize();
592  this->tmpLen2 = partition2.getSize();
593
[4638]594  delete iterator;
595
596//   PRINTF(0)("\npartition 2:\n");
[4626]597//   for(int i = 0; i < partition2.getSize(); ++i)
598//   {
[4638]599//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
[4626]600//   }
[4557]601}
602
603
[4626]604
605
[4700]606void OBBTreeNode::collideWith(BVTreeNode* treeNode, PNode* nodeA, PNode* nodeB)
[4695]607{
[4705]608  PRINTF(3)("collideWith\n");
[4695]609  /* if the obb overlap, make subtests: check which node is realy overlaping  */
[4705]610  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
[4712]611  //if( unlikely())
[4700]612  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4695]613  {
614    /* check if left node overlaps */
[4704]615    if( likely( this->nodeLeft != NULL))
616    {
[4705]617      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
[4700]618      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]619      {
[4700]620        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
[4704]621        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
622      }
623    }
[4695]624    /* check if right node overlaps */
[4704]625    if( likely( this->nodeRight != NULL))
626    {
[4705]627      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
[4700]628      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
[4704]629      {
630       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
631       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
632      }
633    }
[4695]634  }
635}
[4542]636
637
[4626]638
[4700]639bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, PNode* nodeA, PNode* nodeB)
[4695]640{
[4696]641  /* first check all axis */
[4708]642  Vector t;
[4700]643  float rA = 0.0f;
644  float rB = 0.0f;
645  Vector l;
[4708]646  Vector rotAxisA[3];
647  Vector rotAxisB[3];
[4626]648
[4708]649  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
650  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
651  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
652
653  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
654  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
655  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
656
657  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
658
659//   printf("\n");
660//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
661//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
662//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
663//
664//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
665//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
666//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
667
668
[4703]669  /* All 3 axis of the object A */
[4701]670  for( int j = 0; j < 3; ++j)
[4705]671  {
672    rA = 0.0f;
673    rB = 0.0f;
[4708]674    l = rotAxisA[j];
[4705]675
[4708]676    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
677    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
678    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4705]679
[4708]680    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
681    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
682    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4705]683
684    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
685
686    if( (rA + rB) < fabs(t.dot(l)))
[4700]687    {
[4705]688      PRINT(3)("keine Kollision\n");
689      return false;
690    }
691  }
[4700]692
[4705]693  /* All 3 axis of the object B */
694  for( int j = 0; j < 3; ++j)
695  {
696    rA = 0.0f;
697    rB = 0.0f;
[4708]698    l = rotAxisB[j];
[4701]699
[4708]700    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
701    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
702    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4700]703
[4708]704    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
705    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
706    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4703]707
[4705]708    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
709
710    if( (rA + rB) < fabs(t.dot(l)))
711    {
712      PRINT(3)("keine Kollision\n");
713      return false;
[4701]714    }
[4705]715  }
[4700]716
[4705]717
718  /* Now check for all face cross products */
719
720  for( int j = 0; j < 3; ++j)
721  {
722    for(int k = 0; k < 3; ++k )
[4701]723    {
724      rA = 0.0f;
725      rB = 0.0f;
[4708]726      l = rotAxisA[j].cross(rotAxisB[k]);
[4701]727
[4708]728      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
729      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
730      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
[4701]731
[4708]732      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
733      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
734      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
[4701]735
[4703]736      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
737
[4701]738      if( (rA + rB) < fabs(t.dot(l)))
739      {
[4705]740        PRINT(3)("keine Kollision\n");
[4701]741        return false;
742      }
[4703]743    }
[4705]744  }
[4701]745
746
[4705]747  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
748  boxB->bCollided = true;
749  PRINT(3)("Kollision!\n");
750  return true;
[4695]751}
752
753
[4696]754
[4708]755
756
[4702]757void OBBTreeNode::drawBV(int depth, int drawMode)
[4553]758{
[4638]759  this->obbTree->getMaterial(treeIndex)->select();
[4635]760
761  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
762  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
763  {
[4638]764    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4622]765    {
[4712]766      if( drawMode & DRAW_POINTS)
767        glBegin(GL_POINTS);
[4638]768      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
769      {
[4712]770        if( drawMode & DRAW_POINTS)
771          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
772        else
773        {
774          glPushMatrix();
775          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
776          gluSphere(this->sphereObj, 0.1, 10, 10);
777          glPopMatrix();
778        }
[4638]779      }
[4712]780      if( drawMode & DRAW_POINTS)
781        glEnd();
[4622]782    }
[4635]783  }
[4542]784
785
[4589]786  /* draw world axes */
[4676]787  if( drawMode & DRAW_BV_AXIS)
788  {
789    glBegin(GL_LINES);
790    glColor3f(0.0, 0.4, 0.3);
791    glVertex3f(0.0, 0.0, 0.0);
792    glVertex3f(3.0, 0.0, 0.0);
[4589]793
[4676]794    glVertex3f(0.0, 0.0, 0.0);
795    glVertex3f(0.0, 3.0, 0.0);
[4589]796
[4676]797    glVertex3f(0.0, 0.0, 0.0);
798    glVertex3f(0.0, 0.0, 3.0);
799    glEnd();
800  }
[4674]801
[4688]802
[4635]803  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
804  {
[4636]805    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]806    {
807      /* draw the obb axes */
808      glBegin(GL_LINES);
809      glColor3f(0.0, 0.4, 0.3);
810      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]811      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
812                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
813                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
[4589]814
[4635]815      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]816      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
817                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
818                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
[4588]819
[4635]820      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]821      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
822                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
823                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
[4635]824      glEnd();
825    }
826  }
[4581]827
[4588]828
[4674]829  /* DRAW POLYGONS */
[4673]830  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
[4635]831  {
[4711]832    if(this->nodeLeft == NULL || this->nodeRight == NULL)
[4710]833      depth = 0;
