| [1963] | 1 | /* | 
|---|
 | 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
 | 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
 | 4 |  | 
|---|
 | 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
 | 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
 | 7 | Permission is granted to anyone to use this software for any purpose,  | 
|---|
 | 8 | including commercial applications, and to alter it and redistribute it freely,  | 
|---|
 | 9 | subject to the following restrictions: | 
|---|
 | 10 |  | 
|---|
 | 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
 | 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
 | 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
 | 14 | */ | 
|---|
 | 15 |  | 
|---|
 | 16 |  | 
|---|
 | 17 | #include "btContactConstraint.h" | 
|---|
 | 18 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
 | 19 | #include "LinearMath/btVector3.h" | 
|---|
 | 20 | #include "btJacobianEntry.h" | 
|---|
 | 21 | #include "btContactSolverInfo.h" | 
|---|
 | 22 | #include "LinearMath/btMinMax.h" | 
|---|
 | 23 | #include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h" | 
|---|
 | 24 |  | 
|---|
| [2882] | 25 | #define ASSERT2 btAssert | 
|---|
| [1963] | 26 |  | 
|---|
 | 27 | #define USE_INTERNAL_APPLY_IMPULSE 1 | 
|---|
 | 28 |  | 
|---|
 | 29 |  | 
|---|
 | 30 | //bilateral constraint between two dynamic objects | 
|---|
 | 31 | void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1, | 
|---|
 | 32 |                       btRigidBody& body2, const btVector3& pos2, | 
|---|
 | 33 |                       btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep) | 
|---|
 | 34 | { | 
|---|
 | 35 |         (void)timeStep; | 
|---|
 | 36 |         (void)distance; | 
|---|
 | 37 |  | 
|---|
 | 38 |  | 
|---|
 | 39 |         btScalar normalLenSqr = normal.length2(); | 
|---|
 | 40 |         ASSERT2(btFabs(normalLenSqr) < btScalar(1.1)); | 
|---|
 | 41 |         if (normalLenSqr > btScalar(1.1)) | 
|---|
 | 42 |         { | 
|---|
 | 43 |                 impulse = btScalar(0.); | 
|---|
 | 44 |                 return; | 
|---|
 | 45 |         } | 
|---|
 | 46 |         btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();  | 
|---|
 | 47 |         btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
 | 48 |         //this jacobian entry could be re-used for all iterations | 
|---|
 | 49 |          | 
|---|
 | 50 |         btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
 | 51 |         btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
 | 52 |         btVector3 vel = vel1 - vel2; | 
|---|
 | 53 |          | 
|---|
 | 54 |  | 
|---|
| [2882] | 55 |            btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| [1963] | 56 |                 body2.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
 | 57 |                 rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(), | 
|---|
 | 58 |                 body2.getInvInertiaDiagLocal(),body2.getInvMass()); | 
|---|
 | 59 |  | 
|---|
 | 60 |         btScalar jacDiagAB = jac.getDiagonal(); | 
|---|
 | 61 |         btScalar jacDiagABInv = btScalar(1.) / jacDiagAB; | 
|---|
 | 62 |          | 
|---|
 | 63 |           btScalar rel_vel = jac.getRelativeVelocity( | 
|---|
 | 64 |                 body1.getLinearVelocity(), | 
|---|
 | 65 |                 body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(), | 
|---|
 | 66 |                 body2.getLinearVelocity(), | 
|---|
 | 67 |                 body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity());  | 
|---|
 | 68 |         btScalar a; | 
|---|
 | 69 |         a=jacDiagABInv; | 
|---|
 | 70 |  | 
|---|
 | 71 |  | 
|---|
 | 72 |         rel_vel = normal.dot(vel); | 
|---|
 | 73 |          | 
|---|
 | 74 |         //todo: move this into proper structure | 
|---|
 | 75 |         btScalar contactDamping = btScalar(0.2); | 
|---|
 | 76 |  | 
|---|
 | 77 | #ifdef ONLY_USE_LINEAR_MASS | 
