Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/orxonox/trunk/src/lib/collision_detection/obb_tree_node.cc @ 4659

Last change on this file since 4659 was 4659, checked in by patrick, 19 years ago

orxonox/trunk: removed some code blocks to get it properly running

File size: 26.3 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "vector.h"
23#include "abstract_model.h"
24
25#include <math.h>
26
27#include "stdincl.h"
28
29#include "lin_alg.h"
30
31
32
33
34using namespace std;
35
36OBBTree*  OBBTreeNode::obbTree = NULL;
37
38float**  OBBTreeNode::coMat = NULL;
39float**  OBBTreeNode::eigvMat = NULL;
40float*   OBBTreeNode::eigvlMat = NULL;
41int*     OBBTreeNode::rotCount = NULL;
42
43/**
44   \brief standard constructor
45 */
46OBBTreeNode::OBBTreeNode ()
47{
48  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
49  this->nodeLeft = NULL;
50  this->nodeRight = NULL;
51
52  if(coMat == NULL)
53  {
54    coMat = new float*[4];
55    for(int i = 0; i < 4; i++)
56      coMat[i] = new float[4];
57  }
58  if(eigvMat == NULL)
59  {
60    eigvMat = new float*[4];
61    for(int i = 0; i < 4; i++)
62      eigvMat[i] = new float[4];
63  }
64  if( eigvlMat == NULL)
65  {
66    eigvlMat = new float[4];
67  }
68  if( rotCount == NULL)
69    rotCount = new int;
70
71  this->sphereObj = gluNewQuadric();
72}
73
74
75/**
76   \brief standard deconstructor
77 */
78OBBTreeNode::~OBBTreeNode ()
79{
80  // delete what has to be deleted here
81}
82
83
84
85/**
86   \brief creates a new BVTree or BVTree partition
87   \param depth: how much more depth-steps to go: if == 1 don't go any deeper!
88   \param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
89 */
90void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
91{
92  PRINT(0)("\n");
93  this->treeIndex = this->obbTree->getID();
94  PRINTF(0)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
95  this->depth = depth;
96
97
98  this->bvElement = new OBB();
99  this->bvElement->vertices = verticesList;
100  this->bvElement->numOfVertices = length;
101  PRINTF(3)("Created OBBox\n");
102  this->calculateBoxCovariance(this->bvElement, verticesList, length);
103  PRINTF(3)("Calculated attributes1\n");
104  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
105  PRINTF(3)("Calculated attributes2\n");
106  this->calculateBoxAxis(this->bvElement, verticesList, length);
107  PRINTF(3)("Calculated attributes3\n");
108
109
110  if( likely( this->depth > 0))
111  {
112    this->forkBox(this->bvElement);
113
114
115    if(this->tmpLen1 > 0)
116    {
117      OBBTreeNode* node1 = new OBBTreeNode();
118      this->nodeLeft = node1;
119      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
120    }
121    else
122    {
123      PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n");
124    }
125
126    if( this->tmpLen2 > 0)
127    {
128      OBBTreeNode* node2 = new OBBTreeNode();
129      this->nodeRight = node2;
130      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
131    }
132    else
133    {
134      PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n");
135    }
136
137  }
138}
139
140
141
142void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
143{
144  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
145  float     face;                                    //!< surface area of the entire convex hull
146  Vector    centroid[length];                        //!< centroid of the i'th convex hull
147  Vector    center;                                  //!< the center of the entire hull
148  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
149  Vector    t1, t2;                                  //!< temporary values
150  float     covariance[3][3];                        //!< the covariance matrix
151  int       mode = 3;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
152
153  this->numOfVertices = length;
154  this->vertices = verticesList;
155
156
157  if( likely(mode == 0))
158  {
159    /* fist compute all the convex hull face/facelets and centroids */
160    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
161    {
162      p = verticesList[i];
163      q = verticesList[i + 1];
164      r = verticesList[i + 2];
165
166      t1 = p - q; t2 = p - r;
167
168      /* finding the facelet surface via cross-product */
169      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
170      /* update the entire convex hull surface */
171      face += facelet[i];
172
173      /* calculate the cetroid of the hull triangles */
174      centroid[i] = (p + q + r) * 1/3;
175      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
