| [1963] | 1 | /* | 
|---|
|  | 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
|  | 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
|  | 4 |  | 
|---|
|  | 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
|  | 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
|  | 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
|  | 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
|  | 9 | subject to the following restrictions: | 
|---|
|  | 10 |  | 
|---|
|  | 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
|  | 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
|  | 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
|  | 14 | */ | 
|---|
|  | 15 |  | 
|---|
|  | 16 |  | 
|---|
|  | 17 | #include "btContactConstraint.h" | 
|---|
|  | 18 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
|  | 19 | #include "LinearMath/btVector3.h" | 
|---|
|  | 20 | #include "btJacobianEntry.h" | 
|---|
|  | 21 | #include "btContactSolverInfo.h" | 
|---|
|  | 22 | #include "LinearMath/btMinMax.h" | 
|---|
|  | 23 | #include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h" | 
|---|
|  | 24 |  | 
|---|
| [2882] | 25 | #define ASSERT2 btAssert | 
|---|
| [1963] | 26 |  | 
|---|
|  | 27 | #define USE_INTERNAL_APPLY_IMPULSE 1 | 
|---|
|  | 28 |  | 
|---|
|  | 29 |  | 
|---|
|  | 30 | //bilateral constraint between two dynamic objects | 
|---|
|  | 31 | void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1, | 
|---|
|  | 32 | btRigidBody& body2, const btVector3& pos2, | 
|---|
|  | 33 | btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep) | 
|---|
|  | 34 | { | 
|---|
|  | 35 | (void)timeStep; | 
|---|
|  | 36 | (void)distance; | 
|---|
|  | 37 |  | 
|---|
|  | 38 |  | 
|---|
|  | 39 | btScalar normalLenSqr = normal.length2(); | 
|---|
|  | 40 | ASSERT2(btFabs(normalLenSqr) < btScalar(1.1)); | 
|---|
|  | 41 | if (normalLenSqr > btScalar(1.1)) | 
|---|
|  | 42 | { | 
|---|
|  | 43 | impulse = btScalar(0.); | 
|---|
|  | 44 | return; | 
|---|
|  | 45 | } | 
|---|
|  | 46 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); | 
|---|
|  | 47 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
|  | 48 | //this jacobian entry could be re-used for all iterations | 
|---|
|  | 49 |  | 
|---|
|  | 50 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
|  | 51 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
|  | 52 | btVector3 vel = vel1 - vel2; | 
|---|
|  | 53 |  | 
|---|
|  | 54 |  | 
|---|
| [2882] | 55 | btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| [1963] | 56 | body2.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 57 | rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(), | 
|---|
|  | 58 | body2.getInvInertiaDiagLocal(),body2.getInvMass()); | 
|---|
|  | 59 |  | 
|---|
|  | 60 | btScalar jacDiagAB = jac.getDiagonal(); | 
|---|
|  | 61 | btScalar jacDiagABInv = btScalar(1.) / jacDiagAB; | 
|---|
|  | 62 |  | 
|---|
|  | 63 | btScalar rel_vel = jac.getRelativeVelocity( | 
|---|
|  | 64 | body1.getLinearVelocity(), | 
|---|
|  | 65 | body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(), | 
|---|
|  | 66 | body2.getLinearVelocity(), | 
|---|
|  | 67 | body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity()); | 
|---|
|  | 68 | btScalar a; | 
|---|
|  | 69 | a=jacDiagABInv; | 
|---|
|  | 70 |  | 
|---|
|  | 71 |  | 
|---|
|  | 72 | rel_vel = normal.dot(vel); | 
|---|
|  | 73 |  | 
|---|
