Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/collision_detection/obb_tree_node.cc @ 4676

Last change on this file since 4676 was 4676, checked in by patrick, 19 years ago

orxonox/trunk: some more modularity in drawing process of the obb tree

File size: 29.0 KB
RevLine 
[4588]1/*
[4541]2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
[4617]11### File Specific:
[4541]12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
[4542]19#include "list.h"
20#include "obb.h"
[4616]21#include "obb_tree.h"
[4544]22#include "vector.h"
[4550]23#include "abstract_model.h"
[4541]24
[4543]25#include <math.h>
26
[4638]27#include "stdincl.h"
[4572]28
[4627]29#include "lin_alg.h"
[4572]30
31
32
[4627]33
[4541]34using namespace std;
35
[4622]36OBBTree*  OBBTreeNode::obbTree = NULL;
[4541]37
[4630]38float**  OBBTreeNode::coMat = NULL;
39float**  OBBTreeNode::eigvMat = NULL;
40float*   OBBTreeNode::eigvlMat = NULL;
41int*     OBBTreeNode::rotCount = NULL;
42
[4541]43/**
44   \brief standard constructor
[4617]45 */
[4588]46OBBTreeNode::OBBTreeNode ()
[4541]47{
[4617]48  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
[4618]49  this->nodeLeft = NULL;
50  this->nodeRight = NULL;
[4630]51
52  if(coMat == NULL)
53  {
54    coMat = new float*[4];
55    for(int i = 0; i < 4; i++)
56      coMat[i] = new float[4];
57  }
58  if(eigvMat == NULL)
59  {
60    eigvMat = new float*[4];
61    for(int i = 0; i < 4; i++)
62      eigvMat[i] = new float[4];
63  }
64  if( eigvlMat == NULL)
65  {
66    eigvlMat = new float[4];
67  }
68  if( rotCount == NULL)
69    rotCount = new int;
[4638]70
71  this->sphereObj = gluNewQuadric();
[4541]72}
73
74
75/**
76   \brief standard deconstructor
[4617]77 */
[4588]78OBBTreeNode::~OBBTreeNode ()
[4541]79{
80  // delete what has to be deleted here
81}
82
83
[4542]84
85/**
86   \brief creates a new BVTree or BVTree partition
[4614]87   \param depth: how much more depth-steps to go: if == 1 don't go any deeper!
[4542]88   \param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
[4617]89 */
[4544]90void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
[4542]91{
[4638]92  PRINT(0)("\n");
93  this->treeIndex = this->obbTree->getID();
94  PRINTF(0)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
[4614]95  this->depth = depth;
96
[4638]97
[4630]98  this->bvElement = new OBB();
[4638]99  this->bvElement->vertices = verticesList;
100  this->bvElement->numOfVertices = length;
101  PRINTF(3)("Created OBBox\n");
[4632]102  this->calculateBoxCovariance(this->bvElement, verticesList, length);
[4638]103  PRINTF(3)("Calculated attributes1\n");
[4632]104  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
[4638]105  PRINTF(3)("Calculated attributes2\n");
[4632]106  this->calculateBoxAxis(this->bvElement, verticesList, length);
[4638]107  PRINTF(3)("Calculated attributes3\n");
[4617]108
[4632]109
[4614]110  if( likely( this->depth > 0))
111  {
112    this->forkBox(this->bvElement);
[4626]113
[4630]114
[4648]115    if(this->tmpLen1 > 0)
[4638]116    {
117      OBBTreeNode* node1 = new OBBTreeNode();
118      this->nodeLeft = node1;
119      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
120    }
121    else
122    {
123      PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n");
124    }
[4630]125
[4648]126    if( this->tmpLen2 > 0)
[4638]127    {
128      OBBTreeNode* node2 = new OBBTreeNode();
129      this->nodeRight = node2;
130      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
131    }
132    else
133    {
134      PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n");
135    }
[4630]136
[4614]137  }
[4557]138}
139
140
141
[4632]142void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
[4557]143{
[4543]144  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
145  float     face;                                    //!< surface area of the entire convex hull
[4588]146  Vector    centroid[length];                        //!< centroid of the i'th convex hull
[4557]147  Vector    center;                                  //!< the center of the entire hull
[4544]148  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
[4545]149  Vector    t1, t2;                                  //!< temporary values
[4628]150  float     covariance[3][3];                        //!< the covariance matrix
[4674]151  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
[4588]152
[4553]153  this->numOfVertices = length;
154  this->vertices = verticesList;
155
[4562]156
[4648]157  if( likely(mode == 0))
158  {
159    /* fist compute all the convex hull face/facelets and centroids */
160    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
161    {
162      p = verticesList[i];
163      q = verticesList[i + 1];
164      r = verticesList[i + 2];
[4638]165
[4648]166      t1 = p - q; t2 = p - r;
[4638]167
[4648]168      /* finding the facelet surface via cross-product */
169      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
170      /* update the entire convex hull surface */