176      center += centroid[i] * facelet[i];
177    }
178    /* take the average of the centroid sum */
179    center /= face;
180    PRINTF(3)("-- Calculated Center\n");
181
182
183    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
184    for(int j = 0; j < 3; ++j)
185    {
186      for(int k = 0; k < 3; ++k)
187      {
188        for(int i = 0; i < length; i+=3)
189        {
190          p = verticesList[i];
191          q = verticesList[i + 1];
192          r = verticesList[i + 2];
193
194          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
195              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
196        }
197      }
198    }
199    PRINTF(3)("-- Calculated Covariance\n");
200  }
201  else if( mode == 1)
202  {
203    for( int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
204    {
205      p = verticesList[i];
206      q = verticesList[i + 1];
207      r = verticesList[i + 2];
208
209      centroid[i] = (p + q + r) / 3.0f;
210      center += centroid[i];
211    }
212    center /= length;
213
214    for( int j = 0; j < 3; ++j)
215    {
216      for( int k = 0; k < 3; ++k)
217      {
218        for( int i = 0; i < length; i+=3)
219        {
220          p = verticesList[i];
221          q = verticesList[i +1];
222          r = verticesList[i + 2];
223
224          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
225        }
226        covariance[j][k] /= (3.0f * length);
227      }
228    }
229    PRINTF(3)("-- Calculated Covariance\n");
230  }
231  else if( mode == 2)
232  {
233    /* fist compute all the convex hull face/facelets and centroids */
234    for(int i = 0; i < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
235    {
236      p = verticesList[i];
237      q = verticesList[i + 1];
238      r = verticesList[i + 2];
239
240      t1 = p - q; t2 = p - r;
241
242      /* finding the facelet surface via cross-product */
243      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
244      /* update the entire convex hull surface */
245      face += facelet[i];
246
247      /* calculate the cetroid of the hull triangles */
248      centroid[i] = (p + q + r) * 1/3;
249      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
250      center += centroid[i] * facelet[i];
251    }
252    /* take the average of the centroid sum */
253    center /= face;
254    PRINTF(3)("-- Calculated Center\n");
255
256    for( int j = 0; j < 3; ++j)
257    {
258      for( int k = 0; k < 3; ++k)
259      {
260        for( int i = 0; i < length; i+=3)
261        {
262          p = verticesList[i];
263          q = verticesList[i +1];
264          r = verticesList[i + 2];
265
266          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
267        }
268        covariance[j][k] /= (3.0f * length);
269      }
270    }
271    PRINTF(3)("-- Calculated Covariance\n");
272  }
273  else
274  {
275    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
276    {
277      center += verticesList[i];
278    }
279    center /= length;
280
281    for( int j = 0; j < 3; ++j)
282    {
283      for( int k = 0; k < 3; ++k)
284      {
285        for( int i = 0; i < length; i+=3)
286        {
287          p = verticesList[i];
288          q = verticesList[i +1];
289          r = verticesList[i + 2];
290
291          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
292        }
293        covariance[j][k] /= (3.0f * length);
294      }
295    }
296    PRINTF(3)("-- Calculated Covariance\n");
297  }
298
299  PRINTF(3)("\nVertex Data:\n");
300  for(int i = 0; i < length; i++)
301  {
302    //PRINTF(0)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
303    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
304  }
305
306
307//   PRINTF(3)("\nCovariance Matrix:\n");
308//   for(int j = 0; j < 3; ++j)
309//   {
310//     PRINTF(3)(" |");
311//     for(int k = 0; k < 3; ++k)
312//     {
313//       PRINTF(3)(" \b%f ", covariance[j][k]);
314//     }
315//     PRINTF(3)(" |\n");
316//   }
317  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
318
319
320//   for(int i = 0; i < 3; ++i)
321//   {
322//     box->covarianceMatrix[i][0] = covariance[i][0];
323//     box->covarianceMatrix[i][1] = covariance[i][1];
324//     box->covarianceMatrix[i][3] = covariance[i][2];
325//   }
326  *box->center = center;
327  PRINTF(3)("-- Written Result to obb\n");
328}
329
330
331
332void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
333{
334
335  /* now getting spanning vectors of the sub-space:
336  the eigenvectors of a symmertric matrix, such as the
337  covarience matrix are mutually orthogonal.
