Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/collision_detection/src/lib/collision_detection/obb_tree_node.cc @ 5702

Last change on this file since 5702 was 5702, checked in by patrick, 18 years ago

collision_detection: interface change, const war continued

File size: 39.1 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "matrix.h"
23#include "abstract_model.h"
24#include "world_entity.h"
25
26#include "color.h"
27
28#include "debug.h"
29#include "glincl.h"
30
31
32
33using namespace std;
34
35OBBTree*  OBBTreeNode::obbTree = NULL;
36
37float**  OBBTreeNode::coMat = NULL;
38float**  OBBTreeNode::eigvMat = NULL;
39float*   OBBTreeNode::eigvlMat = NULL;
40int*     OBBTreeNode::rotCount = NULL;
41GLUquadricObj* OBBTreeNode_sphereObj = NULL;
42
43/**
44 *  standard constructor
45 */
46OBBTreeNode::OBBTreeNode ()
47{
48  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
49  this->nodeLeft = NULL;
50  this->nodeRight = NULL;
51  this->bvElement = NULL;
52  this->tmpVert1 = NULL;
53  this->tmpVert2 = NULL;
54
55  if( OBBTreeNode::coMat == NULL)
56  {
57    OBBTreeNode::coMat = new float*[4];
58    for(int i = 0; i < 4; i++)
59      OBBTreeNode::coMat[i] = new float[4];
60  }
61  if( OBBTreeNode::eigvMat == NULL)
62  {
63    OBBTreeNode::eigvMat = new float*[4];
64    for( int i = 0; i < 4; i++)
65      OBBTreeNode::eigvMat[i] = new float[4];
66  }
67  if( OBBTreeNode::eigvlMat == NULL)
68  {
69    OBBTreeNode::eigvlMat = new float[4];
70  }
71  if( OBBTreeNode::rotCount == NULL)
72    OBBTreeNode::rotCount = new int;
73
74  if( OBBTreeNode_sphereObj == NULL)
75    OBBTreeNode_sphereObj = gluNewQuadric();
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85  {
86    delete this->nodeLeft;
87    this->nodeLeft = NULL;
88  }
89  if( this->nodeRight)
90  {
91    delete this->nodeRight;
92    this->nodeRight = NULL;
93  }
94  if( this->bvElement)
95    delete this->bvElement;
96  this->bvElement = NULL;
97
98  if (this->tmpVert1 != NULL)
99    delete this->tmpVert1;
100  if (this->tmpVert2 != NULL)
101    delete this->tmpVert2;
102}
103
104
105/**
106 *  creates a new BVTree or BVTree partition
107 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
108 * @param modInfo: model informations from the abstrac model
109 *
110 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
111 * on the triangle informations (triangle soup not polygon soup)
112 */
113void OBBTreeNode::spawnBVTree(const int depth, const modelInfo& modelInf, 
114                              const int* triangleIndexes, unsigned int length)
115{
116  sVec3D* verticesList;
117
118  PRINT(3)("\n");
119  this->treeIndex = this->obbTree->getID();
120  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
121  this->depth = depth;
122
123
124  this->bvElement = new OBB();
125 
126  this->bvElement->modelInf = &modelInf;
127  this->bvElement->triangleIndexes = triangleIndexes;
128  this->bvElement->numTriangles = length;
129 
130  PRINTF(3)("Created OBBox\n");
131  this->calculateBoxCovariance(this->bvElement, modelInf, triangleIndexes, length);
132  PRINTF(3)("Calculated attributes1\n");
133  this->calculateBoxEigenvectors(this->bvElement, modelInf, triangleIndexes, length);
134  PRINTF(3)("Calculated attributes2\n");
135  this->calculateBoxAxis(this->bvElement, modelInf, triangleIndexes, length);
136  PRINTF(3)("Calculated attributes3\n");
137
138  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
139  if( this->treeIndex == 1)
140    this->bvElement->bOrigVertices = true;
141
142  if( likely( this->depth > 0))
143  {
144    this->forkBox(this->bvElement);
145
146
147//     if(this->tmpLen1 > 2)
148//     {
149//       OBBTreeNode* node1 = new OBBTreeNode();
150//       this->nodeLeft = node1;
151//       this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
152//     }
153//     else
154//     {
155//       PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
156//     }
157//
158//     if( this->tmpLen2 > 2)
159//     {
160//       OBBTreeNode* node2 = new OBBTreeNode();
161//       this->nodeRight = node2;
162//       this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
163//     }
164//     else
165//     {
