Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/collision_detection/src/lib/collision_detection/obb_tree_node.cc @ 5699

Last change on this file since 5699 was 5699, checked in by bensch, 18 years ago

orxonox/branches/collision_detection: switched from pointers to Values, to save debug-time deleting all the nice little new Pointer-arrays

@patrick: hope you approve

File size: 38.7 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "matrix.h"
23#include "abstract_model.h"
24#include "world_entity.h"
25
26#include "color.h"
27
28#include "debug.h"
29#include "glincl.h"
30
31
32
33using namespace std;
34
35OBBTree*  OBBTreeNode::obbTree = NULL;
36
37float**  OBBTreeNode::coMat = NULL;
38float**  OBBTreeNode::eigvMat = NULL;
39float*   OBBTreeNode::eigvlMat = NULL;
40int*     OBBTreeNode::rotCount = NULL;
41GLUquadricObj* OBBTreeNode_sphereObj = NULL;
42
43/**
44 *  standard constructor
45 */
46OBBTreeNode::OBBTreeNode ()
47{
48  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
49  this->nodeLeft = NULL;
50  this->nodeRight = NULL;
51  this->bvElement = NULL;
52  this->tmpVert1 = NULL;
53  this->tmpVert2 = NULL;
54
55  if( OBBTreeNode::coMat == NULL)
56  {
57    OBBTreeNode::coMat = new float*[4];
58    for(int i = 0; i < 4; i++)
59      OBBTreeNode::coMat[i] = new float[4];
60  }
61  if( OBBTreeNode::eigvMat == NULL)
62  {
63    OBBTreeNode::eigvMat = new float*[4];
64    for( int i = 0; i < 4; i++)
65      OBBTreeNode::eigvMat[i] = new float[4];
66  }
67  if( OBBTreeNode::eigvlMat == NULL)
68  {
69    OBBTreeNode::eigvlMat = new float[4];
70  }
71  if( OBBTreeNode::rotCount == NULL)
72    OBBTreeNode::rotCount = new int;
73
74  if( OBBTreeNode_sphereObj == NULL)
75    OBBTreeNode_sphereObj = gluNewQuadric();
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85  {
86    delete this->nodeLeft;
87    this->nodeLeft = NULL;
88  }
89  if( this->nodeRight)
90  {
91    delete this->nodeRight;
92    this->nodeRight = NULL;
93  }
94  if( this->bvElement)
95    delete this->bvElement;
96  this->bvElement = NULL;
97
98  if (this->tmpVert1 != NULL)
99    delete this->tmpVert1;
100  if (this->tmpVert2 != NULL)
101    delete this->tmpVert2;
102}
103
104
105/**
106 *  creates a new BVTree or BVTree partition
107 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
108 * @param modInfo: model informations from the abstrac model
109 *
110 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
111 * on the triangle informations (triangle soup not polygon soup)
112 */
113void OBBTreeNode::spawnBVTree(const int depth, const modelInfo& modInfo)
114{
115  int length = 0;
116  sVec3D* verticesList;
117
118  PRINT(3)("\n");
119  this->treeIndex = this->obbTree->getID();
120  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
121  this->depth = depth;
122
123
124  this->bvElement = new OBB();
125  this->bvElement->vertices = verticesList;
126  this->bvElement->numOfVertices = length;
127  PRINTF(3)("Created OBBox\n");
128  this->calculateBoxCovariance(this->bvElement, modInfo);
129  PRINTF(3)("Calculated attributes1\n");
130  this->calculateBoxEigenvectors(this->bvElement, modInfo);
131  PRINTF(3)("Calculated attributes2\n");
132  this->calculateBoxAxis(this->bvElement,modInfo);
133  PRINTF(3)("Calculated attributes3\n");
134
135  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
136  if( this->treeIndex == 1)
137    this->bvElement->bOrigVertices = true;
138
139  if( likely( this->depth > 0))
140  {
141    this->forkBox(this->bvElement);
142
143
144//     if(this->tmpLen1 > 2)
145//     {
146//       OBBTreeNode* node1 = new OBBTreeNode();
147//       this->nodeLeft = node1;
148//       this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
149//     }
150//     else
151//     {
152//       PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
153//     }
154//
155//     if( this->tmpLen2 > 2)
156//     {
157//       OBBTreeNode* node2 = new OBBTreeNode();
158//       this->nodeRight = node2;
159//       this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
160//     }
161//     else
162//     {