|---|
 | 78 |         btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass()); | 
|---|
 | 79 |         impulse = - contactDamping * rel_vel * massTerm; | 
|---|
 | 80 | #else    | 
|---|
 | 81 |         btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv; | 
|---|
 | 82 |         impulse = velocityImpulse; | 
|---|
 | 83 | #endif | 
|---|
 | 84 | } | 
|---|
 | 85 |  | 
|---|
 | 86 |  | 
|---|
 | 87 |  | 
|---|
 | 88 | //response  between two dynamic objects with friction | 
|---|
 | 89 | btScalar resolveSingleCollision( | 
|---|
 | 90 |         btRigidBody& body1, | 
|---|
 | 91 |         btRigidBody& body2, | 
|---|
 | 92 |         btManifoldPoint& contactPoint, | 
|---|
 | 93 |         const btContactSolverInfo& solverInfo) | 
|---|
 | 94 | { | 
|---|
 | 95 |  | 
|---|
 | 96 |         const btVector3& pos1_ = contactPoint.getPositionWorldOnA(); | 
|---|
 | 97 |         const btVector3& pos2_ = contactPoint.getPositionWorldOnB(); | 
|---|
 | 98 |         const btVector3& normal = contactPoint.m_normalWorldOnB; | 
|---|
 | 99 |  | 
|---|
 | 100 |         //constant over all iterations | 
|---|
 | 101 |         btVector3 rel_pos1 = pos1_ - body1.getCenterOfMassPosition();  | 
|---|
 | 102 |         btVector3 rel_pos2 = pos2_ - body2.getCenterOfMassPosition(); | 
|---|
 | 103 |          | 
|---|
 | 104 |         btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
 | 105 |         btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
 | 106 |         btVector3 vel = vel1 - vel2; | 
|---|
 | 107 |         btScalar rel_vel; | 
|---|
 | 108 |         rel_vel = normal.dot(vel); | 
|---|
 | 109 |          | 
|---|
 | 110 |         btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; | 
|---|
 | 111 |  | 
|---|
 | 112 |         // btScalar damping = solverInfo.m_damping ; | 
|---|
 | 113 |         btScalar Kerp = solverInfo.m_erp; | 
|---|
 | 114 |         btScalar Kcor = Kerp *Kfps; | 
|---|
 | 115 |  | 
|---|
 | 116 |         btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 117 |         btAssert(cpd); | 
|---|
| [1963] | 118 |         btScalar distance = cpd->m_penetration; | 
|---|
 | 119 |         btScalar positionalError = Kcor *-distance; | 
|---|
 | 120 |         btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; | 
|---|
 | 121 |  | 
|---|
 | 122 |         btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; | 
|---|
 | 123 |  | 
|---|
 | 124 |         btScalar        velocityImpulse = velocityError * cpd->m_jacDiagABInv; | 
|---|
 | 125 |  | 
|---|
 | 126 |         btScalar normalImpulse = penetrationImpulse+velocityImpulse; | 
|---|
 | 127 |          | 
|---|
 | 128 |         // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse | 
|---|
 | 129 |         btScalar oldNormalImpulse = cpd->m_appliedImpulse; | 
|---|
 | 130 |         btScalar sum = oldNormalImpulse + normalImpulse; | 
|---|
 | 131 |         cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; | 
|---|
 | 132 |  | 
|---|
 | 133 |         normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; | 
|---|
 | 134 |  | 
|---|
 | 135 | #ifdef USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 136 |         if (body1.getInvMass()) | 
|---|
 | 137 |         { | 
|---|
 | 138 |                 body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); | 
|---|
 | 139 |         } | 
|---|
 | 140 |         if (body2.getInvMass()) | 
|---|
 | 141 |         { | 
|---|
 | 142 |                 body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); | 
|---|
 | 143 |         } | 
|---|
 | 144 | #else //USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 145 |         body1.applyImpulse(normal*(normalImpulse), rel_pos1); | 
|---|
 | 146 |         body2.applyImpulse(-normal*(normalImpulse), rel_pos2); | 
|---|
 | 147 | #endif //USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 148 |  | 
|---|
 | 149 |         return normalImpulse; | 
|---|