171      face += facelet[i];
172
173      /* calculate the cetroid of the hull triangles */
174      centroid[i] = (p + q + r) * 1/3;
175      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
176      center += centroid[i] * facelet[i];
177    }
178    /* take the average of the centroid sum */
179    center /= face;
180    PRINTF(3)("-- Calculated Center\n");
181
182
183    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
184    for(int j = 0; j < 3; ++j)
185    {
186      for(int k = 0; k < 3; ++k)
187      {
188        for(int i = 0; i < length; i+=3)
189        {
190          p = verticesList[i];
191          q = verticesList[i + 1];
192          r = verticesList[i + 2];
193
194          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
195              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
196        }
197      }
198    }
199    PRINTF(3)("-- Calculated Covariance\n");
200  }
201  else if( mode == 1)
[4617]202  {
[4648]203    for( int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
204    {
205      p = verticesList[i];
206      q = verticesList[i + 1];
207      r = verticesList[i + 2];
[4588]208
[4648]209      centroid[i] = (p + q + r) / 3.0f;
210      center += centroid[i];
211    }
212    center /= length;
[4588]213
[4648]214    for( int j = 0; j < 3; ++j)
215    {
216      for( int k = 0; k < 3; ++k)
217      {
218        for( int i = 0; i < length; i+=3)
219        {
220          p = verticesList[i];
221          q = verticesList[i +1];
222          r = verticesList[i + 2];
[4545]223
[4648]224          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
225        }
226        covariance[j][k] /= (3.0f * length);
227      }
228    }
229    PRINTF(3)("-- Calculated Covariance\n");
[4617]230  }
[4648]231  else if( mode == 2)
232  {
233    /* fist compute all the convex hull face/facelets and centroids */
234    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
235    {
236      p = verticesList[i];
237      q = verticesList[i + 1];
238      r = verticesList[i + 2];
[4562]239
[4648]240      t1 = p - q; t2 = p - r;
[4562]241
[4648]242      /* finding the facelet surface via cross-product */
243      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
244      /* update the entire convex hull surface */
245      face += facelet[i];
246
247      /* calculate the cetroid of the hull triangles */
248      centroid[i] = (p + q + r) * 1/3;
249      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
250      center += centroid[i] * facelet[i];
251    }
252    /* take the average of the centroid sum */
253    center /= face;
254    PRINTF(3)("-- Calculated Center\n");
255
256    for( int j = 0; j < 3; ++j)
257    {
258      for( int k = 0; k < 3; ++k)
259      {
260        for( int i = 0; i < length; i+=3)
261        {
262          p = verticesList[i];
263          q = verticesList[i +1];
264          r = verticesList[i + 2];
265
266          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
267        }
268        covariance[j][k] /= (3.0f * length);
269      }
270    }
271    PRINTF(3)("-- Calculated Covariance\n");
272  }
273  else
[4617]274  {
[4648]275    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
[4545]276    {
[4648]277      center += verticesList[i];
278    }
279    center /= length;
280
281    for( int j = 0; j < 3; ++j)
282    {
283      for( int k = 0; k < 3; ++k)
[4617]284      {
[4648]285        for( int i = 0; i < length; i+=3)
286        {
287          p = verticesList[i];
288          q = verticesList[i +1];
289          r = verticesList[i + 2];
[4544]290
[4648]291          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
292        }
293        covariance[j][k] /= (3.0f * length);
[4617]294      }
[4545]295    }
[4648]296    PRINTF(3)("-- Calculated Covariance\n");
[4617]297  }
[4562]298
[4648]299  PRINTF(3)("\nVertex Data:\n");
[4638]300  for(int i = 0; i < length; i++)
301  {
[4648]302    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
[4638]303  }
[4588]304
[4648]305
[4675]306  PRINTF(3)("\nCovariance Matrix:\n");
[4674]307  for(int j = 0; j < 3; ++j)
308  {
[4675]309    PRINT(3)(" |");
[4674]310    for(int k = 0; k < 3; ++k)
311    {
[4675]312      PRINT(3)(" \b%f ", covariance[j][k]);
[4674]313    }
[4675]314    PRINT(3)(" |\n");
[4674]315  }
316
[4638]317  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
[4553]318
[4588]319
[4674]320  for(int i = 0; i < 3; ++i)
321  {
322    box->covarianceMatrix[i][0] = covariance[i][0];
323    box->covarianceMatrix[i][1] = covariance[i][1];
324    box->covarianceMatrix[i][2] = covariance[i][2];
325  }
[4560]326  *box->center = center;
[4638]327  PRINTF(3)("-- Written Result to obb\n");
[4631]328}
[4557]329
[4631]330
331
[4632]332void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
[4631]333{
334
[4557]335  /* now getting spanning vectors of the sub-space:
[4617]336  the eigenvectors of a symmertric matrix, such as the
337  covarience matrix are mutually orthogonal.