|  | 74 | //todo: move this into proper structure | 
|---|
|  | 75 | btScalar contactDamping = btScalar(0.2); | 
|---|
|  | 76 |  | 
|---|
|  | 77 | #ifdef ONLY_USE_LINEAR_MASS | 
|---|
|  | 78 | btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass()); | 
|---|
|  | 79 | impulse = - contactDamping * rel_vel * massTerm; | 
|---|
|  | 80 | #else | 
|---|
|  | 81 | btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv; | 
|---|
|  | 82 | impulse = velocityImpulse; | 
|---|
|  | 83 | #endif | 
|---|
|  | 84 | } | 
|---|
|  | 85 |  | 
|---|
|  | 86 |  | 
|---|
|  | 87 |  | 
|---|
|  | 88 | //response  between two dynamic objects with friction | 
|---|
|  | 89 | btScalar resolveSingleCollision( | 
|---|
|  | 90 | btRigidBody& body1, | 
|---|
|  | 91 | btRigidBody& body2, | 
|---|
|  | 92 | btManifoldPoint& contactPoint, | 
|---|
|  | 93 | const btContactSolverInfo& solverInfo) | 
|---|
|  | 94 | { | 
|---|
|  | 95 |  | 
|---|
|  | 96 | const btVector3& pos1_ = contactPoint.getPositionWorldOnA(); | 
|---|
|  | 97 | const btVector3& pos2_ = contactPoint.getPositionWorldOnB(); | 
|---|
|  | 98 | const btVector3& normal = contactPoint.m_normalWorldOnB; | 
|---|
|  | 99 |  | 
|---|
|  | 100 | //constant over all iterations | 
|---|
|  | 101 | btVector3 rel_pos1 = pos1_ - body1.getCenterOfMassPosition(); | 
|---|
|  | 102 | btVector3 rel_pos2 = pos2_ - body2.getCenterOfMassPosition(); | 
|---|
|  | 103 |  | 
|---|
|  | 104 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
|  | 105 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
|  | 106 | btVector3 vel = vel1 - vel2; | 
|---|
|  | 107 | btScalar rel_vel; | 
|---|
|  | 108 | rel_vel = normal.dot(vel); | 
|---|
|  | 109 |  | 
|---|
|  | 110 | btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; | 
|---|
|  | 111 |  | 
|---|
|  | 112 | // btScalar damping = solverInfo.m_damping ; | 
|---|
|  | 113 | btScalar Kerp = solverInfo.m_erp; | 
|---|
|  | 114 | btScalar Kcor = Kerp *Kfps; | 
|---|
|  | 115 |  | 
|---|
|  | 116 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 117 | btAssert(cpd); | 
|---|
| [1963] | 118 | btScalar distance = cpd->m_penetration; | 
|---|
|  | 119 | btScalar positionalError = Kcor *-distance; | 
|---|
|  | 120 | btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; | 
|---|
|  | 121 |  | 
|---|
|  | 122 | btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; | 
|---|
|  | 123 |  | 
|---|
|  | 124 | btScalar        velocityImpulse = velocityError * cpd->m_jacDiagABInv; | 
|---|
|  | 125 |  | 
|---|
|  | 126 | btScalar normalImpulse = penetrationImpulse+velocityImpulse; | 
|---|
|  | 127 |  | 
|---|
|  | 128 | // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse | 
|---|
|  | 129 | btScalar oldNormalImpulse = cpd->m_appliedImpulse; | 
|---|
|  | 130 | btScalar sum = oldNormalImpulse + normalImpulse; | 
|---|
|  | 131 | cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; | 
|---|
|  | 132 |  | 
|---|
|  | 133 | normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; | 
|---|
|  | 134 |  | 
|---|
|  | 135 | #ifdef USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 136 | if (body1.getInvMass()) | 
|---|
|  | 137 | { | 
|---|
|  | 138 | body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); | 
|---|
|  | 139 | } | 
|---|
|  | 140 | if (body2.getInvMass()) | 
|---|
|  | 141 | { | 
|---|
|  | 142 | body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); | 
|---|