 | 150 | } | 
|---|
 | 151 |  | 
|---|
 | 152 |  | 
|---|
 | 153 | btScalar resolveSingleFriction( | 
|---|
 | 154 |         btRigidBody& body1, | 
|---|
 | 155 |         btRigidBody& body2, | 
|---|
 | 156 |         btManifoldPoint& contactPoint, | 
|---|
 | 157 |         const btContactSolverInfo& solverInfo) | 
|---|
 | 158 | { | 
|---|
 | 159 |  | 
|---|
 | 160 |         (void)solverInfo; | 
|---|
 | 161 |  | 
|---|
 | 162 |         const btVector3& pos1 = contactPoint.getPositionWorldOnA(); | 
|---|
 | 163 |         const btVector3& pos2 = contactPoint.getPositionWorldOnB(); | 
|---|
 | 164 |  | 
|---|
 | 165 |         btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();  | 
|---|
 | 166 |         btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
 | 167 |          | 
|---|
 | 168 |         btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 169 |         btAssert(cpd); | 
|---|
| [1963] | 170 |  | 
|---|
 | 171 |         btScalar combinedFriction = cpd->m_friction; | 
|---|
 | 172 |          | 
|---|
 | 173 |         btScalar limit = cpd->m_appliedImpulse * combinedFriction; | 
|---|
 | 174 |          | 
|---|
 | 175 |         if (cpd->m_appliedImpulse>btScalar(0.)) | 
|---|
 | 176 |         //friction | 
|---|
 | 177 |         { | 
|---|
 | 178 |                 //apply friction in the 2 tangential directions | 
|---|
 | 179 |                  | 
|---|
 | 180 |                 // 1st tangent | 
|---|
 | 181 |                 btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
 | 182 |                 btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
 | 183 |                 btVector3 vel = vel1 - vel2; | 
|---|
 | 184 |          | 
|---|
 | 185 |                 btScalar j1,j2; | 
|---|
 | 186 |  | 
|---|
 | 187 |                 { | 
|---|
 | 188 |                                  | 
|---|
 | 189 |                         btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); | 
|---|
 | 190 |  | 
|---|
 | 191 |                         // calculate j that moves us to zero relative velocity | 
|---|
 | 192 |                         j1 = -vrel * cpd->m_jacDiagABInvTangent0; | 
|---|
 | 193 |                         btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse0; | 
|---|
 | 194 |                         cpd->m_accumulatedTangentImpulse0 = oldTangentImpulse + j1; | 
|---|
 | 195 |                         btSetMin(cpd->m_accumulatedTangentImpulse0, limit); | 
|---|
 | 196 |                         btSetMax(cpd->m_accumulatedTangentImpulse0, -limit); | 
|---|
 | 197 |                         j1 = cpd->m_accumulatedTangentImpulse0 - oldTangentImpulse; | 
|---|
 | 198 |  | 
|---|
 | 199 |                 } | 
|---|
 | 200 |                 { | 
|---|
 | 201 |                         // 2nd tangent | 
|---|
 | 202 |  | 
|---|
 | 203 |                         btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); | 
|---|
 | 204 |                          | 
|---|
 | 205 |                         // calculate j that moves us to zero relative velocity | 
|---|
 | 206 |                         j2 = -vrel * cpd->m_jacDiagABInvTangent1; | 
|---|
 | 207 |                         btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse1; | 
|---|
 | 208 |                         cpd->m_accumulatedTangentImpulse1 = oldTangentImpulse + j2; | 
|---|
 | 209 |                         btSetMin(cpd->m_accumulatedTangentImpulse1, limit); | 
|---|
 | 210 |                         btSetMax(cpd->m_accumulatedTangentImpulse1, -limit); | 
|---|
 | 211 |                         j2 = cpd->m_accumulatedTangentImpulse1 - oldTangentImpulse; | 
|---|
 | 212 |                 } | 
|---|
 | 213 |  | 
|---|
 | 214 | #ifdef USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 215 |         if (body1.getInvMass()) | 
|---|
 | 216 |         { | 
|---|
 | 217 |                 body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1); | 
|---|