166//       PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
167//     }
168
169  }
170}
171
172
173/**
174 *  creates a new BVTree or BVTree partition
175 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
176 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
177 *
178 * this function creates an Bounding Volume tree from a vertices soup (no triangle data)
179 */
180void OBBTreeNode::spawnBVTree(const int depth, const sVec3D *verticesList, unsigned int length)
181{
182  PRINT(3)("\n");
183  this->treeIndex = this->obbTree->getID();
184  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
185  this->depth = depth;
186
187
188  this->bvElement = new OBB();
189  this->bvElement->vertices = verticesList;
190  this->bvElement->numOfVertices = length;
191  PRINTF(3)("Created OBBox\n");
192  this->calculateBoxCovariance(this->bvElement, verticesList, length);
193  PRINTF(3)("Calculated attributes1\n");
194  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
195  PRINTF(3)("Calculated attributes2\n");
196  this->calculateBoxAxis(this->bvElement, verticesList, length);
197  PRINTF(3)("Calculated attributes3\n");
198
199  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
200  if( this->treeIndex == 1)
201    this->bvElement->bOrigVertices = true;
202
203  if( likely( this->depth > 0))
204  {
205    this->forkBox(this->bvElement);
206
207
208    if(this->tmpLen1 > 2)
209    {
210      OBBTreeNode* node1 = new OBBTreeNode();
211      this->nodeLeft = node1;
212      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
213    }
214    else
215    {
216      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
217    }
218
219    if( this->tmpLen2 > 2)
220    {
221      OBBTreeNode* node2 = new OBBTreeNode();
222      this->nodeRight = node2;
223      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
224    }
225    else
226    {
227      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
228    }
229  }
230}
231
232
233void OBBTreeNode::calculateBoxCovariance(OBB* box, const modelInfo& modInfo, const int* triangleIndexes, unsigned int length)
234{}
235
236
237void OBBTreeNode::calculateBoxCovariance(OBB* box, const sVec3D* verticesList, unsigned int length)
238{
239  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
240  float     face = 0.0f;                             //!< surface area of the entire convex hull
241  Vector    centroid[length];                        //!< centroid of the i'th convex hull
242  Vector    center;                                  //!< the center of the entire hull
243  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
244  Vector    t1, t2;                                  //!< temporary values
245  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
246  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
247
248  this->numOfVertices = length;
249  this->vertices = verticesList;
250
251
252  if( likely(mode == 0))
253  {
254    /* fist compute all the convex hull face/facelets and centroids */
255    for( int i = 0; i+3 < length ; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
256    {
257      p = verticesList[i];
258      q = verticesList[i + 1];
259      r = verticesList[i + 2];
260
261      t1 = p - q; t2 = p - r;
262
263      /* finding the facelet surface via cross-product */
264      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
265      /* update the entire convex hull surface */
266      face += facelet[i];
267
268      /* calculate the cetroid of the hull triangles */
269      centroid[i] = (p + q + r) * 1/3;
270      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
271      center += centroid[i] * facelet[i];
272    }
273    /* take the average of the centroid sum */
274    center /= face;
275    PRINTF(3)("-- Calculated Center\n");
276
277
278    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
279    for( int j = 0; j < 3; ++j)
280    {
281      for( int k = 0; k < 3; ++k)
282      {
283        for( int i = 0; i + 3 < length; i+=3)
284        {
285          p = verticesList[i];
286          q = verticesList[i + 1];
287          r = verticesList[i + 2];
288
289          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