163//       PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
164//     }
165
166  }
167}
168
169
170/**
171 *  creates a new BVTree or BVTree partition
172 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
173 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
174 *
175 * this function creates an Bounding Volume tree from a vertices soup (no triangle data)
176 */
177void OBBTreeNode::spawnBVTree(const int depth, const sVec3D *verticesList, unsigned int length)
178{
179  PRINT(3)("\n");
180  this->treeIndex = this->obbTree->getID();
181  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
182  this->depth = depth;
183
184
185  this->bvElement = new OBB();
186  this->bvElement->vertices = verticesList;
187  this->bvElement->numOfVertices = length;
188  PRINTF(3)("Created OBBox\n");
189  this->calculateBoxCovariance(this->bvElement, verticesList, length);
190  PRINTF(3)("Calculated attributes1\n");
191  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
192  PRINTF(3)("Calculated attributes2\n");
193  this->calculateBoxAxis(this->bvElement, verticesList, length);
194  PRINTF(3)("Calculated attributes3\n");
195
196  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
197  if( this->treeIndex == 1)
198    this->bvElement->bOrigVertices = true;
199
200  if( likely( this->depth > 0))
201  {
202    this->forkBox(this->bvElement);
203
204
205    if(this->tmpLen1 > 2)
206    {
207      OBBTreeNode* node1 = new OBBTreeNode();
208      this->nodeLeft = node1;
209      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
210    }
211    else
212    {
213      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
214    }
215
216    if( this->tmpLen2 > 2)
217    {
218      OBBTreeNode* node2 = new OBBTreeNode();
219      this->nodeRight = node2;
220      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
221    }
222    else
223    {
224      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
225    }
226  }
227}
228
229
230void OBBTreeNode::calculateBoxCovariance(OBB* box, const modelInfo& modInfo)
231{}
232
233
234void OBBTreeNode::calculateBoxCovariance(OBB* box, const sVec3D* verticesList, unsigned int length)
235{
236  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
237  float     face = 0.0f;                             //!< surface area of the entire convex hull
238  Vector    centroid[length];                        //!< centroid of the i'th convex hull
239  Vector    center;                                  //!< the center of the entire hull
240  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
241  Vector    t1, t2;                                  //!< temporary values
242  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
243  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
244
245  this->numOfVertices = length;
246  this->vertices = verticesList;
247
248
249  if( likely(mode == 0))
250  {
251    /* fist compute all the convex hull face/facelets and centroids */
252    for( int i = 0; i+3 < length ; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
253    {
254      p = verticesList[i];
255      q = verticesList[i + 1];
256      r = verticesList[i + 2];
257
258      t1 = p - q; t2 = p - r;
259
260      /* finding the facelet surface via cross-product */
261      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
262      /* update the entire convex hull surface */
263      face += facelet[i];
264
265      /* calculate the cetroid of the hull triangles */
266      centroid[i] = (p + q + r) * 1/3;
267      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
268      center += centroid[i] * facelet[i];
269    }
270    /* take the average of the centroid sum */
271    center /= face;
272    PRINTF(3)("-- Calculated Center\n");
273
274
275    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
276    for( int j = 0; j < 3; ++j)
277    {
278      for( int k = 0; k < 3; ++k)
279      {
280        for( int i = 0; i + 3 < length; i+=3)
281        {
282          p = verticesList[i];
283          q = verticesList[i + 1];
284          r = verticesList[i + 2];
285