338  after normalizing them, they can be used as a the basis
339  vectors
340  */
341  Vector**              axis = new Vector*[3];                //!< the references to the obb axis
342
343  coMat[1][1] = box->covarianceMatrix[0][0]; coMat[1][2] = box->covarianceMatrix[0][1]; coMat[1][3] = box->covarianceMatrix[0][2];
344  coMat[2][1] = box->covarianceMatrix[1][0]; coMat[2][2] = box->covarianceMatrix[1][1]; coMat[2][3] = box->covarianceMatrix[1][2];
345  coMat[3][1] = box->covarianceMatrix[2][0]; coMat[3][2] = box->covarianceMatrix[2][1]; coMat[3][3] = box->covarianceMatrix[2][2];
346
347  /* new jacobi tests */
348  JacobI(coMat, 3, eigvlMat, eigvMat, rotCount);
349  PRINTF(3)("-- Done Jacobi Decomposition\n");
350
351
352//   PRINTF(3)("Jacobi\n");
353//   for(int j = 1; j < 4; ++j)
354//   {
355//     PRINTF(3)(" |");
356//     for(int k = 1; k < 4; ++k)
357//     {
358//       PRINTF(3)(" \b%f ", eigvMat[j][k]);
359//     }
360//     PRINTF(3)(" |\n");
361//   }
362
363  axis[0] = new Vector(eigvMat[1][1], eigvMat[2][1], eigvMat[3][1]);
364  axis[1] = new Vector(eigvMat[1][2], eigvMat[2][2], eigvMat[3][2]);
365  axis[2] = new Vector(eigvMat[1][3], eigvMat[2][3], eigvMat[3][3]);
366  box->axis = axis;
367  PRINTF(3)("-- Got Axis\n");
368
369  PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[0]->x, box->axis[0]->y, box->axis[0]->z);
370  PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[1]->x, box->axis[1]->y, box->axis[1]->z);
371  PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[2]->x, box->axis[2]->y, box->axis[2]->z);
372}
373
374
375void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
376{
377
378  /* now get the axis length */
379  Line                ax[3];                                 //!< the axis
380  float*              halfLength = new float[3];             //!< half length of the axis
381  float               tmpLength;                             //!< tmp save point for the length
382  Plane               p0(*box->axis[0], *box->center);       //!< the axis planes
383  Plane               p1(*box->axis[1], *box->center);
384  Plane               p2(*box->axis[2], *box->center);
385  float               maxLength[3];
386  float               minLength[3];
387
388
389  /* get a bad bounding box */
390  halfLength[0] = -1.0f;
391  for(int j = 0; j < length; ++j)
392    {
393      tmpLength = fabs(p1.distancePoint(vertices[j]));
394      if( tmpLength > halfLength[0])
395        halfLength[0] = tmpLength;
396    }
397
398  halfLength[1] = -1.0f;
399  for(int j = 0; j < length; ++j)
400    {
401      tmpLength = fabs(p1.distancePoint(vertices[j]));
402      if( tmpLength > halfLength[1])
403        halfLength[1] = tmpLength;
404    }
405
406  halfLength[2] = -1.0f;
407  for(int j = 0; j < length; ++j)
408    {
409      tmpLength = fabs(p1.distancePoint(vertices[j]));
410      if( tmpLength > halfLength[2])
411        halfLength[2] = tmpLength;
412    }
413
414
415
416  /* get the maximal dimensions of the body in all directions */
417//   maxLength[0] = 0.0f;
418//   minLength[0] = 0.0f;
419//   for(int j = 0; j < length; ++j)
420//   {
421//     tmpLength = p0.distancePoint(vertices[j]);
422//     if( tmpLength > maxLength[0])
423//       maxLength[0] = tmpLength;
424//     else if( tmpLength < minLength[0])
425//       minLength[0] = tmpLength;
426//   }
427//
428//   maxLength[1] = 0.0f;
429//   minLength[1] = 0.0f;
430//   for(int j = 0; j < length; ++j)
431//   {
432//     tmpLength = p0.distancePoint(vertices[j]);
433//     if( tmpLength > maxLength[1])
434//       maxLength[1] = tmpLength;
435//     else if( tmpLength < minLength[1])
436//       minLength[1] = tmpLength;
437//   }
438//
439//   maxLength[2] = 0.0f;
440//   minLength[2] = 0.0f;
441//   for(int j = 0; j < length; ++j)
442//   {
443//     tmpLength = p0.distancePoint(vertices[j]);
444//     if( tmpLength > maxLength[2])
445//       maxLength[2] = tmpLength;
446//     else if( tmpLength < minLength[2])
447//       minLength[2] = tmpLength;
448//   }
449//
450//
451//   /* calculate the real centre of the body by using the axis length */
452//   float center[3];
453//   float offset[3];
454//   for(int i = 0; i < 3; ++i)
455//     {
456//       center[i] = (maxLength[i] - minLength[i]) / 2.0f; // min length is negative
457//       offset[i] = halfLength[i] - center[i];
458//       box->center[i] +=  *box->axis[i] * offset[i];            // update the new center vector
459//       PRINTF(0)("Center Translation Operation: halfLength old: %f, new: %f\n", halfLength[i], center[i]);
460//       halfLength[i] = center[i];
461//     }
462
463
464
465  box->halfLength = halfLength;
466  PRINTF(3)("-- Written Axis to obb\n");
467  PRINTF(3)("-- Finished Calculating Attributes\n");
468
469
470
471//   PRINTF(3)("\nwe got length: \n");
472  for(int i = 0; i < 3; ++i)
473  {
474    //if( box->halfLength[i] == 0.0)
475      PRINTF(0)("length[%i] = %f\n", i, box->halfLength[i]);
476  }
477}
478
479
480
481/**
482  \brief this separates an ob-box in the middle
483  \param box: the box to separate
484
485  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
486 */
487void OBBTreeNode::forkBox(OBB* box)
488{
489  /* get the longest axis of the box */
490  float               aLength = -1.0f;                     //!< the length of the longest axis
491  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
492
493  for(int i = 0; i < 3; ++i)
494  {
495    if( aLength < box->halfLength[i])
496    {
497      aLength = box->halfLength[i];
498      axisIndex = i;
499    }
500  }
501
502   PRINTF(0)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
503