290              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
291        }
292      }
293    }
294    PRINTF(3)("-- Calculated Covariance\n");
295  }
296  else if( mode == 1)
297  {
298    for( int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
299    {
300      p = verticesList[i];
301      q = verticesList[i + 1];
302      r = verticesList[i + 2];
303
304      centroid[i] = (p + q + r) / 3.0f;
305      center += centroid[i];
306    }
307    center /= length;
308
309    for( int j = 0; j < 3; ++j)
310    {
311      for( int k = 0; k < 3; ++k)
312      {
313        for( int i = 0; i + 3 < length; i+=3)
314        {
315          p = verticesList[i];
316          q = verticesList[i +1];
317          r = verticesList[i + 2];
318
319          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
320        }
321        covariance[j][k] /= (3.0f * length);
322      }
323    }
324    PRINTF(3)("-- Calculated Covariance\n");
325  }
326  else if( mode == 2)
327  {
328    /* fist compute all the convex hull face/facelets and centroids */
329    for(int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
330    {
331      p = verticesList[i];
332      q = verticesList[i + 1];
333      r = verticesList[i + 2];
334
335      t1 = p - q; t2 = p - r;
336
337      /* finding the facelet surface via cross-product */
338      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
339      /* update the entire convex hull surface */
340      face += facelet[i];
341
342      /* calculate the cetroid of the hull triangles */
343      centroid[i] = (p + q + r) * 1/3;
344      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
345      center += centroid[i] * facelet[i];
346    }
347    /* take the average of the centroid sum */
348    center /= face;
349    PRINTF(3)("-- Calculated Center\n");
350
351    for( int j = 0; j < 3; ++j)
352    {
353      for( int k = 0; k < 3; ++k)
354      {
355        for( int i = 0; i + 3 < length; i+=3)
356        {
357          p = verticesList[i];
358          q = verticesList[i +1];
359          r = verticesList[i + 2];
360
361          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
362        }
363        covariance[j][k] /= (3.0f * length);
364      }
365    }
366    PRINTF(3)("-- Calculated Covariance\n");
367  }
368  else
369  {
370    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
371    {
372      center += verticesList[i];
373    }
374    center /= length;
375
376    for( int j = 0; j < 3; ++j)
377    {
378      for( int k = 0; k < 3; ++k)
379      {
380        for( int i = 0; i + 3 < length; i+=3)
381        {
382          p = verticesList[i];
383          q = verticesList[i +1];
384          r = verticesList[i + 2];
385
386          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
387        }
388        covariance[j][k] /= (3.0f * length);
389      }
390    }
391    PRINTF(3)("-- Calculated Covariance\n");
392  }
393
394  PRINTF(3)("\nVertex Data:\n");
395  for(int i = 0; i < length; i++)
396  {
397    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
398  }
399
400
401  PRINTF(3)("\nCovariance Matrix:\n");
402  for(int j = 0; j < 3; ++j)
403  {
404    PRINT(3)(" |");
405    for(int k = 0; k < 3; ++k)
406    {
407      PRINT(3)(" \b%f ", covariance[j][k]);
408    }
409    PRINT(3)(" |\n");
410  }
411
412  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
413
414
415  for(int i = 0; i < 3; ++i)
416  {
417    box->covarianceMatrix[i][0] = covariance[i][0];
418    box->covarianceMatrix[i][1] = covariance[i][1];
419    box->covarianceMatrix[i][2] = covariance[i][2];
420  }
421  *box->center = center;
422  PRINTF(3)("-- Written Result to obb\n");
423}
424
425
426void OBBTreeNode::calculateBoxEigenvectors(OBB* box, const modelInfo& modInfo, 
427                                           const int* triangleIndexes, unsigned int length)
428{}
429
430void OBBTreeNode::calculateBoxEigenvectors(OBB* box, const sVec3D* verticesList, unsigned int length)
431{
432
433  /* now getting spanning vectors of the sub-space:
434  the eigenvectors of a symmertric matrix, such as the
435  covarience matrix are mutually orthogonal.