 | 218 |                 body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2); | 
|---|
 | 219 |         } | 
|---|
 | 220 |         if (body2.getInvMass()) | 
|---|
 | 221 |         { | 
|---|
 | 222 |                 body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1); | 
|---|
 | 223 |                 body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2);    | 
|---|
 | 224 |         } | 
|---|
 | 225 | #else //USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 226 |         body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1); | 
|---|
 | 227 |         body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2); | 
|---|
 | 228 | #endif //USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 229 |  | 
|---|
 | 230 |  | 
|---|
 | 231 |         }  | 
|---|
 | 232 |         return cpd->m_appliedImpulse; | 
|---|
 | 233 | } | 
|---|
 | 234 |  | 
|---|
 | 235 |  | 
|---|
 | 236 | btScalar resolveSingleFrictionOriginal( | 
|---|
 | 237 |         btRigidBody& body1, | 
|---|
 | 238 |         btRigidBody& body2, | 
|---|
 | 239 |         btManifoldPoint& contactPoint, | 
|---|
 | 240 |         const btContactSolverInfo& solverInfo); | 
|---|
 | 241 |  | 
|---|
 | 242 | btScalar resolveSingleFrictionOriginal( | 
|---|
 | 243 |         btRigidBody& body1, | 
|---|
 | 244 |         btRigidBody& body2, | 
|---|
 | 245 |         btManifoldPoint& contactPoint, | 
|---|
 | 246 |         const btContactSolverInfo& solverInfo) | 
|---|
 | 247 | { | 
|---|
 | 248 |  | 
|---|
 | 249 |         (void)solverInfo; | 
|---|
 | 250 |  | 
|---|
 | 251 |         const btVector3& pos1 = contactPoint.getPositionWorldOnA(); | 
|---|
 | 252 |         const btVector3& pos2 = contactPoint.getPositionWorldOnB(); | 
|---|
 | 253 |  | 
|---|
 | 254 |         btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();  | 
|---|
 | 255 |         btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
 | 256 |          | 
|---|
 | 257 |         btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 258 |         btAssert(cpd); | 
|---|
| [1963] | 259 |  | 
|---|
 | 260 |         btScalar combinedFriction = cpd->m_friction; | 
|---|
 | 261 |          | 
|---|
 | 262 |         btScalar limit = cpd->m_appliedImpulse * combinedFriction; | 
|---|
 | 263 |         //if (contactPoint.m_appliedImpulse>btScalar(0.)) | 
|---|
 | 264 |         //friction | 
|---|
 | 265 |         { | 
|---|
 | 266 |                 //apply friction in the 2 tangential directions | 
|---|
 | 267 |                  | 
|---|
 | 268 |                 { | 
|---|
 | 269 |                         // 1st tangent | 
|---|
 | 270 |                         btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
 | 271 |                         btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
 | 272 |                         btVector3 vel = vel1 - vel2; | 
|---|
 | 273 |                          | 
|---|
 | 274 |                         btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); | 
|---|
 | 275 |  | 
|---|
 | 276 |                         // calculate j that moves us to zero relative velocity | 
|---|
 | 277 |                         btScalar j = -vrel * cpd->m_jacDiagABInvTangent0; | 
|---|
 | 278 |                         btScalar total = cpd->m_accumulatedTangentImpulse0 + j; | 
|---|
 | 279 |                         btSetMin(total, limit); | 
|---|
 | 280 |                         btSetMax(total, -limit); | 
|---|
 | 281 |                         j = total - cpd->m_accumulatedTangentImpulse0; | 
|---|
 | 282 |                         cpd->m_accumulatedTangentImpulse0 = total; | 
|---|
 | 283 |                         body1.applyImpulse(j * cpd->m_frictionWorldTangential0, rel_pos1); | 
|---|
 | 284 |                         body2.applyImpulse(j * -cpd->m_frictionWorldTangential0, rel_pos2); | 
|---|
 | 285 |                 } | 
|---|
 | 286 |  | 
|---|
 | 287 |                                  | 