338  after normalizing them, they can be used as a the basis
339  vectors
[4557]340  */
[4660]341  Vector*              axis = new Vector[3];                //!< the references to the obb axis
[4588]342
[4631]343  coMat[1][1] = box->covarianceMatrix[0][0]; coMat[1][2] = box->covarianceMatrix[0][1]; coMat[1][3] = box->covarianceMatrix[0][2];
344  coMat[2][1] = box->covarianceMatrix[1][0]; coMat[2][2] = box->covarianceMatrix[1][1]; coMat[2][3] = box->covarianceMatrix[1][2];
345  coMat[3][1] = box->covarianceMatrix[2][0]; coMat[3][2] = box->covarianceMatrix[2][1]; coMat[3][3] = box->covarianceMatrix[2][2];
[4627]346
[4630]347  /* new jacobi tests */
348  JacobI(coMat, 3, eigvlMat, eigvMat, rotCount);
[4638]349  PRINTF(3)("-- Done Jacobi Decomposition\n");
[4628]350
[4627]351
[4638]352//   PRINTF(3)("Jacobi\n");
[4629]353//   for(int j = 1; j < 4; ++j)
354//   {
[4638]355//     PRINTF(3)(" |");
[4629]356//     for(int k = 1; k < 4; ++k)
357//     {
[4638]358//       PRINTF(3)(" \b%f ", eigvMat[j][k]);
[4629]359//     }
[4638]360//     PRINTF(3)(" |\n");
[4629]361//   }
362
[4660]363  axis[0].x = eigvMat[1][1]; axis[0].y = eigvMat[2][1]; axis[0].z = eigvMat[3][1];
364  axis[1].x = eigvMat[1][2]; axis[1].y = eigvMat[2][2]; axis[1].z = eigvMat[3][2];
365  axis[2].x = eigvMat[1][3]; axis[2].y = eigvMat[2][3]; axis[2].z = eigvMat[3][3];
[4576]366  box->axis = axis;
[4660]367
[4638]368  PRINTF(3)("-- Got Axis\n");
[4588]369
[4675]370  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
371  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
372  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
[4632]373}
[4588]374
[4626]375
[4632]376void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
[4631]377{
[4630]378
[4576]379  /* now get the axis length */
[4578]380  Line                ax[3];                                 //!< the axis
381  float*              halfLength = new float[3];             //!< half length of the axis
382  float               tmpLength;                             //!< tmp save point for the length
[4660]383  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
384  Plane               p1(box->axis[1], *box->center);
385  Plane               p2(box->axis[2], *box->center);
[4658]386  float               maxLength[3];
387  float               minLength[3];
[4588]388
[4658]389
390  /* get a bad bounding box */
[4589]391  halfLength[0] = -1.0f;
[4585]392  for(int j = 0; j < length; ++j)
[4658]393    {
[4661]394      tmpLength = fabs(p0.distancePoint(vertices[j]));
[4658]395      if( tmpLength > halfLength[0])
[4659]396        halfLength[0] = tmpLength;
[4658]397    }
398
399  halfLength[1] = -1.0f;
400  for(int j = 0; j < length; ++j)
401    {
402      tmpLength = fabs(p1.distancePoint(vertices[j]));
403      if( tmpLength > halfLength[1])
[4659]404        halfLength[1] = tmpLength;
[4658]405    }
406
407  halfLength[2] = -1.0f;
408  for(int j = 0; j < length; ++j)
409    {
[4661]410      tmpLength = fabs(p2.distancePoint(vertices[j]));
[4658]411      if( tmpLength > halfLength[2])
[4659]412        halfLength[2] = tmpLength;
[4658]413    }
414
415
416
417  /* get the maximal dimensions of the body in all directions */
[4660]418   maxLength[0] = 0.0f;
419   minLength[0] = 0.0f;
420   for(int j = 0; j < length; ++j)
421   {
422     tmpLength = p0.distancePoint(vertices[j]);
423     if( tmpLength > maxLength[0])
424       maxLength[0] = tmpLength;
425     else if( tmpLength < minLength[0])
426       minLength[0] = tmpLength;
427   }
[4578]428
[4660]429   maxLength[1] = 0.0f;
430   minLength[1] = 0.0f;
431   for(int j = 0; j < length; ++j)
432   {
[4661]433     tmpLength = p1.distancePoint(vertices[j]);
[4660]434     if( tmpLength > maxLength[1])
435       maxLength[1] = tmpLength;
436     else if( tmpLength < minLength[1])
437       minLength[1] = tmpLength;
438   }
[4585]439
[4660]440   maxLength[2] = 0.0f;
441   minLength[2] = 0.0f;
442   for(int j = 0; j < length; ++j)
443   {
[4661]444     tmpLength = p2.distancePoint(vertices[j]);
[4660]445     if( tmpLength > maxLength[2])
446       maxLength[2] = tmpLength;
447     else if( tmpLength < minLength[2])
448       minLength[2] = tmpLength;
449   }
[4585]450
[4660]451
452   /* calculate the real centre of the body by using the axis length */
[4668]453   float centerOffset[3];
454   float newHalfLength[3];
[4660]455   for(int i = 0; i < 3; ++i)
456     {
[4674]457       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
[4668]458       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f; // min length is negatie
459       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f; // min length is negative
460       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
461       halfLength[i] = newHalfLength[i];
[4660]462     }
463
464
465
[4586]466  box->halfLength = halfLength;
[4638]467  PRINTF(3)("-- Written Axis to obb\n");
468  PRINTF(3)("-- Finished Calculating Attributes\n");
[4585]469
[4638]470
471
472//   PRINTF(3)("\nwe got length: \n");
473  for(int i = 0; i < 3; ++i)