436  after normalizing them, they can be used as a the basis
437  vectors
438  */
439  Vector axis[3];                //!< the references to the obb axis
440
441  Matrix covMat(  box->covarianceMatrix  );
442  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
443
444
445  /* new jacobi tests */
446//  JacobI(OBBTreeNode::coMat, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
447//  PRINTF(3)("-- Done Jacobi Decomposition\n");
448
449
450//   PRINTF(0)("Jacobi\n");
451//   for(int j = 0; j < 3; ++j)
452//   {
453//     printf(" |");
454//     for(int k = 0; k < 3; ++k)
455//     {
456//       printf(" \t%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
457//     }
458//     printf(" |\n");
459//   }
460
461/*  axis[0].x = OBBTreeNode::eigvMat[0][0]; axis[0].y = OBBTreeNode::eigvMat[1][0]; axis[0].z = OBBTreeNode::eigvMat[2][0];
462  axis[1].x = OBBTreeNode::eigvMat[0][1]; axis[1].y = OBBTreeNode::eigvMat[1][1]; axis[1].z = OBBTreeNode::eigvMat[2][1];
463  axis[2].x = OBBTreeNode::eigvMat[0][2]; axis[2].y = OBBTreeNode::eigvMat[1][2]; axis[2].z = OBBTreeNode::eigvMat[2][2];
464  axis[0].normalize();
465  axis[1].normalize();
466  axis[2].normalize();*/
467  box->axis[0] = axis[0];
468  box->axis[1] = axis[1];
469  box->axis[2] = axis[2];
470
471//   PRINTF(0)("-- Got Axis\n");
472//
473//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
474//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
475//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
476}
477
478
479void OBBTreeNode::calculateBoxAxis(OBB* box, const modelInfo& modInfo, const int* triangleIndexes, unsigned int length)
480{
481  this->calculateBoxAxis(box, (const sVec3D*)modInfo.pVertices, modInfo.numVertices);
482}
483
484
485
486void OBBTreeNode::calculateBoxAxis(OBB* box, const sVec3D* verticesList, unsigned int length)
487{
488
489  /* now get the axis length */
490  Line                ax[3];                                 //!< the axis
491  float               halfLength[3];                         //!< half length of the axis
492  float               tmpLength;                             //!< tmp save point for the length
493  Plane               p0(box->axis[0], *box->center);        //!< the axis planes
494  Plane               p1(box->axis[1], *box->center);
495  Plane               p2(box->axis[2], *box->center);
496  float               maxLength[3];
497  float               minLength[3];
498
499
500  /* get a bad bounding box */
501  halfLength[0] = -1.0f;
502  for(int j = 0; j < length; ++j)
503    {
504      tmpLength = fabs(p0.distancePoint(vertices[j]));
505      if( tmpLength > halfLength[0])
506        halfLength[0] = tmpLength;
507    }
508
509  halfLength[1] = -1.0f;
510  for(int j = 0; j < length; ++j)
511    {
512      tmpLength = fabs(p1.distancePoint(vertices[j]));
513      if( tmpLength > halfLength[1])
514        halfLength[1] = tmpLength;
515    }
516
517  halfLength[2] = -1.0f;
518  for(int j = 0; j < length; ++j)
519    {
520      tmpLength = fabs(p2.distancePoint(vertices[j]));
521      if( tmpLength > halfLength[2])
522        halfLength[2] = tmpLength;
523    }
524
525
526
527  /* get the maximal dimensions of the body in all directions */
528    maxLength[0] = p0.distancePoint(vertices[0]);
529    minLength[0] = p0.distancePoint(vertices[0]);
530   for(int j = 0; j < length; ++j)
531   {
532     tmpLength = p0.distancePoint(vertices[j]);
533     if( tmpLength > maxLength[0])
534       maxLength[0] = tmpLength;
535     else if( tmpLength < minLength[0])
536       minLength[0] = tmpLength;
537   }
538
539   maxLength[1] = p1.distancePoint(vertices[0]);
540   minLength[1] = p1.distancePoint(vertices[0]);
541   for(int j = 0; j < length; ++j)
542   {
543     tmpLength = p1.distancePoint(vertices[j]);
544     if( tmpLength > maxLength[1])
545       maxLength[1] = tmpLength;
546     else if( tmpLength < minLength[1])
547       minLength[1] = tmpLength;
548   }
549
550   maxLength[2] = p2.distancePoint(vertices[0]);
551   minLength[2] = p2.distancePoint(vertices[0]);
552   for(int j = 0; j < length; ++j)
553   {
554     tmpLength = p2.distancePoint(vertices[j]);
555     if( tmpLength > maxLength[2])
556       maxLength[2] = tmpLength;
557     else if( tmpLength < minLength[2])
558       minLength[2] = tmpLength;
559   }
560
561
562   /* calculate the real centre of the body by using the axis length */
563   float centerOffset[3];
564   float newHalfLength[3];
565   for(int i = 0; i < 3; ++i)
566     {
567       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
568       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
569       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
570       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
571       halfLength[i] = newHalfLength[i];
572     }
573
574
575
576  box->halfLength[0] = halfLength[0];
577  box->halfLength[1] = halfLength[1];
578  box->halfLength[2] = halfLength[2];
579  PRINTF(3)("-- Written Axis to obb\n");
580  PRINTF(3)("-- Finished Calculating Attributes\n");
581}
582
583
584
585/**
586  \brief this separates an ob-box in the middle
587* @param box: the box to separate
588
589  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
590 */
591void OBBTreeNode::forkBox(OBB* box)
592{
593  /* get the longest axis of the box */
594  float               aLength = -1.0f;                     //!< the length of the longest axis
595  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
596
597  for(int i = 0; i < 3; ++i)
598  {
599    if( aLength < box->halfLength[i])
600    {
601      aLength = box->halfLength[i];
602      axisIndex = i;
603    }
604  }
605
606   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
607
608
609  /* get the closest vertex near the center */
610  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
611  float               tmpDist;                             //!< temporary distance
612  int                 vertexIndex;
613  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
614
615  vertexIndex = 0;
616  for(int i = 0; i < box->numOfVertices; ++i)
617  {
618    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
619    if( tmpDist < dist)
620    {
621      dist = tmpDist;
622      vertexIndex = i;
623    }
624  }
625
