| 1 | /* | 
|---|
| 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
| 3 | btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios | 
|---|
| 4 |  | 
|---|
| 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
| 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
| 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
| 9 | subject to the following restrictions: | 
|---|
| 10 |  | 
|---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
| 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
| 14 |  | 
|---|
| 15 | Written by: Marcus Hennix | 
|---|
| 16 | */ | 
|---|
| 17 |  | 
|---|
| 18 |  | 
|---|
| 19 | #include "btConeTwistConstraint.h" | 
|---|
| 20 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
| 21 | #include "LinearMath/btTransformUtil.h" | 
|---|
| 22 | #include "LinearMath/btMinMax.h" | 
|---|
| 23 | #include <new> | 
|---|
| 24 |  | 
|---|
| 25 |  | 
|---|
| 26 |  | 
|---|
| 27 | //#define CONETWIST_USE_OBSOLETE_SOLVER true | 
|---|
| 28 | #define CONETWIST_USE_OBSOLETE_SOLVER false | 
|---|
| 29 | #define CONETWIST_DEF_FIX_THRESH btScalar(.05f) | 
|---|
| 30 |  | 
|---|
| 31 |  | 
|---|
| 32 | SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis, const btMatrix3x3& invInertiaWorld) | 
|---|
| 33 | { | 
|---|
| 34 | btVector3 vec = axis * invInertiaWorld; | 
|---|
| 35 | return axis.dot(vec); | 
|---|
| 36 | } | 
|---|
| 37 |  | 
|---|
| 38 |  | 
|---|
| 39 |  | 
|---|
| 40 |  | 
|---|
| 41 | btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB, | 
|---|
| 42 | const btTransform& rbAFrame,const btTransform& rbBFrame) | 
|---|
| 43 | :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), | 
|---|
| 44 | m_angularOnly(false), | 
|---|
| 45 | m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER) | 
|---|
| 46 | { | 
|---|
| 47 | init(); | 
|---|
| 48 | } | 
|---|
| 49 |  | 
|---|
| 50 | btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame) | 
|---|
| 51 | :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame), | 
|---|
| 52 | m_angularOnly(false), | 
|---|
| 53 | m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER) | 
|---|
| 54 | { | 
|---|
| 55 | m_rbBFrame = m_rbAFrame; | 
|---|
| 56 | init(); | 
|---|
| 57 | } | 
|---|
| 58 |  | 
|---|
| 59 |  | 
|---|
| 60 | void btConeTwistConstraint::init() | 
|---|
| 61 | { | 
|---|
| 62 | m_angularOnly = false; | 
|---|
| 63 | m_solveTwistLimit = false; | 
|---|
| 64 | m_solveSwingLimit = false; | 
|---|
| 65 | m_bMotorEnabled = false; | 
|---|
| 66 | m_maxMotorImpulse = btScalar(-1); | 
|---|
| 67 |  | 
|---|
| 68 | setLimit(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT)); | 
|---|
| 69 | m_damping = btScalar(0.01); | 
|---|
| 70 | m_fixThresh = CONETWIST_DEF_FIX_THRESH; | 
|---|
| 71 | m_flags = 0; | 
|---|
| 72 | m_linCFM = btScalar(0.f); | 
|---|
| 73 | m_linERP = btScalar(0.7f); | 
|---|
| 74 | m_angCFM = btScalar(0.f); | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 |  | 
|---|
| 78 | void btConeTwistConstraint::getInfo1 (btConstraintInfo1* info) | 
|---|
| 79 | { | 
|---|
| 80 | if (m_useSolveConstraintObsolete) | 
|---|
| 81 | { | 
|---|
| 82 | info->m_numConstraintRows = 0; | 
|---|
| 83 | info->nub = 0; | 
|---|
| 84 | } | 
|---|
| 85 | else | 
|---|
| 86 | { | 