|---|
 | 288 |                 { | 
|---|
 | 289 |                         // 2nd tangent | 
|---|
 | 290 |                         btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
 | 291 |                         btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
 | 292 |                         btVector3 vel = vel1 - vel2; | 
|---|
 | 293 |  | 
|---|
 | 294 |                         btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); | 
|---|
 | 295 |                          | 
|---|
 | 296 |                         // calculate j that moves us to zero relative velocity | 
|---|
 | 297 |                         btScalar j = -vrel * cpd->m_jacDiagABInvTangent1; | 
|---|
 | 298 |                         btScalar total = cpd->m_accumulatedTangentImpulse1 + j; | 
|---|
 | 299 |                         btSetMin(total, limit); | 
|---|
 | 300 |                         btSetMax(total, -limit); | 
|---|
 | 301 |                         j = total - cpd->m_accumulatedTangentImpulse1; | 
|---|
 | 302 |                         cpd->m_accumulatedTangentImpulse1 = total; | 
|---|
 | 303 |                         body1.applyImpulse(j * cpd->m_frictionWorldTangential1, rel_pos1); | 
|---|
 | 304 |                         body2.applyImpulse(j * -cpd->m_frictionWorldTangential1, rel_pos2); | 
|---|
 | 305 |                 } | 
|---|
 | 306 |         }  | 
|---|
 | 307 |         return cpd->m_appliedImpulse; | 
|---|
 | 308 | } | 
|---|
 | 309 |  | 
|---|
 | 310 |  | 
|---|
 | 311 | //velocity + friction | 
|---|
 | 312 | //response  between two dynamic objects with friction | 
|---|
 | 313 | btScalar resolveSingleCollisionCombined( | 
|---|
 | 314 |         btRigidBody& body1, | 
|---|
 | 315 |         btRigidBody& body2, | 
|---|
 | 316 |         btManifoldPoint& contactPoint, | 
|---|
 | 317 |         const btContactSolverInfo& solverInfo) | 
|---|
 | 318 | { | 
|---|
 | 319 |  | 
|---|
 | 320 |         const btVector3& pos1 = contactPoint.getPositionWorldOnA(); | 
|---|
 | 321 |         const btVector3& pos2 = contactPoint.getPositionWorldOnB(); | 
|---|
 | 322 |         const btVector3& normal = contactPoint.m_normalWorldOnB; | 
|---|
 | 323 |  | 
|---|
 | 324 |         btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();  | 
|---|
 | 325 |         btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
 | 326 |          | 
|---|
 | 327 |         btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
 | 328 |         btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
 | 329 |         btVector3 vel = vel1 - vel2; | 
|---|
 | 330 |         btScalar rel_vel; | 
|---|
 | 331 |         rel_vel = normal.dot(vel); | 
|---|
 | 332 |          | 
|---|
 | 333 |         btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; | 
|---|
 | 334 |  | 
|---|
 | 335 |         //btScalar damping = solverInfo.m_damping ; | 
|---|
 | 336 |         btScalar Kerp = solverInfo.m_erp; | 
|---|
 | 337 |         btScalar Kcor = Kerp *Kfps; | 
|---|
 | 338 |  | 
|---|
 | 339 |         btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 340 |         btAssert(cpd); | 
|---|
| [1963] | 341 |         btScalar distance = cpd->m_penetration; | 
|---|
 | 342 |         btScalar positionalError = Kcor *-distance; | 
|---|
 | 343 |         btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; | 
|---|
 | 344 |  | 
|---|
 | 345 |         btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; | 
|---|
 | 346 |  | 
|---|
 | 347 |         btScalar        velocityImpulse = velocityError * cpd->m_jacDiagABInv; | 
|---|
 | 348 |  | 
|---|
 | 349 |         btScalar normalImpulse = penetrationImpulse+velocityImpulse; | 
|---|
 | 350 |          | 
|---|
 | 351 |         // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse | 
|---|
 | 352 |         btScalar oldNormalImpulse = cpd->m_appliedImpulse; | 
|---|
 | 353 |         btScalar sum = oldNormalImpulse + normalImpulse; | 