474  {
475    //if( box->halfLength[i] == 0.0)
[4660]476    PRINTF(3)("length[%i] = %f\n", i, box->halfLength[i]);
[4638]477  }
[4542]478}
479
480
[4609]481
482/**
483  \brief this separates an ob-box in the middle
484  \param box: the box to separate
485
486  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
487 */
[4557]488void OBBTreeNode::forkBox(OBB* box)
489{
490  /* get the longest axis of the box */
[4609]491  float               aLength = -1.0f;                     //!< the length of the longest axis
492  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
493
[4557]494  for(int i = 0; i < 3; ++i)
[4609]495  {
496    if( aLength < box->halfLength[i])
[4557]497    {
[4609]498      aLength = box->halfLength[i];
499      axisIndex = i;
[4557]500    }
[4609]501  }
[4588]502
[4638]503   PRINTF(0)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
[4609]504
505
[4557]506  /* get the closest vertex near the center */
[4611]507  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
[4609]508  float               tmpDist;                             //!< temporary distance
509  int                 vertexIndex;
[4660]510  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
[4588]511
[4660]512  vertexIndex = 0;
[4609]513  for(int i = 0; i < box->numOfVertices; ++i)
514  {
[4611]515    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
516    if( tmpDist < dist)
517    {
[4609]518      dist = tmpDist;
[4611]519      vertexIndex = i;
520    }
[4609]521  }
522
[4638]523//   PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
[4609]524
525
[4611]526  /* now definin the separation plane through this specified nearest point and partition
[4617]527  the points depending on which side they are located
[4611]528  */
529  tList<sVec3D>      partition1;                           //!< the vertex partition 1
530  tList<sVec3D>      partition2;                           //!< the vertex partition 2
531
[4660]532  printf("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
533  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
[4632]534  this->sepPlaneCenter = &box->vertices[vertexIndex];
535  this->longestAxisIndex = axisIndex;
536
[4612]537  for(int i = 0; i < box->numOfVertices; ++i)
538  {
[4632]539    if( this->separationPlane->distancePoint(box->vertices[i]) > 0.0f)
[4612]540      partition1.add(&box->vertices[i]);
541    else
542      partition2.add(&box->vertices[i]);
543  }
[4613]544  partition1.add(&box->vertices[vertexIndex]);
[4611]545
[4638]546//   PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
[4612]547
[4613]548
549  /* now comes the separation into two different sVec3D arrays */
550  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
551  sVec3D*            element;                              //!< the elements
552  int                index;                                //!< index storage place
553  sVec3D*            vertList1;                            //!< the vertex list 1
554  sVec3D*            vertList2;                            //!< the vertex list 2
555
556  vertList1 = new sVec3D[partition1.getSize()];
557  vertList2 = new sVec3D[partition2.getSize()];
558
559  iterator = partition1.getIterator();
560  element = iterator->nextElement();
561  index = 0;
562  while( element != NULL)
563  {
564    vertList1[index][0] = element[0][0];
565    vertList1[index][1] = element[0][1];
566    vertList1[index][2] = element[0][2];
567    ++index;
568    element = iterator->nextElement();
569  }
570
[4638]571//   PRINTF(0)("\npartition 1:\n");
[4626]572//   for(int i = 0; i < partition1.getSize(); ++i)
573//   {
[4638]574//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
[4626]575//   }
[4613]576
577  iterator = partition2.getIterator();
578  element = iterator->nextElement();
579  index = 0;
580  while( element != NULL)
581  {
582    vertList2[index][0] = element[0][0];
583    vertList2[index][1] = element[0][1];
584    vertList2[index][2] = element[0][2];
585    ++index;
586    element = iterator->nextElement();
587  }
588
[4630]589  this->tmpVert1 = vertList1;
590  this->tmpVert2 = vertList2;
591  this->tmpLen1 = partition1.getSize();
592  this->tmpLen2 = partition2.getSize();
593
[4638]594  delete iterator;
595
596//   PRINTF(0)("\npartition 2:\n");
[4626]597//   for(int i = 0; i < partition2.getSize(); ++i)
598//   {
[4638]599//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
[4626]600//   }
[4557]601}
602
603
[4626]604
605
[4542]606void OBBTreeNode::collideWith(const BVTree &tree)
607{}
608
609
[4626]610
611
[4635]612void OBBTreeNode::drawBV(int depth, int drawMode) const
[4553]613{
[4638]614  this->obbTree->getMaterial(treeIndex)->select();
[4635]615
616  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
617  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
618  {
[4638]619    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4622]620    {
[4638]621      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
622      {
623        glPushMatrix();