626  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
627
628
629  /* now definin the separation plane through this specified nearest point and partition
630  the points depending on which side they are located
631  */
632  tList<const sVec3D>      partition1;                           //!< the vertex partition 1
633  tList<const sVec3D>      partition2;                           //!< the vertex partition 2
634
635
636  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
637  this->separationPlane = Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
638  this->sepPlaneCenter = &box->vertices[vertexIndex];
639  this->longestAxisIndex = axisIndex;
640
641  for(int i = 0; i < box->numOfVertices; ++i)
642  {
643    if( i == vertexIndex) continue;
644    tmpDist = this->separationPlane.distancePoint(box->vertices[i]);
645    if( tmpDist > 0.0)
646      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
647    else
648      partition2.add(&box->vertices[i]); /* negatice numbers */
649  }
650  partition1.add(&box->vertices[vertexIndex]);
651  partition2.add(&box->vertices[vertexIndex]);
652
653  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
654
655
656  /* now comes the separation into two different sVec3D arrays */
657  tIterator<const sVec3D>* iterator;                       //!< the iterator to go through the lists
658  const sVec3D*      element;                              //!< the elements
659  int                index;                                //!< index storage place
660  sVec3D*            vertList1;                            //!< the vertex list 1
661  sVec3D*            vertList2;                            //!< the vertex list 2
662
663  vertList1 = new sVec3D[partition1.getSize()];
664  vertList2 = new sVec3D[partition2.getSize()];
665
666  iterator = partition1.getIterator();
667  element = iterator->firstElement();
668  index = 0;
669  while( element != NULL)
670  {
671    vertList1[index][0] = element[0][0];
672    vertList1[index][1] = element[0][1];
673    vertList1[index][2] = element[0][2];
674    ++index;
675    element = iterator->nextElement();
676  }
677  delete iterator;
678//   PRINTF(0)("\npartition 1:\n");
679//   for(int i = 0; i < partition1.getSize(); ++i)
680//   {
681//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
682//   }
683
684  iterator = partition2.getIterator();
685  element = iterator->firstElement();
686  index = 0;
687  while( element != NULL)
688  {
689    vertList2[index][0] = element[0][0];
690    vertList2[index][1] = element[0][1];
691    vertList2[index][2] = element[0][2];
692    ++index;
693    element = iterator->nextElement();
694  }
695
696  if (this->tmpVert1 != NULL)
697    delete[] this->tmpVert1;
698  this->tmpVert1 = vertList1;
699  if (this->tmpVert2 != NULL)
700    delete[] this->tmpVert2;
701  this->tmpVert2 = vertList2;
702  this->tmpLen1 = partition1.getSize();
703  this->tmpLen2 = partition2.getSize();
704
705  delete iterator;
706
707//   PRINTF(0)("\npartition 2:\n");
708//   for(int i = 0; i < partition2.getSize(); ++i)
709//   {
710//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
711//   }
712}
713
714
715
716
717void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
718{
719  PRINTF(3)("collideWith\n");
720  /* if the obb overlap, make subtests: check which node is realy overlaping  */
721  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
722  if( unlikely(treeNode == NULL)) return;
723
724  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
725  {
726    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
727
728    /* check if left node overlaps */
729    if( likely( this->nodeLeft != NULL))
730    {
731      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
732      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
733      {
734        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
735        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
736      }
737    }
738    /* check if right node overlaps */
739    if( likely( this->nodeRight != NULL))
740    {
741      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
742      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
743      {
744       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
745       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
746      }
747    }
748
749    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
750    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
751    {
752      nodeA->collidesWith(nodeB, *((OBBTreeNode*)treeNode)->bvElement->center);
753
754      nodeB->collidesWith(nodeA, *this->bvElement->center);
755    }
756
757  }
758}
759
760
761
762bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
763{
764  /* first check all axis */
765  Vector t;
766  float rA = 0.0f;
767  float rB = 0.0f;
768  Vector l;
769  Vector rotAxisA[3];
770  Vector rotAxisB[3];
771
772  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
773  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
774  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
775
776  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
777  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
778  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
779
780  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
781
782//   printf("\n");
783//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
784//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
785//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
786//
787//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
788//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
789//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
790
791
792  /* All 3 axis of the object A */
793  for( int j = 0; j < 3; ++j)
794  {
795    rA = 0.0f;
796    rB = 0.0f;
797    l = rotAxisA[j];
798
799    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
800    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
801    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
802
803    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
804    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
805    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
806
807    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
