Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/collision_detection/obb_tree_node.cc @ 4660

Last change on this file since 4660 was 4660, checked in by patrick, 19 years ago

orxonox/trunk: some segfault corrections :)

File size: 26.3 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "vector.h"
23#include "abstract_model.h"
24
25#include <math.h>
26
27#include "stdincl.h"
28
29#include "lin_alg.h"
30
31
32
33
34using namespace std;
35
36OBBTree*  OBBTreeNode::obbTree = NULL;
37
38float**  OBBTreeNode::coMat = NULL;
39float**  OBBTreeNode::eigvMat = NULL;
40float*   OBBTreeNode::eigvlMat = NULL;
41int*     OBBTreeNode::rotCount = NULL;
42
43/**
44   \brief standard constructor
45 */
46OBBTreeNode::OBBTreeNode ()
47{
48  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
49  this->nodeLeft = NULL;
50  this->nodeRight = NULL;
51
52  if(coMat == NULL)
53  {
54    coMat = new float*[4];
55    for(int i = 0; i < 4; i++)
56      coMat[i] = new float[4];
57  }
58  if(eigvMat == NULL)
59  {
60    eigvMat = new float*[4];
61    for(int i = 0; i < 4; i++)
62      eigvMat[i] = new float[4];
63  }
64  if( eigvlMat == NULL)
65  {
66    eigvlMat = new float[4];
67  }
68  if( rotCount == NULL)
69    rotCount = new int;
70
71  this->sphereObj = gluNewQuadric();
72}
73
74
75/**
76   \brief standard deconstructor
77 */
78OBBTreeNode::~OBBTreeNode ()
79{
80  // delete what has to be deleted here
81}
82
83
84
85/**
86   \brief creates a new BVTree or BVTree partition
87   \param depth: how much more depth-steps to go: if == 1 don't go any deeper!
88   \param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
89 */
90void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
91{
92  PRINT(0)("\n");
93  this->treeIndex = this->obbTree->getID();
94  PRINTF(0)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
95  this->depth = depth;
96
97
98  this->bvElement = new OBB();
99  this->bvElement->vertices = verticesList;
100  this->bvElement->numOfVertices = length;
101  PRINTF(3)("Created OBBox\n");
102  this->calculateBoxCovariance(this->bvElement, verticesList, length);
103  PRINTF(3)("Calculated attributes1\n");
104  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
105  PRINTF(3)("Calculated attributes2\n");
106  this->calculateBoxAxis(this->bvElement, verticesList, length);
107  PRINTF(3)("Calculated attributes3\n");
108
109
110  if( likely( this->depth > 0))
111  {
112    this->forkBox(this->bvElement);
113
114
115    if(this->tmpLen1 > 0)
116    {
117      OBBTreeNode* node1 = new OBBTreeNode();
118      this->nodeLeft = node1;
119      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
120    }
121    else
122    {
123      PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n");
124    }
125
126    if( this->tmpLen2 > 0)
127    {
128      OBBTreeNode* node2 = new OBBTreeNode();
129      this->nodeRight = node2;
130      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
131    }
132    else
133    {
134      PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n");
135    }
136
137  }
138}
139
140
141
142void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
143{
144  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
145  float     face;                                    //!< surface area of the entire convex hull
146  Vector    centroid[length];                        //!< centroid of the i'th convex hull
147  Vector    center;                                  //!< the center of the entire hull
148  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
149  Vector    t1, t2;                                  //!< temporary values
150  float     covariance[3][3];                        //!< the covariance matrix
151  int       mode = 3;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
152
153  this->numOfVertices = length;
154  this->vertices = verticesList;
155
156
157  if( likely(mode == 0))
158  {
159    /* fist compute all the convex hull face/facelets and centroids */
160    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
161    {
162      p = verticesList[i];
163      q = verticesList[i + 1];
164      r = verticesList[i + 2];
165
166      t1 = p - q; t2 = p - r;
167
168      /* finding the facelet surface via cross-product */
169      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
170      /* update the entire convex hull surface */
171      face += facelet[i];
172
173      /* calculate the cetroid of the hull triangles */
174      centroid[i] = (p + q + r) * 1/3;
175      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