286          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
287              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
288        }
289      }
290    }
291    PRINTF(3)("-- Calculated Covariance\n");
292  }
293  else if( mode == 1)
294  {
295    for( int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
296    {
297      p = verticesList[i];
298      q = verticesList[i + 1];
299      r = verticesList[i + 2];
300
301      centroid[i] = (p + q + r) / 3.0f;
302      center += centroid[i];
303    }
304    center /= length;
305
306    for( int j = 0; j < 3; ++j)
307    {
308      for( int k = 0; k < 3; ++k)
309      {
310        for( int i = 0; i + 3 < length; i+=3)
311        {
312          p = verticesList[i];
313          q = verticesList[i +1];
314          r = verticesList[i + 2];
315
316          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
317        }
318        covariance[j][k] /= (3.0f * length);
319      }
320    }
321    PRINTF(3)("-- Calculated Covariance\n");
322  }
323  else if( mode == 2)
324  {
325    /* fist compute all the convex hull face/facelets and centroids */
326    for(int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
327    {
328      p = verticesList[i];
329      q = verticesList[i + 1];
330      r = verticesList[i + 2];
331
332      t1 = p - q; t2 = p - r;
333
334      /* finding the facelet surface via cross-product */
335      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
336      /* update the entire convex hull surface */
337      face += facelet[i];
338
339      /* calculate the cetroid of the hull triangles */
340      centroid[i] = (p + q + r) * 1/3;
341      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
342      center += centroid[i] * facelet[i];
343    }
344    /* take the average of the centroid sum */
345    center /= face;
346    PRINTF(3)("-- Calculated Center\n");
347
348    for( int j = 0; j < 3; ++j)
349    {
350      for( int k = 0; k < 3; ++k)
351      {
352        for( int i = 0; i + 3 < length; i+=3)
353        {
354          p = verticesList[i];
355          q = verticesList[i +1];
356          r = verticesList[i + 2];
357
358          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
359        }
360        covariance[j][k] /= (3.0f * length);
361      }
362    }
363    PRINTF(3)("-- Calculated Covariance\n");
364  }
365  else
366  {
367    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
368    {
369      center += verticesList[i];
370    }
371    center /= length;
372
373    for( int j = 0; j < 3; ++j)
374    {
375      for( int k = 0; k < 3; ++k)
376      {
377        for( int i = 0; i + 3 < length; i+=3)
378        {
379          p = verticesList[i];
380          q = verticesList[i +1];
381          r = verticesList[i + 2];
382
383          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
384        }
385        covariance[j][k] /= (3.0f * length);
386      }
387    }
388    PRINTF(3)("-- Calculated Covariance\n");
389  }
390
391  PRINTF(3)("\nVertex Data:\n");
392  for(int i = 0; i < length; i++)
393  {
394    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
395  }
396
397
398  PRINTF(3)("\nCovariance Matrix:\n");
399  for(int j = 0; j < 3; ++j)
400  {
401    PRINT(3)(" |");
402    for(int k = 0; k < 3; ++k)
403    {
404      PRINT(3)(" \b%f ", covariance[j][k]);
405    }
406    PRINT(3)(" |\n");
407  }
408
409  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
410
411
412  for(int i = 0; i < 3; ++i)
413  {
414    box->covarianceMatrix[i][0] = covariance[i][0];
415    box->covarianceMatrix[i][1] = covariance[i][1];
416    box->covarianceMatrix[i][2] = covariance[i][2];
417  }
418  *box->center = center;
419  PRINTF(3)("-- Written Result to obb\n");
420}
421
422
423void OBBTreeNode::calculateBoxEigenvectors(OBB* box, const modelInfo& modInfo)
424{}
425
426void OBBTreeNode::calculateBoxEigenvectors(OBB* box, const sVec3D* verticesList, unsigned int length)
427{
428
429  /* now getting spanning vectors of the sub-space:
430  the eigenvectors of a symmertric matrix, such as the
431  covarience matrix are mutually orthogonal.