|---|
| 87 | info->m_numConstraintRows = 3; | 
|---|
| 88 | info->nub = 3; | 
|---|
| 89 | calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld()); | 
|---|
| 90 | if(m_solveSwingLimit) | 
|---|
| 91 | { | 
|---|
| 92 | info->m_numConstraintRows++; | 
|---|
| 93 | info->nub--; | 
|---|
| 94 | if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh)) | 
|---|
| 95 | { | 
|---|
| 96 | info->m_numConstraintRows++; | 
|---|
| 97 | info->nub--; | 
|---|
| 98 | } | 
|---|
| 99 | } | 
|---|
| 100 | if(m_solveTwistLimit) | 
|---|
| 101 | { | 
|---|
| 102 | info->m_numConstraintRows++; | 
|---|
| 103 | info->nub--; | 
|---|
| 104 | } | 
|---|
| 105 | } | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 | void btConeTwistConstraint::getInfo1NonVirtual (btConstraintInfo1* info) | 
|---|
| 109 | { | 
|---|
| 110 | //always reserve 6 rows: object transform is not available on SPU | 
|---|
| 111 | info->m_numConstraintRows = 6; | 
|---|
| 112 | info->nub = 0; | 
|---|
| 113 |  | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 |  | 
|---|
| 117 | void btConeTwistConstraint::getInfo2 (btConstraintInfo2* info) | 
|---|
| 118 | { | 
|---|
| 119 | getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld()); | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | void btConeTwistConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB) | 
|---|
| 123 | { | 
|---|
| 124 | calcAngleInfo2(transA,transB,invInertiaWorldA,invInertiaWorldB); | 
|---|
| 125 |  | 
|---|
| 126 | btAssert(!m_useSolveConstraintObsolete); | 
|---|
| 127 | // set jacobian | 
|---|
| 128 | info->m_J1linearAxis[0] = 1; | 
|---|
| 129 | info->m_J1linearAxis[info->rowskip+1] = 1; | 
|---|
| 130 | info->m_J1linearAxis[2*info->rowskip+2] = 1; | 
|---|
| 131 | btVector3 a1 = transA.getBasis() * m_rbAFrame.getOrigin(); | 
|---|
| 132 | { | 
|---|
| 133 | btVector3* angular0 = (btVector3*)(info->m_J1angularAxis); | 
|---|
| 134 | btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip); | 
|---|
| 135 | btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip); | 
|---|
| 136 | btVector3 a1neg = -a1; | 
|---|
| 137 | a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2); | 
|---|
| 138 | } | 
|---|
| 139 | btVector3 a2 = transB.getBasis() * m_rbBFrame.getOrigin(); | 
|---|
| 140 | { | 
|---|
| 141 | btVector3* angular0 = (btVector3*)(info->m_J2angularAxis); | 
|---|
| 142 | btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip); | 
|---|
| 143 | btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip); | 
|---|
| 144 | a2.getSkewSymmetricMatrix(angular0,angular1,angular2); | 
|---|
| 145 | } | 
|---|
| 146 | // set right hand side | 
|---|
| 147 | btScalar linERP = (m_flags & BT_CONETWIST_FLAGS_LIN_ERP) ? m_linERP : info->erp; | 
|---|
| 148 | btScalar k = info->fps * linERP; | 
|---|
| 149 | int j; | 
|---|
| 150 | for (j=0; j<3; j++) | 
|---|
| 151 | { | 
|---|
| 152 | info->m_constraintError[j*info->rowskip] = k * (a2[j] + transB.getOrigin()[j] - a1[j] - transA.getOrigin()[j]); | 
|---|
| 153 | info->m_lowerLimit[j*info->rowskip] = -SIMD_INFINITY; | 
|---|
| 154 | info->m_upperLimit[j*info->rowskip] = SIMD_INFINITY; | 
|---|
| 155 | if(m_flags & BT_CONETWIST_FLAGS_LIN_CFM) | 
|---|
| 156 | { | 
|---|