176      center += centroid[i] * facelet[i];
177    }
178    /* take the average of the centroid sum */
179    center /= face;
180    PRINTF(3)("-- Calculated Center\n");
181
182
183    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
184    for(int j = 0; j < 3; ++j)
185    {
186      for(int k = 0; k < 3; ++k)
187      {
188        for(int i = 0; i < length; i+=3)
189        {
190          p = verticesList[i];
191          q = verticesList[i + 1];
192          r = verticesList[i + 2];
193
194          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
195              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
196        }
197      }
198    }
199    PRINTF(3)("-- Calculated Covariance\n");
200  }
201  else if( mode == 1)
202  {
203    for( int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
204    {
205      p = verticesList[i];
206      q = verticesList[i + 1];
207      r = verticesList[i + 2];
208
209      centroid[i] = (p + q + r) / 3.0f;
210      center += centroid[i];
211    }
212    center /= length;
213
214    for( int j = 0; j < 3; ++j)
215    {
216      for( int k = 0; k < 3; ++k)
217      {
218        for( int i = 0; i < length; i+=3)
219        {
220          p = verticesList[i];
221          q = verticesList[i +1];
222          r = verticesList[i + 2];
223
224          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
225        }
226        covariance[j][k] /= (3.0f * length);
227      }
228    }
229    PRINTF(3)("-- Calculated Covariance\n");
230  }
231  else if( mode == 2)
232  {
233    /* fist compute all the convex hull face/facelets and centroids */
234    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
235    {
236      p = verticesList[i];
237      q = verticesList[i + 1];
238      r = verticesList[i + 2];
239
240      t1 = p - q; t2 = p - r;
241
242      /* finding the facelet surface via cross-product */
243      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
244      /* update the entire convex hull surface */
245      face += facelet[i];
246
247      /* calculate the cetroid of the hull triangles */
248      centroid[i] = (p + q + r) * 1/3;
249      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
250      center += centroid[i] * facelet[i];
251    }
252    /* take the average of the centroid sum */
253    center /= face;
254    PRINTF(3)("-- Calculated Center\n");
255
256    for( int j = 0; j < 3; ++j)
257    {
258      for( int k = 0; k < 3; ++k)
259      {
260        for( int i = 0; i < length; i+=3)
261        {
262          p = verticesList[i];
263          q = verticesList[i +1];
264          r = verticesList[i + 2];
265
266          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
267        }
268        covariance[j][k] /= (3.0f * length);
269      }
270    }
271    PRINTF(3)("-- Calculated Covariance\n");
272  }
273  else
274  {
275    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
276    {
277      center += verticesList[i];
278    }
279    center /= length;
280
281    for( int j = 0; j < 3; ++j)
282    {
283      for( int k = 0; k < 3; ++k)
284      {
285        for( int i = 0; i < length; i+=3)
286        {
287          p = verticesList[i];
288          q = verticesList[i +1];
289          r = verticesList[i + 2];
290
291          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
292        }
293        covariance[j][k] /= (3.0f * length);
294      }
295    }
296    PRINTF(3)("-- Calculated Covariance\n");
297  }
298
299  PRINTF(3)("\nVertex Data:\n");
300  for(int i = 0; i < length; i++)
301  {
302    //PRINTF(0)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
303    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
304  }
305
306
307//   PRINTF(3)("\nCovariance Matrix:\n");
308//   for(int j = 0; j < 3; ++j)
309//   {
310//     PRINTF(3)(" |");
311//     for(int k = 0; k < 3; ++k)
312//     {
313//       PRINTF(3)(" \b%f ", covariance[j][k]);
314//     }
315//     PRINTF(3)(" |\n");
316//   }
317  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
318
319
320//   for(int i = 0; i < 3; ++i)
321//   {
322//     box->covarianceMatrix[i][0] = covariance[i][0];
323//     box->covarianceMatrix[i][1] = covariance[i][1];
324//     box->covarianceMatrix[i][3] = covariance[i][2];
325//   }
326  *box->center = center;
327  PRINTF(3)("-- Written Result to obb\n");
328}
329
330
331
332void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
333{
334
335  /* now getting spanning vectors of the sub-space:
336  the eigenvectors of a symmertric matrix, such as the
337  covarience matrix are mutually orthogonal.