504
505  /* get the closest vertex near the center */
506  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
507  float               tmpDist;                             //!< temporary distance
508  int                 vertexIndex;
509  Plane               middlePlane(*box->axis[axisIndex], *box->center); //!< the middle plane
510
511  for(int i = 0; i < box->numOfVertices; ++i)
512  {
513    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
514    if( tmpDist < dist)
515    {
516      dist = tmpDist;
517      vertexIndex = i;
518    }
519  }
520
521//   PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
522
523
524  /* now definin the separation plane through this specified nearest point and partition
525  the points depending on which side they are located
526  */
527  tList<sVec3D>      partition1;                           //!< the vertex partition 1
528  tList<sVec3D>      partition2;                           //!< the vertex partition 2
529
530
531  this->separationPlane = new Plane(*box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
532  this->sepPlaneCenter = &box->vertices[vertexIndex];
533  this->longestAxisIndex = axisIndex;
534
535  for(int i = 0; i < box->numOfVertices; ++i)
536  {
537    if( this->separationPlane->distancePoint(box->vertices[i]) > 0.0f)
538      partition1.add(&box->vertices[i]);
539    else
540      partition2.add(&box->vertices[i]);
541  }
542  partition1.add(&box->vertices[vertexIndex]);
543
544//   PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
545
546
547  /* now comes the separation into two different sVec3D arrays */
548  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
549  sVec3D*            element;                              //!< the elements
550  int                index;                                //!< index storage place
551  sVec3D*            vertList1;                            //!< the vertex list 1
552  sVec3D*            vertList2;                            //!< the vertex list 2
553
554  vertList1 = new sVec3D[partition1.getSize()];
555  vertList2 = new sVec3D[partition2.getSize()];
556
557  iterator = partition1.getIterator();
558  element = iterator->nextElement();
559  index = 0;
560  while( element != NULL)
561  {
562    vertList1[index][0] = element[0][0];
563    vertList1[index][1] = element[0][1];
564    vertList1[index][2] = element[0][2];
565    ++index;
566    element = iterator->nextElement();
567  }
568
569//   PRINTF(0)("\npartition 1:\n");
570//   for(int i = 0; i < partition1.getSize(); ++i)
571//   {
572//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
573//   }
574
575  iterator = partition2.getIterator();
576  element = iterator->nextElement();
577  index = 0;
578  while( element != NULL)
579  {
580    vertList2[index][0] = element[0][0];
581    vertList2[index][1] = element[0][1];
582    vertList2[index][2] = element[0][2];
583    ++index;
584    element = iterator->nextElement();
585  }
586
587  this->tmpVert1 = vertList1;
588  this->tmpVert2 = vertList2;
589  this->tmpLen1 = partition1.getSize();
590  this->tmpLen2 = partition2.getSize();
591
592  delete iterator;
593
594//   PRINTF(0)("\npartition 2:\n");
595//   for(int i = 0; i < partition2.getSize(); ++i)
596//   {
597//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
598//   }
599}
600
601
602
603
604void OBBTreeNode::collideWith(const BVTree &tree)
605{}
606
607
608
609
610void OBBTreeNode::drawBV(int depth, int drawMode) const
611{
612  this->obbTree->getMaterial(treeIndex)->select();
613
614  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
615  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
616  {
617    if( !(drawMode & DRAW_SINGLE && depth != 0))
618    {
619      //glBegin(GL_LINE_STRIP);
620      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
621      {
622        glPushMatrix();
623        //glMatrixMode(GL_MODELVIEW);
624        //glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
625        glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
626        gluSphere(this->sphereObj, 1, 10, 10);
627        //PRINTF(0)("v(%f, %f, %f)\n", this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
628        glPopMatrix();
629      }
630      //glEnd();
631    }
632  }
633
634
635  /* draw world axes */
636//   glBegin(GL_LINES);
637//   glColor3f(0.0, 0.4, 0.3);
638//   glVertex3f(0.0, 0.0, 0.0);
639//   glVertex3f(3.0, 0.0, 0.0);
640//
641//   glVertex3f(0.0, 0.0, 0.0);
642//   glVertex3f(0.0, 3.0, 0.0);
643//
644//   glVertex3f(0.0, 0.0, 0.0);
645//   glVertex3f(0.0, 0.0, 3.0);
646//   glEnd();
647
648
649  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
650  {
651    if( !(drawMode & DRAW_SINGLE && depth != 0))
652    {
653      /* draw the obb axes */
654      glBegin(GL_LINES);
655      glColor3f(0.0, 0.4, 0.3);
656      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
657      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0]->x * this->bvElement->halfLength[0],
658                 this->bvElement->center->y + this->bvElement->axis[0]->y * this->bvElement->halfLength[0],
659                 this->bvElement->center->z + this->bvElement->axis[0]->z * this->bvElement->halfLength[0]);
660
661      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
662      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1]->x * this->bvElement->halfLength[1],
663                 this->bvElement->center->y + this->bvElement->axis[1]->y * this->bvElement->halfLength[1],
664                 this->bvElement->center->z + this->bvElement->axis[1]->z * this->bvElement->halfLength[1]);
665
666      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