| 157 | info->cfm[j*info->rowskip] = m_linCFM; | 
|---|
| 158 | } | 
|---|
| 159 | } | 
|---|
| 160 | int row = 3; | 
|---|
| 161 | int srow = row * info->rowskip; | 
|---|
| 162 | btVector3 ax1; | 
|---|
| 163 | // angular limits | 
|---|
| 164 | if(m_solveSwingLimit) | 
|---|
| 165 | { | 
|---|
| 166 | btScalar *J1 = info->m_J1angularAxis; | 
|---|
| 167 | btScalar *J2 = info->m_J2angularAxis; | 
|---|
| 168 | if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh)) | 
|---|
| 169 | { | 
|---|
| 170 | btTransform trA = transA*m_rbAFrame; | 
|---|
| 171 | btVector3 p = trA.getBasis().getColumn(1); | 
|---|
| 172 | btVector3 q = trA.getBasis().getColumn(2); | 
|---|
| 173 | int srow1 = srow + info->rowskip; | 
|---|
| 174 | J1[srow+0] = p[0]; | 
|---|
| 175 | J1[srow+1] = p[1]; | 
|---|
| 176 | J1[srow+2] = p[2]; | 
|---|
| 177 | J1[srow1+0] = q[0]; | 
|---|
| 178 | J1[srow1+1] = q[1]; | 
|---|
| 179 | J1[srow1+2] = q[2]; | 
|---|
| 180 | J2[srow+0] = -p[0]; | 
|---|
| 181 | J2[srow+1] = -p[1]; | 
|---|
| 182 | J2[srow+2] = -p[2]; | 
|---|
| 183 | J2[srow1+0] = -q[0]; | 
|---|
| 184 | J2[srow1+1] = -q[1]; | 
|---|
| 185 | J2[srow1+2] = -q[2]; | 
|---|
| 186 | btScalar fact = info->fps * m_relaxationFactor; | 
|---|
| 187 | info->m_constraintError[srow] =   fact * m_swingAxis.dot(p); | 
|---|
| 188 | info->m_constraintError[srow1] =  fact * m_swingAxis.dot(q); | 
|---|
| 189 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 190 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 191 | info->m_lowerLimit[srow1] = -SIMD_INFINITY; | 
|---|
| 192 | info->m_upperLimit[srow1] = SIMD_INFINITY; | 
|---|
| 193 | srow = srow1 + info->rowskip; | 
|---|
| 194 | } | 
|---|
| 195 | else | 
|---|
| 196 | { | 
|---|
| 197 | ax1 = m_swingAxis * m_relaxationFactor * m_relaxationFactor; | 
|---|
| 198 | J1[srow+0] = ax1[0]; | 
|---|
| 199 | J1[srow+1] = ax1[1]; | 
|---|
| 200 | J1[srow+2] = ax1[2]; | 
|---|
| 201 | J2[srow+0] = -ax1[0]; | 
|---|
| 202 | J2[srow+1] = -ax1[1]; | 
|---|
| 203 | J2[srow+2] = -ax1[2]; | 
|---|
| 204 | btScalar k = info->fps * m_biasFactor; | 
|---|
| 205 |  | 
|---|
| 206 | info->m_constraintError[srow] = k * m_swingCorrection; | 
|---|
| 207 | if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM) | 
|---|
| 208 | { | 
|---|
| 209 | info->cfm[srow] = m_angCFM; | 
|---|
| 210 | } | 
|---|
| 211 | // m_swingCorrection is always positive or 0 | 
|---|
| 212 | info->m_lowerLimit[srow] = 0; | 
|---|
| 213 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 214 | srow += info->rowskip; | 
|---|
| 215 | } | 
|---|
| 216 | } | 
|---|
| 217 | if(m_solveTwistLimit) | 
|---|
| 218 | { | 
|---|
| 219 | ax1 = m_twistAxis * m_relaxationFactor * m_relaxationFactor; | 
|---|
| 220 | btScalar *J1 = info->m_J1angularAxis; | 
|---|
| 221 | btScalar *J2 = info->m_J2angularAxis; | 
|---|
| 222 | J1[srow+0] = ax1[0]; | 
|---|
| 223 | J1[srow+1] = ax1[1]; | 
|---|
| 224 | J1[srow+2] = ax1[2]; | 
|---|
| 225 | J2[srow+0] = -ax1[0]; | 
|---|
| 226 | J2[srow+1] = -ax1[1]; | 
|---|
| 227 | J2[srow+2] = -ax1[2]; | 
|---|
| 228 | btScalar k = info->fps * m_biasFactor; | 
|---|
| 229 | info->m_constraintError[srow] = k * m_twistCorrection; | 
|---|
| 230 | if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM) | 