338  after normalizing them, they can be used as a the basis
339  vectors
340  */
341  Vector*              axis = new Vector[3];                //!< the references to the obb axis
342
343  coMat[1][1] = box->covarianceMatrix[0][0]; coMat[1][2] = box->covarianceMatrix[0][1]; coMat[1][3] = box->covarianceMatrix[0][2];
344  coMat[2][1] = box->covarianceMatrix[1][0]; coMat[2][2] = box->covarianceMatrix[1][1]; coMat[2][3] = box->covarianceMatrix[1][2];
345  coMat[3][1] = box->covarianceMatrix[2][0]; coMat[3][2] = box->covarianceMatrix[2][1]; coMat[3][3] = box->covarianceMatrix[2][2];
346
347  /* new jacobi tests */
348  JacobI(coMat, 3, eigvlMat, eigvMat, rotCount);
349  PRINTF(3)("-- Done Jacobi Decomposition\n");
350
351
352//   PRINTF(3)("Jacobi\n");
353//   for(int j = 1; j < 4; ++j)
354//   {
355//     PRINTF(3)(" |");
356//     for(int k = 1; k < 4; ++k)
357//     {
358//       PRINTF(3)(" \b%f ", eigvMat[j][k]);
359//     }
360//     PRINTF(3)(" |\n");
361//   }
362
363  axis[0].x = eigvMat[1][1]; axis[0].y = eigvMat[2][1]; axis[0].z = eigvMat[3][1];
364  axis[1].x = eigvMat[1][2]; axis[1].y = eigvMat[2][2]; axis[1].z = eigvMat[3][2];
365  axis[2].x = eigvMat[1][3]; axis[2].y = eigvMat[2][3]; axis[2].z = eigvMat[3][3];
366  box->axis = axis;
367
368  PRINTF(3)("-- Got Axis\n");
369
370  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
371  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
372  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
373}
374
375
376void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
377{
378
379  /* now get the axis length */
380  Line                ax[3];                                 //!< the axis
381  float*              halfLength = new float[3];             //!< half length of the axis
382  float               tmpLength;                             //!< tmp save point for the length
383  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
384  Plane               p1(box->axis[1], *box->center);
385  Plane               p2(box->axis[2], *box->center);
386  float               maxLength[3];
387  float               minLength[3];
388
389
390  /* get a bad bounding box */
391  halfLength[0] = -1.0f;
392  for(int j = 0; j < length; ++j)
393    {
394      tmpLength = fabs(p1.distancePoint(vertices[j]));
395      if( tmpLength > halfLength[0])
396        halfLength[0] = tmpLength;
397    }
398
399  halfLength[1] = -1.0f;
400  for(int j = 0; j < length; ++j)
401    {
402      tmpLength = fabs(p1.distancePoint(vertices[j]));
403      if( tmpLength > halfLength[1])
404        halfLength[1] = tmpLength;
405    }
406
407  halfLength[2] = -1.0f;
408  for(int j = 0; j < length; ++j)
409    {
410      tmpLength = fabs(p1.distancePoint(vertices[j]));
411      if( tmpLength > halfLength[2])
412        halfLength[2] = tmpLength;
413    }
414
415
416
417  /* get the maximal dimensions of the body in all directions */
418   maxLength[0] = 0.0f;
419   minLength[0] = 0.0f;
420   for(int j = 0; j < length; ++j)
421   {
422     tmpLength = p0.distancePoint(vertices[j]);
423     if( tmpLength > maxLength[0])
424       maxLength[0] = tmpLength;
425     else if( tmpLength < minLength[0])
426       minLength[0] = tmpLength;
427   }
428
429   maxLength[1] = 0.0f;
430   minLength[1] = 0.0f;
431   for(int j = 0; j < length; ++j)
432   {
433     tmpLength = p0.distancePoint(vertices[j]);
434     if( tmpLength > maxLength[1])
435       maxLength[1] = tmpLength;
436     else if( tmpLength < minLength[1])
437       minLength[1] = tmpLength;
438   }
439
440   maxLength[2] = 0.0f;
441   minLength[2] = 0.0f;
442   for(int j = 0; j < length; ++j)
443   {
444     tmpLength = p0.distancePoint(vertices[j]);
445     if( tmpLength > maxLength[2])
446       maxLength[2] = tmpLength;
447     else if( tmpLength < minLength[2])
448       minLength[2] = tmpLength;
449   }
450
451
452   /* calculate the real centre of the body by using the axis length */
453   float center[3];
454   float offset[3];
455   for(int i = 0; i < 3; ++i)
456     {
457       center[i] = (maxLength[i] - minLength[i]) / 2.0f; // min length is negative
458       offset[i] = halfLength[i] - center[i];
459       //PRINTF(0)("Center Orig: %f, %f, %f ---- new: %f, %f, %f", box->center[]);
460       *box->center +=  (box->axis[i] * offset[i]);            // update the new center vector
461       PRINTF(0)("Center Translation Operation: halfLength old: %f, new: %f\n", halfLength[i], center[i]);
462       halfLength[i] = center[i];
463     }
464
465
466
467  box->halfLength = halfLength;
468  PRINTF(3)("-- Written Axis to obb\n");
469  PRINTF(3)("-- Finished Calculating Attributes\n");
470
471
472
473//   PRINTF(3)("\nwe got length: \n");
474  for(int i = 0; i < 3; ++i)
475  {
476    //if( box->halfLength[i] == 0.0)
477    PRINTF(3)("length[%i] = %f\n", i, box->halfLength[i]);
478  }
479}
480
481
482
483/**
484  \brief this separates an ob-box in the middle
485  \param box: the box to separate
486
487  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
488 */
489void OBBTreeNode::forkBox(OBB* box)
490{
491  /* get the longest axis of the box */
492  float               aLength = -1.0f;                     //!< the length of the longest axis
493  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
494
495  for(int i = 0; i < 3; ++i)
496  {
497    if( aLength < box->halfLength[i])
498    {
499      aLength = box->halfLength[i];