432  after normalizing them, they can be used as a the basis
433  vectors
434  */
435  Vector axis[3];                //!< the references to the obb axis
436
437  Matrix covMat(  box->covarianceMatrix  );
438  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
439
440
441  /* new jacobi tests */
442//  JacobI(OBBTreeNode::coMat, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
443//  PRINTF(3)("-- Done Jacobi Decomposition\n");
444
445
446//   PRINTF(0)("Jacobi\n");
447//   for(int j = 0; j < 3; ++j)
448//   {
449//     printf(" |");
450//     for(int k = 0; k < 3; ++k)
451//     {
452//       printf(" \t%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
453//     }
454//     printf(" |\n");
455//   }
456
457/*  axis[0].x = OBBTreeNode::eigvMat[0][0]; axis[0].y = OBBTreeNode::eigvMat[1][0]; axis[0].z = OBBTreeNode::eigvMat[2][0];
458  axis[1].x = OBBTreeNode::eigvMat[0][1]; axis[1].y = OBBTreeNode::eigvMat[1][1]; axis[1].z = OBBTreeNode::eigvMat[2][1];
459  axis[2].x = OBBTreeNode::eigvMat[0][2]; axis[2].y = OBBTreeNode::eigvMat[1][2]; axis[2].z = OBBTreeNode::eigvMat[2][2];
460  axis[0].normalize();
461  axis[1].normalize();
462  axis[2].normalize();*/
463  box->axis[0] = axis[0];
464  box->axis[1] = axis[1];
465  box->axis[2] = axis[2];
466
467//   PRINTF(0)("-- Got Axis\n");
468//
469//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
470//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
471//   PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
472}
473
474
475void OBBTreeNode::calculateBoxAxis(OBB* box, const modelInfo& modInfo)
476{
477  this->calculateBoxAxis(box, (const sVec3D*)modInfo.pVertices, modInfo.numVertices);
478}
479
480
481
482void OBBTreeNode::calculateBoxAxis(OBB* box, const sVec3D* verticesList, unsigned int length)
483{
484
485  /* now get the axis length */
486  Line                ax[3];                                 //!< the axis
487  float               halfLength[3];                         //!< half length of the axis
488  float               tmpLength;                             //!< tmp save point for the length
489  Plane               p0(box->axis[0], *box->center);        //!< the axis planes
490  Plane               p1(box->axis[1], *box->center);
491  Plane               p2(box->axis[2], *box->center);
492  float               maxLength[3];
493  float               minLength[3];
494
495
496  /* get a bad bounding box */
497  halfLength[0] = -1.0f;
498  for(int j = 0; j < length; ++j)
499    {
500      tmpLength = fabs(p0.distancePoint(vertices[j]));
501      if( tmpLength > halfLength[0])
502        halfLength[0] = tmpLength;
503    }
504
505  halfLength[1] = -1.0f;
506  for(int j = 0; j < length; ++j)
507    {
508      tmpLength = fabs(p1.distancePoint(vertices[j]));
509      if( tmpLength > halfLength[1])
510        halfLength[1] = tmpLength;
511    }
512
513  halfLength[2] = -1.0f;
514  for(int j = 0; j < length; ++j)
515    {
516      tmpLength = fabs(p2.distancePoint(vertices[j]));
517      if( tmpLength > halfLength[2])
518        halfLength[2] = tmpLength;
519    }
520
521
522
523  /* get the maximal dimensions of the body in all directions */
524    maxLength[0] = p0.distancePoint(vertices[0]);
525    minLength[0] = p0.distancePoint(vertices[0]);
526   for(int j = 0; j < length; ++j)
527   {
528     tmpLength = p0.distancePoint(vertices[j]);
529     if( tmpLength > maxLength[0])
530       maxLength[0] = tmpLength;
531     else if( tmpLength < minLength[0])
532       minLength[0] = tmpLength;
533   }
534
535   maxLength[1] = p1.distancePoint(vertices[0]);
536   minLength[1] = p1.distancePoint(vertices[0]);
537   for(int j = 0; j < length; ++j)
538   {
539     tmpLength = p1.distancePoint(vertices[j]);
540     if( tmpLength > maxLength[1])
541       maxLength[1] = tmpLength;
542     else if( tmpLength < minLength[1])
543       minLength[1] = tmpLength;
544   }
545
546   maxLength[2] = p2.distancePoint(vertices[0]);
547   minLength[2] = p2.distancePoint(vertices[0]);
548   for(int j = 0; j < length; ++j)
549   {
550     tmpLength = p2.distancePoint(vertices[j]);
551     if( tmpLength > maxLength[2])
552       maxLength[2] = tmpLength;
553     else if( tmpLength < minLength[2])
554       minLength[2] = tmpLength;
555   }
556
557
558   /* calculate the real centre of the body by using the axis length */
559   float centerOffset[3];
560   float newHalfLength[3];
561   for(int i = 0; i < 3; ++i)
562     {
563       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
564       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
565       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
566       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
567       halfLength[i] = newHalfLength[i];
568     }
569
570
571
572  box->halfLength[0] = halfLength[0];
573  box->halfLength[1] = halfLength[1];
574  box->halfLength[2] = halfLength[2];
575  PRINTF(3)("-- Written Axis to obb\n");
576  PRINTF(3)("-- Finished Calculating Attributes\n");
577}
578
579
580
581/**
582  \brief this separates an ob-box in the middle
583* @param box: the box to separate
584
585  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
586 */
587void OBBTreeNode::forkBox(OBB* box)
588{
589  /* get the longest axis of the box */
590  float               aLength = -1.0f;                     //!< the length of the longest axis
591  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
592
593  for(int i = 0; i < 3; ++i)
594  {
595    if( aLength < box->halfLength[i])
596    {
597      aLength = box->halfLength[i];
598      axisIndex = i;
599    }
600  }
601
602   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
603
604
605  /* get the closest vertex near the center */
606  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
607  float               tmpDist;                             //!< temporary distance
608  int                 vertexIndex;
609  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
610
611  vertexIndex = 0;
612  for(int i = 0; i < box->numOfVertices; ++i)
613  {
614    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
615    if( tmpDist < dist)
616    {
617      dist = tmpDist;
618      vertexIndex = i;
619    }
620  }
621
622  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