|---|
| 231 | { | 
|---|
| 232 | info->cfm[srow] = m_angCFM; | 
|---|
| 233 | } | 
|---|
| 234 | if(m_twistSpan > 0.0f) | 
|---|
| 235 | { | 
|---|
| 236 |  | 
|---|
| 237 | if(m_twistCorrection > 0.0f) | 
|---|
| 238 | { | 
|---|
| 239 | info->m_lowerLimit[srow] = 0; | 
|---|
| 240 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 241 | } | 
|---|
| 242 | else | 
|---|
| 243 | { | 
|---|
| 244 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 245 | info->m_upperLimit[srow] = 0; | 
|---|
| 246 | } | 
|---|
| 247 | } | 
|---|
| 248 | else | 
|---|
| 249 | { | 
|---|
| 250 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 251 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 252 | } | 
|---|
| 253 | srow += info->rowskip; | 
|---|
| 254 | } | 
|---|
| 255 | } | 
|---|
| 256 |  | 
|---|
| 257 |  | 
|---|
| 258 |  | 
|---|
| 259 | void    btConeTwistConstraint::buildJacobian() | 
|---|
| 260 | { | 
|---|
| 261 | if (m_useSolveConstraintObsolete) | 
|---|
| 262 | { | 
|---|
| 263 | m_appliedImpulse = btScalar(0.); | 
|---|
| 264 | m_accTwistLimitImpulse = btScalar(0.); | 
|---|
| 265 | m_accSwingLimitImpulse = btScalar(0.); | 
|---|
| 266 | m_accMotorImpulse = btVector3(0.,0.,0.); | 
|---|
| 267 |  | 
|---|
| 268 | if (!m_angularOnly) | 
|---|
| 269 | { | 
|---|
| 270 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); | 
|---|
| 271 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); | 
|---|
| 272 | btVector3 relPos = pivotBInW - pivotAInW; | 
|---|
| 273 |  | 
|---|
| 274 | btVector3 normal[3]; | 
|---|
| 275 | if (relPos.length2() > SIMD_EPSILON) | 
|---|
| 276 | { | 
|---|
| 277 | normal[0] = relPos.normalized(); | 
|---|
| 278 | } | 
|---|
| 279 | else | 
|---|
| 280 | { | 
|---|
| 281 | normal[0].setValue(btScalar(1.0),0,0); | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | btPlaneSpace1(normal[0], normal[1], normal[2]); | 
|---|
| 285 |  | 
|---|
| 286 | for (int i=0;i<3;i++) | 
|---|
| 287 | { | 
|---|
| 288 | new (&m_jac[i]) btJacobianEntry( | 
|---|
| 289 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| 290 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| 291 | pivotAInW - m_rbA.getCenterOfMassPosition(), | 
|---|
| 292 | pivotBInW - m_rbB.getCenterOfMassPosition(), | 
|---|
| 293 | normal[i], | 
|---|
| 294 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
| 295 | m_rbA.getInvMass(), | 
|---|
| 296 | m_rbB.getInvInertiaDiagLocal(), | 
|---|
| 297 | m_rbB.getInvMass()); | 
|---|
| 298 | } | 
|---|
| 299 | } | 
|---|
| 300 |  | 
|---|
| 301 | calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld()); | 
|---|
| 302 | } | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 |  | 
|---|
| 306 |  | 
|---|
| 307 | void    btConeTwistConstraint::solveConstraintObsolete(btRigidBody& bodyA,btRigidBody& bodyB,btScalar   timeStep) | 
|---|
| 308 | { | 
|---|
| 309 | #ifndef __SPU__ | 
|---|
| 310 | if (m_useSolveConstraintObsolete) | 
|---|
| 311 | { | 
|---|
| 312 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); | 
|---|
| 313 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); | 
|---|
| 314 |  | 
|---|
| 315 | btScalar tau = btScalar(0.3); | 
|---|
| 316 |  | 
|---|
| 317 | //linear part | 
|---|
| 318 | if (!m_angularOnly) | 