500      axisIndex = i;
501    }
502  }
503
504   PRINTF(0)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
505
506
507  /* get the closest vertex near the center */
508  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
509  float               tmpDist;                             //!< temporary distance
510  int                 vertexIndex;
511  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
512
513  vertexIndex = 0;
514  for(int i = 0; i < box->numOfVertices; ++i)
515  {
516    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
517    if( tmpDist < dist)
518    {
519      dist = tmpDist;
520      vertexIndex = i;
521    }
522  }
523
524//   PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
525
526
527  /* now definin the separation plane through this specified nearest point and partition
528  the points depending on which side they are located
529  */
530  tList<sVec3D>      partition1;                           //!< the vertex partition 1
531  tList<sVec3D>      partition2;                           //!< the vertex partition 2
532
533  printf("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
534  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
535  this->sepPlaneCenter = &box->vertices[vertexIndex];
536  this->longestAxisIndex = axisIndex;
537
538  for(int i = 0; i < box->numOfVertices; ++i)
539  {
540    if( this->separationPlane->distancePoint(box->vertices[i]) > 0.0f)
541      partition1.add(&box->vertices[i]);
542    else
543      partition2.add(&box->vertices[i]);
544  }
545  partition1.add(&box->vertices[vertexIndex]);
546
547//   PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
548
549
550  /* now comes the separation into two different sVec3D arrays */
551  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
552  sVec3D*            element;                              //!< the elements
553  int                index;                                //!< index storage place
554  sVec3D*            vertList1;                            //!< the vertex list 1
555  sVec3D*            vertList2;                            //!< the vertex list 2
556
557  vertList1 = new sVec3D[partition1.getSize()];
558  vertList2 = new sVec3D[partition2.getSize()];
559
560  iterator = partition1.getIterator();
561  element = iterator->nextElement();
562  index = 0;
563  while( element != NULL)
564  {
565    vertList1[index][0] = element[0][0];
566    vertList1[index][1] = element[0][1];
567    vertList1[index][2] = element[0][2];
568    ++index;
569    element = iterator->nextElement();
570  }
571
572//   PRINTF(0)("\npartition 1:\n");
573//   for(int i = 0; i < partition1.getSize(); ++i)
574//   {
575//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
576//   }
577
578  iterator = partition2.getIterator();
579  element = iterator->nextElement();
580  index = 0;
581  while( element != NULL)
582  {
583    vertList2[index][0] = element[0][0];
584    vertList2[index][1] = element[0][1];
585    vertList2[index][2] = element[0][2];
586    ++index;
587    element = iterator->nextElement();
588  }
589
590  this->tmpVert1 = vertList1;
591  this->tmpVert2 = vertList2;
592  this->tmpLen1 = partition1.getSize();
593  this->tmpLen2 = partition2.getSize();
594
595  delete iterator;
596
597//   PRINTF(0)("\npartition 2:\n");
598//   for(int i = 0; i < partition2.getSize(); ++i)
599//   {
600//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
601//   }
602}
603
604
605
606
607void OBBTreeNode::collideWith(const BVTree &tree)
608{}
609
610
611
612
613void OBBTreeNode::drawBV(int depth, int drawMode) const
614{
615  this->obbTree->getMaterial(treeIndex)->select();
616
617  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
618  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
619  {
620    if( !(drawMode & DRAW_SINGLE && depth != 0))
621    {
622      //glBegin(GL_LINE_STRIP);
623      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
624      {
625        glPushMatrix();
626        //glMatrixMode(GL_MODELVIEW);
627        //glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
628        glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
629        gluSphere(this->sphereObj, 1, 10, 10);
630        //PRINTF(0)("v(%f, %f, %f)\n", this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
631        glPopMatrix();
632      }
633      //glEnd();
634    }
635  }
636
637
638  /* draw world axes */
639//   glBegin(GL_LINES);
640//   glColor3f(0.0, 0.4, 0.3);
641//   glVertex3f(0.0, 0.0, 0.0);
642//   glVertex3f(3.0, 0.0, 0.0);
643//
644//   glVertex3f(0.0, 0.0, 0.0);
645//   glVertex3f(0.0, 3.0, 0.0);
646//
647//   glVertex3f(0.0, 0.0, 0.0);
648//   glVertex3f(0.0, 0.0, 3.0);
649//   glEnd();
650
651
652  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
653  {
654    if( !(drawMode & DRAW_SINGLE && depth != 0))
655    {
656      /* draw the obb axes */
657      glBegin(GL_LINES);
658      glColor3f(0.0, 0.4, 0.3);
659      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
660      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
661                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
662                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
663
664      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
665      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
666                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