667      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2]->x * this->bvElement->halfLength[2],
668                 this->bvElement->center->y + this->bvElement->axis[2]->y * this->bvElement->halfLength[2],
669                 this->bvElement->center->z + this->bvElement->axis[2]->z * this->bvElement->halfLength[2]);
670      glEnd();
671    }
672  }
673
674
675  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL)
676  {
677    if( !(drawMode & DRAW_SINGLE && depth != 0))
678    {
679    Vector cen = *this->bvElement->center;
680    Vector** axis = this->bvElement->axis;
681    float* len = this->bvElement->halfLength;
682
683    /* draw bounding box */
684    glBegin(GL_LINE_LOOP);
685    glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2],
686               cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2],
687               cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]);
688    glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2],
689               cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2],
690               cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]);
691    glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2],
692               cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2],
693               cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]);
694    glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2],
695               cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2],
696               cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]);
697    glEnd();
698
699    glBegin(GL_LINE_LOOP);
700    glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2],
701               cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2],
702               cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]);
703    glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2],
704               cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2],
705               cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]);
706    glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2],
707               cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2],
708               cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]);
709    glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2],
710               cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2],
711               cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]);
712    glEnd();
713
714    glBegin(GL_LINE_LOOP);
715    glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2],
716               cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2],
717               cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]);
718    glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2],
719               cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2],
720               cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]);
721    glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2],
722               cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2],
723               cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]);
724    glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2],
725               cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2],
726               cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]);
727    glEnd();
728
729    glBegin(GL_LINE_LOOP);
730    glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2],
731               cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2],
732               cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]);
733    glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2],
734               cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2],
735               cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]);
736    glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2],
737               cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2],
738               cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]);
739    glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2],
740               cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2],
741               cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]);
742    glEnd();
743    }
744
745  }
746
747  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
748  {
749    if( !(drawMode & DRAW_SINGLE && depth != 0))
750    {
751    /* now draw the separation plane */
752    Vector a1 = *this->bvElement->axis[(this->longestAxisIndex + 1)%3];
753    Vector a2 = *this->bvElement->axis[(this->longestAxisIndex + 2)%3];
754    Vector c = *this->bvElement->center;
755    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
756    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
757    glBegin(GL_QUADS);
758    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
759    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
760    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
761    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
762    glEnd();
763    }
764  }
765
766  if( this->nodeLeft != NULL && depth != 0 )
767    this->nodeLeft->drawBV(depth - 1, drawMode);
768  if( this->nodeRight != NULL && depth != 0)
769    this->nodeRight->drawBV(depth - 1, drawMode);
770
771}
772
773
774
775void OBBTreeNode::debug()
776{
777
778  /*
779  for(int i = 0; i < length; i++)
780  {
781  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
782}
783  */
784}
Note: See TracBrowser for help on using the repository browser.