|  | 143 | } | 
|---|
|  | 144 | #else //USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 145 | body1.applyImpulse(normal*(normalImpulse), rel_pos1); | 
|---|
|  | 146 | body2.applyImpulse(-normal*(normalImpulse), rel_pos2); | 
|---|
|  | 147 | #endif //USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 148 |  | 
|---|
|  | 149 | return normalImpulse; | 
|---|
|  | 150 | } | 
|---|
|  | 151 |  | 
|---|
|  | 152 |  | 
|---|
|  | 153 | btScalar resolveSingleFriction( | 
|---|
|  | 154 | btRigidBody& body1, | 
|---|
|  | 155 | btRigidBody& body2, | 
|---|
|  | 156 | btManifoldPoint& contactPoint, | 
|---|
|  | 157 | const btContactSolverInfo& solverInfo) | 
|---|
|  | 158 | { | 
|---|
|  | 159 |  | 
|---|
|  | 160 | (void)solverInfo; | 
|---|
|  | 161 |  | 
|---|
|  | 162 | const btVector3& pos1 = contactPoint.getPositionWorldOnA(); | 
|---|
|  | 163 | const btVector3& pos2 = contactPoint.getPositionWorldOnB(); | 
|---|
|  | 164 |  | 
|---|
|  | 165 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); | 
|---|
|  | 166 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
|  | 167 |  | 
|---|
|  | 168 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 169 | btAssert(cpd); | 
|---|
| [1963] | 170 |  | 
|---|
|  | 171 | btScalar combinedFriction = cpd->m_friction; | 
|---|
|  | 172 |  | 
|---|
|  | 173 | btScalar limit = cpd->m_appliedImpulse * combinedFriction; | 
|---|
|  | 174 |  | 
|---|
|  | 175 | if (cpd->m_appliedImpulse>btScalar(0.)) | 
|---|
|  | 176 | //friction | 
|---|
|  | 177 | { | 
|---|
|  | 178 | //apply friction in the 2 tangential directions | 
|---|
|  | 179 |  | 
|---|
|  | 180 | // 1st tangent | 
|---|
|  | 181 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
|  | 182 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
|  | 183 | btVector3 vel = vel1 - vel2; | 
|---|
|  | 184 |  | 
|---|
|  | 185 | btScalar j1,j2; | 
|---|
|  | 186 |  | 
|---|
|  | 187 | { | 
|---|
|  | 188 |  | 
|---|
|  | 189 | btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); | 
|---|
|  | 190 |  | 
|---|
|  | 191 | // calculate j that moves us to zero relative velocity | 
|---|
|  | 192 | j1 = -vrel * cpd->m_jacDiagABInvTangent0; | 
|---|
|  | 193 | btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse0; | 
|---|
|  | 194 | cpd->m_accumulatedTangentImpulse0 = oldTangentImpulse + j1; | 
|---|
|  | 195 | btSetMin(cpd->m_accumulatedTangentImpulse0, limit); | 
|---|
|  | 196 | btSetMax(cpd->m_accumulatedTangentImpulse0, -limit); | 
|---|
|  | 197 | j1 = cpd->m_accumulatedTangentImpulse0 - oldTangentImpulse; | 
|---|
|  | 198 |  | 
|---|
|  | 199 | } | 
|---|
|  | 200 | { | 
|---|
|  | 201 | // 2nd tangent | 
|---|
|  | 202 |  | 
|---|
|  | 203 | btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); | 
|---|
|  | 204 |  | 
|---|
|  | 205 | // calculate j that moves us to zero relative velocity | 
|---|
|  | 206 | j2 = -vrel * cpd->m_jacDiagABInvTangent1; | 
|---|
|  | 207 | btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse1; | 
|---|
|  | 208 | cpd->m_accumulatedTangentImpulse1 = oldTangentImpulse + j2; | 
|---|
|  | 209 | btSetMin(cpd->m_accumulatedTangentImpulse1, limit); | 
|---|
|  | 210 | btSetMax(cpd->m_accumulatedTangentImpulse1, -limit); | 
|---|
|  | 211 | j2 = cpd->m_accumulatedTangentImpulse1 - oldTangentImpulse; | 
|---|
|  | 212 | } | 
|---|
|  | 213 |  | 
|---|
|  | 214 | #ifdef USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 215 | if (body1.getInvMass()) | 