|---|
 | 354 |         cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; | 
|---|
 | 355 |  | 
|---|
 | 356 |         normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; | 
|---|
 | 357 |  | 
|---|
 | 358 |  | 
|---|
 | 359 | #ifdef USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 360 |         if (body1.getInvMass()) | 
|---|
 | 361 |         { | 
|---|
 | 362 |                 body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); | 
|---|
 | 363 |         } | 
|---|
 | 364 |         if (body2.getInvMass()) | 
|---|
 | 365 |         { | 
|---|
 | 366 |                 body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); | 
|---|
 | 367 |         } | 
|---|
 | 368 | #else //USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 369 |         body1.applyImpulse(normal*(normalImpulse), rel_pos1); | 
|---|
 | 370 |         body2.applyImpulse(-normal*(normalImpulse), rel_pos2); | 
|---|
 | 371 | #endif //USE_INTERNAL_APPLY_IMPULSE | 
|---|
 | 372 |  | 
|---|
 | 373 |         { | 
|---|
 | 374 |                 //friction | 
|---|
 | 375 |                 btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
 | 376 |                 btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
 | 377 |                 btVector3 vel = vel1 - vel2; | 
|---|
 | 378 |            | 
|---|
 | 379 |                 rel_vel = normal.dot(vel); | 
|---|
 | 380 |  | 
|---|
 | 381 |  | 
|---|
 | 382 |                 btVector3 lat_vel = vel - normal * rel_vel; | 
|---|
 | 383 |                 btScalar lat_rel_vel = lat_vel.length(); | 
|---|
 | 384 |  | 
|---|
 | 385 |                 btScalar combinedFriction = cpd->m_friction; | 
|---|
 | 386 |  | 
|---|
 | 387 |                 if (cpd->m_appliedImpulse > 0) | 
|---|
 | 388 |                 if (lat_rel_vel > SIMD_EPSILON) | 
|---|
 | 389 |                 { | 
|---|
 | 390 |                         lat_vel /= lat_rel_vel; | 
|---|
 | 391 |                         btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel); | 
|---|
 | 392 |                         btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel); | 
|---|
 | 393 |                         btScalar friction_impulse = lat_rel_vel / | 
|---|
 | 394 |                                 (body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2))); | 
|---|
 | 395 |                         btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction; | 
|---|
 | 396 |  | 
|---|
 | 397 |                         btSetMin(friction_impulse, normal_impulse); | 
|---|
 | 398 |                         btSetMax(friction_impulse, -normal_impulse); | 
|---|
 | 399 |                         body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1); | 
|---|
 | 400 |                         body2.applyImpulse(lat_vel * friction_impulse, rel_pos2); | 
|---|
 | 401 |                 } | 
|---|
 | 402 |         } | 
|---|
 | 403 |  | 
|---|
 | 404 |  | 
|---|
 | 405 |  | 
|---|
 | 406 |         return normalImpulse; | 
|---|
 | 407 | } | 
|---|
 | 408 |  | 
|---|
 | 409 | btScalar resolveSingleFrictionEmpty( | 
|---|
 | 410 |         btRigidBody& body1, | 
|---|
 | 411 |         btRigidBody& body2, | 
|---|
 | 412 |         btManifoldPoint& contactPoint, | 
|---|
 | 413 |         const btContactSolverInfo& solverInfo); | 
|---|
 | 414 |  | 
|---|
 | 415 | btScalar resolveSingleFrictionEmpty( | 
|---|
 | 416 |         btRigidBody& body1, | 
|---|
 | 417 |         btRigidBody& body2, | 
|---|
 | 418 |         btManifoldPoint& contactPoint, | 
|---|
 | 419 |         const btContactSolverInfo& solverInfo) | 
|---|
 | 420 | { | 
|---|
 | 421 |         (void)contactPoint; | 
|---|
 | 422 |         (void)body1; | 
|---|
 | 423 |         (void)body2; | 
|---|
 | 424 |         (void)solverInfo; | 
|---|
 | 425 |  | 
|---|
 | 426 |  | 
|---|
 | 427 |         return btScalar(0.); | 
|---|
| [2430] | 428 | } | 
|---|
| [1963] | 429 |  | 
|---|