623
624
625  /* now definin the separation plane through this specified nearest point and partition
626  the points depending on which side they are located
627  */
628  tList<const sVec3D>      partition1;                           //!< the vertex partition 1
629  tList<const sVec3D>      partition2;                           //!< the vertex partition 2
630
631
632  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
633  this->separationPlane = Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
634  this->sepPlaneCenter = &box->vertices[vertexIndex];
635  this->longestAxisIndex = axisIndex;
636
637  for(int i = 0; i < box->numOfVertices; ++i)
638  {
639    if( i == vertexIndex) continue;
640    tmpDist = this->separationPlane.distancePoint(box->vertices[i]);
641    if( tmpDist > 0.0)
642      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
643    else
644      partition2.add(&box->vertices[i]); /* negatice numbers */
645  }
646  partition1.add(&box->vertices[vertexIndex]);
647  partition2.add(&box->vertices[vertexIndex]);
648
649  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
650
651
652  /* now comes the separation into two different sVec3D arrays */
653  tIterator<const sVec3D>* iterator;                       //!< the iterator to go through the lists
654  const sVec3D*      element;                              //!< the elements
655  int                index;                                //!< index storage place
656  sVec3D*            vertList1;                            //!< the vertex list 1
657  sVec3D*            vertList2;                            //!< the vertex list 2
658
659  vertList1 = new sVec3D[partition1.getSize()];
660  vertList2 = new sVec3D[partition2.getSize()];
661
662  iterator = partition1.getIterator();
663  element = iterator->firstElement();
664  index = 0;
665  while( element != NULL)
666  {
667    vertList1[index][0] = element[0][0];
668    vertList1[index][1] = element[0][1];
669    vertList1[index][2] = element[0][2];
670    ++index;
671    element = iterator->nextElement();
672  }
673  delete iterator;
674//   PRINTF(0)("\npartition 1:\n");
675//   for(int i = 0; i < partition1.getSize(); ++i)
676//   {
677//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
678//   }
679
680  iterator = partition2.getIterator();
681  element = iterator->firstElement();
682  index = 0;
683  while( element != NULL)
684  {
685    vertList2[index][0] = element[0][0];
686    vertList2[index][1] = element[0][1];
687    vertList2[index][2] = element[0][2];
688    ++index;
689    element = iterator->nextElement();
690  }
691
692  if (this->tmpVert1 != NULL)
693    delete[] this->tmpVert1;
694  this->tmpVert1 = vertList1;
695  if (this->tmpVert2 != NULL)
696    delete[] this->tmpVert2;
697  this->tmpVert2 = vertList2;
698  this->tmpLen1 = partition1.getSize();
699  this->tmpLen2 = partition2.getSize();
700
701  delete iterator;
702
703//   PRINTF(0)("\npartition 2:\n");
704//   for(int i = 0; i < partition2.getSize(); ++i)
705//   {
706//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
707//   }
708}
709
710
711
712
713void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
714{
715  PRINTF(3)("collideWith\n");
716  /* if the obb overlap, make subtests: check which node is realy overlaping  */
717  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
718  if( unlikely(treeNode == NULL)) return;
719
720  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
721  {
722    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
723
724    /* check if left node overlaps */
725    if( likely( this->nodeLeft != NULL))
726    {
727      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
728      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
729      {
730        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
731        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
732      }
733    }
734    /* check if right node overlaps */
735    if( likely( this->nodeRight != NULL))
736    {
737      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
738      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
739      {
740       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
741       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
742      }
743    }
744
745    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
746    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
747    {
748      nodeA->collidesWith(nodeB, *((OBBTreeNode*)treeNode)->bvElement->center);
749
750      nodeB->collidesWith(nodeA, *this->bvElement->center);
751    }
752
753  }
754}
755
756
757
758bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
759{
760  /* first check all axis */
761  Vector t;
762  float rA = 0.0f;
763  float rB = 0.0f;
764  Vector l;
765  Vector rotAxisA[3];
766  Vector rotAxisB[3];
767
768  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
769  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
770  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
771
772  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
773  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
774  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
775
776  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
777
778//   printf("\n");
779//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
780//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
781//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
782//
783//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
784//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
785//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
786
787
788  /* All 3 axis of the object A */
789  for( int j = 0; j < 3; ++j)
790  {
791    rA = 0.0f;
792    rB = 0.0f;
793    l = rotAxisA[j];
794
795    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
796    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
797    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
798
799    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
800    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
801    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
802
803    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
804
805    if( (rA + rB) < fabs(t.dot(l)))