808
809    if( (rA + rB) < fabs(t.dot(l)))
810    {
811      PRINT(3)("no Collision\n");
812      return false;
813    }
814  }
815
816  /* All 3 axis of the object B */
817  for( int j = 0; j < 3; ++j)
818  {
819    rA = 0.0f;
820    rB = 0.0f;
821    l = rotAxisB[j];
822
823    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
824    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
825    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
826
827    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
828    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
829    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
830
831    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
832
833    if( (rA + rB) < fabs(t.dot(l)))
834    {
835      PRINT(3)("no Collision\n");
836      return false;
837    }
838  }
839
840
841  /* Now check for all face cross products */
842
843  for( int j = 0; j < 3; ++j)
844  {
845    for(int k = 0; k < 3; ++k )
846    {
847      rA = 0.0f;
848      rB = 0.0f;
849      l = rotAxisA[j].cross(rotAxisB[k]);
850
851      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
852      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
853      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
854
855      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
856      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
857      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
858
859      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
860
861      if( (rA + rB) < fabs(t.dot(l)))
862      {
863        PRINT(3)("keine Kollision\n");
864        return false;
865      }
866    }
867  }
868
869
870  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
871  boxB->bCollided = true;
872  PRINT(3)("Kollision!\n");
873  return true;
874}
875
876
877
878
879
880void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
881{
882
883  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
884  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
885  {
886    if( !(drawMode & DRAW_SINGLE && depth != 0))
887    {
888      if( drawMode & DRAW_POINTS)
889        glBegin(GL_POINTS);
890      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
891      {
892        if( drawMode & DRAW_POINTS)
893          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
894        else
895        {
896          glPushMatrix();
897          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
898          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
899          glPopMatrix();
900        }
901      }
902      if( drawMode & DRAW_POINTS)
903        glEnd();
904    }
905  }
906
907  if (top)
908  {
909    glPushAttrib(GL_ENABLE_BIT);
910    glDisable(GL_LIGHTING);
911    glDisable(GL_TEXTURE_2D);
912  }
913  glColor3f(color.x, color.y, color.z);
914
915
916  /* draw world axes */
917  if( drawMode & DRAW_BV_AXIS)
918  {
919    glBegin(GL_LINES);
920    glColor3f(1.0, 0.0, 0.0);
921    glVertex3f(0.0, 0.0, 0.0);
922    glVertex3f(3.0, 0.0, 0.0);
923
924    glColor3f(0.0, 1.0, 0.0);
925    glVertex3f(0.0, 0.0, 0.0);
926    glVertex3f(0.0, 3.0, 0.0);
927
928    glColor3f(0.0, 0.0, 1.0);
929    glVertex3f(0.0, 0.0, 0.0);
930    glVertex3f(0.0, 0.0, 3.0);
931    glEnd();
932  }
933
934
935  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
936  {
937    if( !(drawMode & DRAW_SINGLE && depth != 0))
938    {
939      /* draw the obb axes */
940      glBegin(GL_LINES);
941      glColor3f(0.0, 0.4, 0.3);
942      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
943      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
944                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
945                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
946
947      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
948      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
949                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
950                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
951
952      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
953      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
954                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
955                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
956      glEnd();
957    }
958  }
959
960
961  /* DRAW POLYGONS */
962  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
963  {
964    if (top)
965    {
966      glEnable(GL_BLEND);
967      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
968    }
969
970    if(this->nodeLeft == NULL || this->nodeRight == NULL)
971      depth = 0;
972    if( !(drawMode & DRAW_SINGLE && depth != 0))
973    {
974    Vector cen = *this->bvElement->center;
975    Vector* axis = this->bvElement->axis;
976    float* len = this->bvElement->halfLength;
977
978    if( this->bvElement->bCollided)
979    {
980      glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
981    }
982    else if( drawMode & DRAW_BV_BLENDED)
983    {
984      glColor4f(color.x, color.y, color.z, .5);
985    }
986
987    /* draw bounding box */
988    if( drawMode & DRAW_BV_BLENDED)
989      glBegin(GL_QUADS);
990    else
991      glBegin(GL_LINE_LOOP);
992    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
993               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
994               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
995    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
996               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
997               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
998    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
999               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1000               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1001    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1002               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1003               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1004    glEnd();
1005
1006    if( drawMode & DRAW_BV_BLENDED)
1007      glBegin(GL_QUADS);
1008    else
1009      glBegin(GL_LINE_LOOP);