[4636]834    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]835    {
[4636]836    Vector cen = *this->bvElement->center;
[4660]837    Vector* axis = this->bvElement->axis;
[4636]838    float* len = this->bvElement->halfLength;
[4588]839
[4702]840    if( this->bvElement->bCollided)
841      this->obbTree->getCollisionMaterial()->select();
842    else if( drawMode & DRAW_BV_BLENDED)
[4670]843      this->obbTree->getTransparentMaterial(treeIndex)->select();
844
[4702]845
846
[4636]847    /* draw bounding box */
[4670]848    if( drawMode & DRAW_BV_BLENDED)
849      glBegin(GL_QUADS);
850    else
851      glBegin(GL_LINE_LOOP);
[4660]852    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
853               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
854               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
855    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
856               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
857               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
858    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
859               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
860               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
861    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
862               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
863               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]864    glEnd();
[4588]865
[4670]866    if( drawMode & DRAW_BV_BLENDED)
867      glBegin(GL_QUADS);
868    else
869      glBegin(GL_LINE_LOOP);
[4660]870    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
871               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
872               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
873    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
874               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
875               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
876    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
877               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
878               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
879    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
880               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
881               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]882    glEnd();
[4588]883
[4670]884    if( drawMode & DRAW_BV_BLENDED)
885      glBegin(GL_QUADS);
886    else
887      glBegin(GL_LINE_LOOP);
[4660]888    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
889               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
890               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
891    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
892               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
893               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
894    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
895               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
896               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
897    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
898               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
899               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4636]900    glEnd();
[4588]901
[4670]902    if( drawMode & DRAW_BV_BLENDED)
903      glBegin(GL_QUADS);
904    else
905      glBegin(GL_LINE_LOOP);
[4660]906    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
907               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
908               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
909    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
910               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
911               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
912    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
913               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
914               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
915    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
916               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
917               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4636]918    glEnd();
[4670]919
[4671]920
[4670]921    if( drawMode & DRAW_BV_BLENDED)
[4671]922    {
923      glBegin(GL_QUADS);
924      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
925                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
926                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
927      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
928                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
929                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
930      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
931                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
932                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
933      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
934                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
935                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
936      glEnd();
937
938      glBegin(GL_QUADS);
939      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
940                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
941                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
942      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
943                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
944                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
945      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
946                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
947                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
948      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
949                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
950                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
951      glEnd();
952    }
953
954
955    if( drawMode & DRAW_BV_BLENDED)
[4670]956      this->obbTree->getMaterial(treeIndex)->select();
[4635]957    }
[4636]958
[4635]959  }
[4588]960
[4674]961  /* DRAW SEPARATING PLANE */
[4635]962  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
[4632]963  {
[4636]964    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]965    {
[4671]966      if( drawMode & DRAW_BV_BLENDED)
967        this->obbTree->getTransparentMaterial(treeIndex)->select();
968
[4636]969    /* now draw the separation plane */
[4660]970    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
971    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
[4636]972    Vector c = *this->bvElement->center;
973    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
974    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
975    glBegin(GL_QUADS);
976    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
977    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
978    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
979    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
980    glEnd();
[4671]981
982    if( drawMode & DRAW_BV_BLENDED)
983      this->obbTree->getMaterial(treeIndex)->select();
984
[4635]985    }
[4632]986  }
[4588]987
[4702]988
989
[4622]990  if( this->nodeLeft != NULL && depth != 0 )
[4635]991    this->nodeLeft->drawBV(depth - 1, drawMode);
[4618]992  if( this->nodeRight != NULL && depth != 0)
[4635]993    this->nodeRight->drawBV(depth - 1, drawMode);
[4588]994
[4702]995  this->bvElement->bCollided = false;
[4557]996}
[4542]997
998
[4568]999
[4685]1000void OBBTreeNode::debug(void) const
[4568]1001{
1002
1003  /*
1004  for(int i = 0; i < length; i++)
[4617]1005  {
[4638]1006  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
[4617]1007}
[4568]1008  */
1009}
Note: See TracBrowser for help on using the repository browser.