|---|
|  | 216 | { | 
|---|
|  | 217 | body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1); | 
|---|
|  | 218 | body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2); | 
|---|
|  | 219 | } | 
|---|
|  | 220 | if (body2.getInvMass()) | 
|---|
|  | 221 | { | 
|---|
|  | 222 | body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1); | 
|---|
|  | 223 | body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2); | 
|---|
|  | 224 | } | 
|---|
|  | 225 | #else //USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 226 | body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1); | 
|---|
|  | 227 | body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2); | 
|---|
|  | 228 | #endif //USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 229 |  | 
|---|
|  | 230 |  | 
|---|
|  | 231 | } | 
|---|
|  | 232 | return cpd->m_appliedImpulse; | 
|---|
|  | 233 | } | 
|---|
|  | 234 |  | 
|---|
|  | 235 |  | 
|---|
|  | 236 | btScalar resolveSingleFrictionOriginal( | 
|---|
|  | 237 | btRigidBody& body1, | 
|---|
|  | 238 | btRigidBody& body2, | 
|---|
|  | 239 | btManifoldPoint& contactPoint, | 
|---|
|  | 240 | const btContactSolverInfo& solverInfo); | 
|---|
|  | 241 |  | 
|---|
|  | 242 | btScalar resolveSingleFrictionOriginal( | 
|---|
|  | 243 | btRigidBody& body1, | 
|---|
|  | 244 | btRigidBody& body2, | 
|---|
|  | 245 | btManifoldPoint& contactPoint, | 
|---|
|  | 246 | const btContactSolverInfo& solverInfo) | 
|---|
|  | 247 | { | 
|---|
|  | 248 |  | 
|---|
|  | 249 | (void)solverInfo; | 
|---|
|  | 250 |  | 
|---|
|  | 251 | const btVector3& pos1 = contactPoint.getPositionWorldOnA(); | 
|---|
|  | 252 | const btVector3& pos2 = contactPoint.getPositionWorldOnB(); | 
|---|
|  | 253 |  | 
|---|
|  | 254 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); | 
|---|
|  | 255 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
|  | 256 |  | 
|---|
|  | 257 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 258 | btAssert(cpd); | 
|---|
| [1963] | 259 |  | 
|---|
|  | 260 | btScalar combinedFriction = cpd->m_friction; | 
|---|
|  | 261 |  | 
|---|
|  | 262 | btScalar limit = cpd->m_appliedImpulse * combinedFriction; | 
|---|
|  | 263 | //if (contactPoint.m_appliedImpulse>btScalar(0.)) | 
|---|
|  | 264 | //friction | 
|---|
|  | 265 | { | 
|---|
|  | 266 | //apply friction in the 2 tangential directions | 
|---|
|  | 267 |  | 
|---|
|  | 268 | { | 
|---|
|  | 269 | // 1st tangent | 
|---|
|  | 270 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
|  | 271 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
|  | 272 | btVector3 vel = vel1 - vel2; | 
|---|
|  | 273 |  | 
|---|
|  | 274 | btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); | 
|---|
|  | 275 |  | 
|---|
|  | 276 | // calculate j that moves us to zero relative velocity | 
|---|
|  | 277 | btScalar j = -vrel * cpd->m_jacDiagABInvTangent0; | 
|---|
|  | 278 | btScalar total = cpd->m_accumulatedTangentImpulse0 + j; | 
|---|
|  | 279 | btSetMin(total, limit); | 
|---|
|  | 280 | btSetMax(total, -limit); | 
|---|
|  | 281 | j = total - cpd->m_accumulatedTangentImpulse0; | 
|---|
|  | 282 | cpd->m_accumulatedTangentImpulse0 = total; | 
|---|
|  | 283 | body1.applyImpulse(j * cpd->m_frictionWorldTangential0, rel_pos1); | 
|---|
|  | 284 | body2.applyImpulse(j * -cpd->m_frictionWorldTangential0, rel_pos2); | 
|---|