806    {
807      PRINT(3)("no Collision\n");
808      return false;
809    }
810  }
811
812  /* All 3 axis of the object B */
813  for( int j = 0; j < 3; ++j)
814  {
815    rA = 0.0f;
816    rB = 0.0f;
817    l = rotAxisB[j];
818
819    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
820    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
821    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
822
823    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
824    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
825    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
826
827    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
828
829    if( (rA + rB) < fabs(t.dot(l)))
830    {
831      PRINT(3)("no Collision\n");
832      return false;
833    }
834  }
835
836
837  /* Now check for all face cross products */
838
839  for( int j = 0; j < 3; ++j)
840  {
841    for(int k = 0; k < 3; ++k )
842    {
843      rA = 0.0f;
844      rB = 0.0f;
845      l = rotAxisA[j].cross(rotAxisB[k]);
846
847      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
848      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
849      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
850
851      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
852      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
853      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
854
855      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
856
857      if( (rA + rB) < fabs(t.dot(l)))
858      {
859        PRINT(3)("keine Kollision\n");
860        return false;
861      }
862    }
863  }
864
865
866  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
867  boxB->bCollided = true;
868  PRINT(3)("Kollision!\n");
869  return true;
870}
871
872
873
874
875
876void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
877{
878
879  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
880  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
881  {
882    if( !(drawMode & DRAW_SINGLE && depth != 0))
883    {
884      if( drawMode & DRAW_POINTS)
885        glBegin(GL_POINTS);
886      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
887      {
888        if( drawMode & DRAW_POINTS)
889          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
890        else
891        {
892          glPushMatrix();
893          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
894          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
895          glPopMatrix();
896        }
897      }
898      if( drawMode & DRAW_POINTS)
899        glEnd();
900    }
901  }
902
903  if (top)
904  {
905    glPushAttrib(GL_ENABLE_BIT);
906    glDisable(GL_LIGHTING);
907    glDisable(GL_TEXTURE_2D);
908  }
909  glColor3f(color.x, color.y, color.z);
910
911
912  /* draw world axes */
913  if( drawMode & DRAW_BV_AXIS)
914  {
915    glBegin(GL_LINES);
916    glColor3f(1.0, 0.0, 0.0);
917    glVertex3f(0.0, 0.0, 0.0);
918    glVertex3f(3.0, 0.0, 0.0);
919
920    glColor3f(0.0, 1.0, 0.0);
921    glVertex3f(0.0, 0.0, 0.0);
922    glVertex3f(0.0, 3.0, 0.0);
923
924    glColor3f(0.0, 0.0, 1.0);
925    glVertex3f(0.0, 0.0, 0.0);
926    glVertex3f(0.0, 0.0, 3.0);
927    glEnd();
928  }
929
930
931  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
932  {
933    if( !(drawMode & DRAW_SINGLE && depth != 0))
934    {
935      /* draw the obb axes */
936      glBegin(GL_LINES);
937      glColor3f(0.0, 0.4, 0.3);
938      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
939      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
940                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
941                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
942
943      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
944      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
945                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
946                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
947
948      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
949      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
950                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
951                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
952      glEnd();
953    }
954  }
955
956
957  /* DRAW POLYGONS */
958  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
959  {
960    if (top)
961    {
962      glEnable(GL_BLEND);
963      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
964    }
965
966    if(this->nodeLeft == NULL || this->nodeRight == NULL)
967      depth = 0;
968    if( !(drawMode & DRAW_SINGLE && depth != 0))
969    {
970    Vector cen = *this->bvElement->center;
971    Vector* axis = this->bvElement->axis;
972    float* len = this->bvElement->halfLength;
973
974    if( this->bvElement->bCollided)
975    {
976      glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
977    }
978    else if( drawMode & DRAW_BV_BLENDED)
979    {
980      glColor4f(color.x, color.y, color.z, .5);
981    }
982
983    /* draw bounding box */
984    if( drawMode & DRAW_BV_BLENDED)
985      glBegin(GL_QUADS);
986    else
987      glBegin(GL_LINE_LOOP);
988    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
989               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
990               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
991    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
992               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
993               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
994    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
995               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
996               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
997    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
998               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
999               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1000    glEnd();
1001
1002    if( drawMode & DRAW_BV_BLENDED)
1003      glBegin(GL_QUADS);
1004    else
1005      glBegin(GL_LINE_LOOP);