1010    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1011               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1012               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1013    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1014               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1015               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1016    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1017               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1018               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1019    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1020               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1021               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1022    glEnd();
1023
1024    if( drawMode & DRAW_BV_BLENDED)
1025      glBegin(GL_QUADS);
1026    else
1027      glBegin(GL_LINE_LOOP);
1028    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1029               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1030               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1031    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1032               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1033               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1034    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1035               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1036               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1037    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1038               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1039               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1040    glEnd();
1041
1042    if( drawMode & DRAW_BV_BLENDED)
1043      glBegin(GL_QUADS);
1044    else
1045      glBegin(GL_LINE_LOOP);
1046    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1047               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1048               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1049    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1050               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1051               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1052    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1053               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1054               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1055    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1056               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1057               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1058    glEnd();
1059
1060
1061    if( drawMode & DRAW_BV_BLENDED)
1062    {
1063      glBegin(GL_QUADS);
1064      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1065                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1066                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1067      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1068                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1069                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1070      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1071                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1072                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1073      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1074                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1075                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1076      glEnd();
1077
1078      glBegin(GL_QUADS);
1079      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1080                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1081                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1082      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1083                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1084                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1085      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1086                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1087                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1088      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1089                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1090                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1091      glEnd();
1092    }
1093
1094
1095    if( drawMode & DRAW_BV_BLENDED)
1096      glColor3f(color.x, color.y, color.z);
1097    }
1098
1099  }
1100
1101  /* DRAW SEPARATING PLANE */
1102  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
1103  {
1104    if( !(drawMode & DRAW_SINGLE && depth != 0))
1105    {
1106      if( drawMode & DRAW_BV_BLENDED)
1107        glColor4f(color.x, color.y, color.z, .6);
1108
1109    /* now draw the separation plane */
1110    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1111    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
1112    Vector c = *this->bvElement->center;
1113    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1114    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1115    glBegin(GL_QUADS);
1116    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1117    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1118    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1119    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1120    glEnd();
1121
1122    if( drawMode & DRAW_BV_BLENDED)
1123      glColor4f(color.x, color.y, color.z, 1.0);
1124
1125    }
1126  }
1127
1128
1129
1130  if (depth > 0)
1131  {
1132    if( this->nodeLeft != NULL)
1133      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
1134    if( this->nodeRight != NULL)
1135      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
1136  }
1137  this->bvElement->bCollided = false;
1138
1139  if (top)
1140    glPopAttrib();
1141}
1142
1143
1144
1145void OBBTreeNode::debug() const
1146{
1147
1148  /*
1149  for(int i = 0; i < length; i++)
1150  {
1151  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
1152}
1153  */
1154}
Note: See TracBrowser for help on using the repository browser.