|  | 285 | } | 
|---|
|  | 286 |  | 
|---|
|  | 287 |  | 
|---|
|  | 288 | { | 
|---|
|  | 289 | // 2nd tangent | 
|---|
|  | 290 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
|  | 291 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
|  | 292 | btVector3 vel = vel1 - vel2; | 
|---|
|  | 293 |  | 
|---|
|  | 294 | btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); | 
|---|
|  | 295 |  | 
|---|
|  | 296 | // calculate j that moves us to zero relative velocity | 
|---|
|  | 297 | btScalar j = -vrel * cpd->m_jacDiagABInvTangent1; | 
|---|
|  | 298 | btScalar total = cpd->m_accumulatedTangentImpulse1 + j; | 
|---|
|  | 299 | btSetMin(total, limit); | 
|---|
|  | 300 | btSetMax(total, -limit); | 
|---|
|  | 301 | j = total - cpd->m_accumulatedTangentImpulse1; | 
|---|
|  | 302 | cpd->m_accumulatedTangentImpulse1 = total; | 
|---|
|  | 303 | body1.applyImpulse(j * cpd->m_frictionWorldTangential1, rel_pos1); | 
|---|
|  | 304 | body2.applyImpulse(j * -cpd->m_frictionWorldTangential1, rel_pos2); | 
|---|
|  | 305 | } | 
|---|
|  | 306 | } | 
|---|
|  | 307 | return cpd->m_appliedImpulse; | 
|---|
|  | 308 | } | 
|---|
|  | 309 |  | 
|---|
|  | 310 |  | 
|---|
|  | 311 | //velocity + friction | 
|---|
|  | 312 | //response  between two dynamic objects with friction | 
|---|
|  | 313 | btScalar resolveSingleCollisionCombined( | 
|---|
|  | 314 | btRigidBody& body1, | 
|---|
|  | 315 | btRigidBody& body2, | 
|---|
|  | 316 | btManifoldPoint& contactPoint, | 
|---|
|  | 317 | const btContactSolverInfo& solverInfo) | 
|---|
|  | 318 | { | 
|---|
|  | 319 |  | 
|---|
|  | 320 | const btVector3& pos1 = contactPoint.getPositionWorldOnA(); | 
|---|
|  | 321 | const btVector3& pos2 = contactPoint.getPositionWorldOnB(); | 
|---|
|  | 322 | const btVector3& normal = contactPoint.m_normalWorldOnB; | 
|---|
|  | 323 |  | 
|---|
|  | 324 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); | 
|---|
|  | 325 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); | 
|---|
|  | 326 |  | 
|---|
|  | 327 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
|  | 328 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
|  | 329 | btVector3 vel = vel1 - vel2; | 
|---|
|  | 330 | btScalar rel_vel; | 
|---|
|  | 331 | rel_vel = normal.dot(vel); | 
|---|
|  | 332 |  | 
|---|
|  | 333 | btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; | 
|---|
|  | 334 |  | 
|---|
|  | 335 | //btScalar damping = solverInfo.m_damping ; | 
|---|
|  | 336 | btScalar Kerp = solverInfo.m_erp; | 
|---|
|  | 337 | btScalar Kcor = Kerp *Kfps; | 
|---|
|  | 338 |  | 
|---|
|  | 339 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; | 
|---|
| [2882] | 340 | btAssert(cpd); | 
|---|
| [1963] | 341 | btScalar distance = cpd->m_penetration; | 
|---|
|  | 342 | btScalar positionalError = Kcor *-distance; | 
|---|
|  | 343 | btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; | 
|---|
|  | 344 |  | 
|---|
|  | 345 | btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; | 
|---|
|  | 346 |  | 
|---|
|  | 347 | btScalar        velocityImpulse = velocityError * cpd->m_jacDiagABInv; | 
|---|
|  | 348 |  | 
|---|
|  | 349 | btScalar normalImpulse = penetrationImpulse+velocityImpulse; | 
|---|
|  | 350 |  | 
|---|
|  | 351 | // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse | 
|---|
|  | 352 | btScalar oldNormalImpulse = cpd->m_appliedImpulse; | 
|---|
|  | 353 | btScalar sum = oldNormalImpulse + normalImpulse; | 