[4648]624        //glMatrixMode(GL_MODELVIEW);
625        //glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
[4638]626        glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
[4676]627        gluSphere(this->sphereObj, 0.1, 10, 10);
[4648]628        //PRINTF(0)("v(%f, %f, %f)\n", this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
[4638]629        glPopMatrix();
630      }
[4622]631    }
[4635]632  }
[4542]633
634
[4589]635  /* draw world axes */
[4676]636  if( drawMode & DRAW_BV_AXIS)
637  {
638    glBegin(GL_LINES);
639    glColor3f(0.0, 0.4, 0.3);
640    glVertex3f(0.0, 0.0, 0.0);
641    glVertex3f(3.0, 0.0, 0.0);
[4589]642
[4676]643    glVertex3f(0.0, 0.0, 0.0);
644    glVertex3f(0.0, 3.0, 0.0);
[4589]645
[4676]646    glVertex3f(0.0, 0.0, 0.0);
647    glVertex3f(0.0, 0.0, 3.0);
648    glEnd();
649  }
[4674]650
[4635]651  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
652  {
[4636]653    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]654    {
655      /* draw the obb axes */
656      glBegin(GL_LINES);
657      glColor3f(0.0, 0.4, 0.3);
658      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]659      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
660                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
661                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
[4589]662
[4635]663      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]664      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
665                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
666                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
[4588]667
[4635]668      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
[4660]669      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
670                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
671                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
[4635]672      glEnd();
673    }
674  }
[4581]675
[4588]676
[4674]677  /* DRAW POLYGONS */
[4673]678  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
[4635]679  {
[4636]680    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]681    {
[4636]682    Vector cen = *this->bvElement->center;
[4660]683    Vector* axis = this->bvElement->axis;
[4636]684    float* len = this->bvElement->halfLength;
[4588]685
[4670]686    if( drawMode & DRAW_BV_BLENDED)
687      this->obbTree->getTransparentMaterial(treeIndex)->select();
688
[4636]689    /* draw bounding box */
[4670]690    if( drawMode & DRAW_BV_BLENDED)
691      glBegin(GL_QUADS);
692    else
693      glBegin(GL_LINE_LOOP);
[4660]694    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
695               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
696               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
697    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
698               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
699               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
700    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
701               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
702               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
703    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
704               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
705               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]706    glEnd();
[4588]707
[4670]708    if( drawMode & DRAW_BV_BLENDED)
709      glBegin(GL_QUADS);
710    else
711      glBegin(GL_LINE_LOOP);
[4660]712    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
713               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
714               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
715    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
716               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
717               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
718    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
719               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
720               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
721    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
722               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
723               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
[4636]724    glEnd();
[4588]725
[4670]726    if( drawMode & DRAW_BV_BLENDED)
727      glBegin(GL_QUADS);
728    else
729      glBegin(GL_LINE_LOOP);
[4660]730    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
731               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
732               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
733    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
734               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
735               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
736    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