667                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
668
669      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
670      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
671                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
672                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
673      glEnd();
674    }
675  }
676
677
678  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL)
679  {
680    if( !(drawMode & DRAW_SINGLE && depth != 0))
681    {
682    Vector cen = *this->bvElement->center;
683    Vector* axis = this->bvElement->axis;
684    float* len = this->bvElement->halfLength;
685
686    /* draw bounding box */
687    glBegin(GL_LINE_LOOP);
688    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
689               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
690               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
691    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
692               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
693               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
694    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
695               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
696               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
697    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
698               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
699               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
700    glEnd();
701
702    glBegin(GL_LINE_LOOP);
703    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
704               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
705               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
706    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
707               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
708               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
709    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
710               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
711               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
712    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
713               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
714               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
715    glEnd();
716
717    glBegin(GL_LINE_LOOP);
718    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
719               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
720               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
721    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
722               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
723               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
724    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
725               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
726               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
727    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
728               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
729               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
730    glEnd();
731
732    glBegin(GL_LINE_LOOP);
733    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
734               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
735               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
736    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
737               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
738               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
739    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
740               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
741               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
742    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
743               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
744               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
745    glEnd();
746    }
747
748  }
749
750  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
751  {
752    if( !(drawMode & DRAW_SINGLE && depth != 0))
753    {
754    /* now draw the separation plane */
755    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
756    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
757    Vector c = *this->bvElement->center;
758    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
759    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
760    glBegin(GL_QUADS);
761    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
762    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
763    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
764    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
765    glEnd();
766    }
767  }
768
769  if( this->nodeLeft != NULL && depth != 0 )
770    this->nodeLeft->drawBV(depth - 1, drawMode);
771  if( this->nodeRight != NULL && depth != 0)
772    this->nodeRight->drawBV(depth - 1, drawMode);
773
774}
775
776
777
778void OBBTreeNode::debug()
779{
780
781  /*
782  for(int i = 0; i < length; i++)
783  {
784  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
785}
786  */
787}
Note: See TracBrowser for help on using the repository browser.