|---|
|  | 354 | cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; | 
|---|
|  | 355 |  | 
|---|
|  | 356 | normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; | 
|---|
|  | 357 |  | 
|---|
|  | 358 |  | 
|---|
|  | 359 | #ifdef USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 360 | if (body1.getInvMass()) | 
|---|
|  | 361 | { | 
|---|
|  | 362 | body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); | 
|---|
|  | 363 | } | 
|---|
|  | 364 | if (body2.getInvMass()) | 
|---|
|  | 365 | { | 
|---|
|  | 366 | body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); | 
|---|
|  | 367 | } | 
|---|
|  | 368 | #else //USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 369 | body1.applyImpulse(normal*(normalImpulse), rel_pos1); | 
|---|
|  | 370 | body2.applyImpulse(-normal*(normalImpulse), rel_pos2); | 
|---|
|  | 371 | #endif //USE_INTERNAL_APPLY_IMPULSE | 
|---|
|  | 372 |  | 
|---|
|  | 373 | { | 
|---|
|  | 374 | //friction | 
|---|
|  | 375 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); | 
|---|
|  | 376 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); | 
|---|
|  | 377 | btVector3 vel = vel1 - vel2; | 
|---|
|  | 378 |  | 
|---|
|  | 379 | rel_vel = normal.dot(vel); | 
|---|
|  | 380 |  | 
|---|
|  | 381 |  | 
|---|
|  | 382 | btVector3 lat_vel = vel - normal * rel_vel; | 
|---|
|  | 383 | btScalar lat_rel_vel = lat_vel.length(); | 
|---|
|  | 384 |  | 
|---|
|  | 385 | btScalar combinedFriction = cpd->m_friction; | 
|---|
|  | 386 |  | 
|---|
|  | 387 | if (cpd->m_appliedImpulse > 0) | 
|---|
|  | 388 | if (lat_rel_vel > SIMD_EPSILON) | 
|---|
|  | 389 | { | 
|---|
|  | 390 | lat_vel /= lat_rel_vel; | 
|---|
|  | 391 | btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel); | 
|---|
|  | 392 | btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel); | 
|---|
|  | 393 | btScalar friction_impulse = lat_rel_vel / | 
|---|
|  | 394 | (body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2))); | 
|---|
|  | 395 | btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction; | 
|---|
|  | 396 |  | 
|---|
|  | 397 | btSetMin(friction_impulse, normal_impulse); | 
|---|
|  | 398 | btSetMax(friction_impulse, -normal_impulse); | 
|---|
|  | 399 | body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1); | 
|---|
|  | 400 | body2.applyImpulse(lat_vel * friction_impulse, rel_pos2); | 
|---|
|  | 401 | } | 
|---|
|  | 402 | } | 
|---|
|  | 403 |  | 
|---|
|  | 404 |  | 
|---|
|  | 405 |  | 
|---|
|  | 406 | return normalImpulse; | 
|---|
|  | 407 | } | 
|---|
|  | 408 |  | 
|---|
|  | 409 | btScalar resolveSingleFrictionEmpty( | 
|---|
|  | 410 | btRigidBody& body1, | 
|---|
|  | 411 | btRigidBody& body2, | 
|---|
|  | 412 | btManifoldPoint& contactPoint, | 
|---|
|  | 413 | const btContactSolverInfo& solverInfo); | 
|---|
|  | 414 |  | 
|---|
|  | 415 | btScalar resolveSingleFrictionEmpty( | 
|---|
|  | 416 | btRigidBody& body1, | 
|---|
|  | 417 | btRigidBody& body2, | 
|---|
|  | 418 | btManifoldPoint& contactPoint, | 
|---|
|  | 419 | const btContactSolverInfo& solverInfo) | 
|---|
|  | 420 | { | 
|---|
|  | 421 | (void)contactPoint; | 
|---|
|  | 422 | (void)body1; | 
|---|
|  | 423 | (void)body2; | 
|---|
|  | 424 | (void)solverInfo; | 
|---|
|  | 425 |  | 
|---|
|  | 426 |  | 
|---|
|  | 427 | return btScalar(0.); | 
|---|
| [2430] | 428 | } | 
|---|
| [1963] | 429 |  | 
|---|