737               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
738               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
739    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
740               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
741               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
[4636]742    glEnd();
[4588]743
[4670]744    if( drawMode & DRAW_BV_BLENDED)
745      glBegin(GL_QUADS);
746    else
747      glBegin(GL_LINE_LOOP);
[4660]748    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
749               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
750               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
751    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
752               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
753               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
754    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
755               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
756               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
757    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
758               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
759               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
[4636]760    glEnd();
[4670]761
[4671]762
[4670]763    if( drawMode & DRAW_BV_BLENDED)
[4671]764    {
765      glBegin(GL_QUADS);
766      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
767                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
768                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
769      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
770                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
771                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
772      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
773                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
774                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
775      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
776                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
777                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
778      glEnd();
779
780      glBegin(GL_QUADS);
781      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
782                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
783                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
784      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
785                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
786                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
787      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
788                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
789                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
790      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
791                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
792                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
793      glEnd();
794    }
795
796
797    if( drawMode & DRAW_BV_BLENDED)
[4670]798      this->obbTree->getMaterial(treeIndex)->select();
[4635]799    }
[4636]800
[4635]801  }
[4588]802
[4674]803  /* DRAW SEPARATING PLANE */
[4635]804  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
[4632]805  {
[4636]806    if( !(drawMode & DRAW_SINGLE && depth != 0))
[4635]807    {
[4671]808      if( drawMode & DRAW_BV_BLENDED)
809        this->obbTree->getTransparentMaterial(treeIndex)->select();
810
[4636]811    /* now draw the separation plane */
[4660]812    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
813    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
[4636]814    Vector c = *this->bvElement->center;
815    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
816    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
817    glBegin(GL_QUADS);
818    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
819    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
820    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
821    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
822    glEnd();
[4671]823
824    if( drawMode & DRAW_BV_BLENDED)
825      this->obbTree->getMaterial(treeIndex)->select();
826
[4635]827    }
[4632]828  }
[4588]829
[4622]830  if( this->nodeLeft != NULL && depth != 0 )
[4635]831    this->nodeLeft->drawBV(depth - 1, drawMode);
[4618]832  if( this->nodeRight != NULL && depth != 0)
[4635]833    this->nodeRight->drawBV(depth - 1, drawMode);
[4588]834
[4557]835}
[4542]836
837
[4568]838
839void OBBTreeNode::debug()
840{
841
842  /*
843  for(int i = 0; i < length; i++)
[4617]844  {
[4638]845  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
[4617]846}
[4568]847  */
848}
Note: See TracBrowser for help on using the repository browser.