1006    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1007               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1008               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1009    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1010               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1011               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1012    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1013               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1014               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1015    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1016               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1017               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1018    glEnd();
1019
1020    if( drawMode & DRAW_BV_BLENDED)
1021      glBegin(GL_QUADS);
1022    else
1023      glBegin(GL_LINE_LOOP);
1024    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1025               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1026               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1027    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1028               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1029               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1030    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1031               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1032               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1033    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1034               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1035               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1036    glEnd();
1037
1038    if( drawMode & DRAW_BV_BLENDED)
1039      glBegin(GL_QUADS);
1040    else
1041      glBegin(GL_LINE_LOOP);
1042    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1043               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1044               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1045    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1046               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1047               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1048    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1049               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1050               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1051    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1052               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1053               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1054    glEnd();
1055
1056
1057    if( drawMode & DRAW_BV_BLENDED)
1058    {
1059      glBegin(GL_QUADS);
1060      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1061                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1062                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1063      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
1064                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
1065                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
1066      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1067                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1068                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1069      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
1070                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
1071                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
1072      glEnd();
1073
1074      glBegin(GL_QUADS);
1075      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1076                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1077                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1078      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
1079                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
1080                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
1081      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1082                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1083                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1084      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
1085                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
1086                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
1087      glEnd();
1088    }
1089
1090
1091    if( drawMode & DRAW_BV_BLENDED)
1092      glColor3f(color.x, color.y, color.z);
1093    }
1094
1095  }
1096
1097  /* DRAW SEPARATING PLANE */
1098  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
1099  {
1100    if( !(drawMode & DRAW_SINGLE && depth != 0))
1101    {
1102      if( drawMode & DRAW_BV_BLENDED)
1103        glColor4f(color.x, color.y, color.z, .6);
1104
1105    /* now draw the separation plane */
1106    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1107    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
1108    Vector c = *this->bvElement->center;
1109    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1110    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1111    glBegin(GL_QUADS);
1112    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1113    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1114    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1115    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1116    glEnd();
1117
1118    if( drawMode & DRAW_BV_BLENDED)
1119      glColor4f(color.x, color.y, color.z, 1.0);
1120
1121    }
1122  }
1123
1124
1125
1126  if (depth > 0)
1127  {
1128    if( this->nodeLeft != NULL)
1129      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
1130    if( this->nodeRight != NULL)
1131      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
1132  }
1133  this->bvElement->bCollided = false;
1134
1135  if (top)
1136    glPopAttrib();
1137}
1138
1139
1140
1141void OBBTreeNode::debug() const
1142{
1143
1144  /*
1145  for(int i = 0; i < length; i++)
1146  {
1147  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
1148}
1149  */
1150}
Note: See TracBrowser for help on using the repository browser.