|---|
| 319 | { | 
|---|
| 320 | btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); | 
|---|
| 321 | btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); | 
|---|
| 322 |  | 
|---|
| 323 | btVector3 vel1; | 
|---|
| 324 | bodyA.internalGetVelocityInLocalPointObsolete(rel_pos1,vel1); | 
|---|
| 325 | btVector3 vel2; | 
|---|
| 326 | bodyB.internalGetVelocityInLocalPointObsolete(rel_pos2,vel2); | 
|---|
| 327 | btVector3 vel = vel1 - vel2; | 
|---|
| 328 |  | 
|---|
| 329 | for (int i=0;i<3;i++) | 
|---|
| 330 | { | 
|---|
| 331 | const btVector3& normal = m_jac[i].m_linearJointAxis; | 
|---|
| 332 | btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); | 
|---|
| 333 |  | 
|---|
| 334 | btScalar rel_vel; | 
|---|
| 335 | rel_vel = normal.dot(vel); | 
|---|
| 336 | //positional error (zeroth order error) | 
|---|
| 337 | btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal | 
|---|
| 338 | btScalar impulse = depth*tau/timeStep  * jacDiagABInv -  rel_vel * jacDiagABInv; | 
|---|
| 339 | m_appliedImpulse += impulse; | 
|---|
| 340 |  | 
|---|
| 341 | btVector3 ftorqueAxis1 = rel_pos1.cross(normal); | 
|---|
| 342 | btVector3 ftorqueAxis2 = rel_pos2.cross(normal); | 
|---|
| 343 | bodyA.internalApplyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse); | 
|---|
| 344 | bodyB.internalApplyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse); | 
|---|
| 345 |  | 
|---|
| 346 | } | 
|---|
| 347 | } | 
|---|
| 348 |  | 
|---|
| 349 | // apply motor | 
|---|
| 350 | if (m_bMotorEnabled) | 
|---|
| 351 | { | 
|---|
| 352 | // compute current and predicted transforms | 
|---|
| 353 | btTransform trACur = m_rbA.getCenterOfMassTransform(); | 
|---|
| 354 | btTransform trBCur = m_rbB.getCenterOfMassTransform(); | 
|---|
| 355 | btVector3 omegaA; bodyA.internalGetAngularVelocity(omegaA); | 
|---|
| 356 | btVector3 omegaB; bodyB.internalGetAngularVelocity(omegaB); | 
|---|
| 357 | btTransform trAPred; trAPred.setIdentity(); | 
|---|
| 358 | btVector3 zerovec(0,0,0); | 
|---|
| 359 | btTransformUtil::integrateTransform( | 
|---|
| 360 | trACur, zerovec, omegaA, timeStep, trAPred); | 
|---|
| 361 | btTransform trBPred; trBPred.setIdentity(); | 
|---|
| 362 | btTransformUtil::integrateTransform( | 
|---|
| 363 | trBCur, zerovec, omegaB, timeStep, trBPred); | 
|---|
| 364 |  | 
|---|
| 365 | // compute desired transforms in world | 
|---|
| 366 | btTransform trPose(m_qTarget); | 
|---|
| 367 | btTransform trABDes = m_rbBFrame * trPose * m_rbAFrame.inverse(); | 
|---|
| 368 | btTransform trADes = trBPred * trABDes; | 
|---|
| 369 | btTransform trBDes = trAPred * trABDes.inverse(); | 
|---|
| 370 |  | 
|---|
| 371 | // compute desired omegas in world | 
|---|
| 372 | btVector3 omegaADes, omegaBDes; | 
|---|
| 373 |  | 
|---|
| 374 | btTransformUtil::calculateVelocity(trACur, trADes, timeStep, zerovec, omegaADes); | 
|---|
| 375 | btTransformUtil::calculateVelocity(trBCur, trBDes, timeStep, zerovec, omegaBDes); | 
|---|
| 376 |  | 
|---|
| 377 | // compute delta omegas | 
|---|
| 378 | btVector3 dOmegaA = omegaADes - omegaA; | 
|---|
| 379 | btVector3 dOmegaB = omegaBDes - omegaB; | 
|---|
| 380 |  | 
|---|
| 381 | // compute weighted avg axis of dOmega (weighting based on inertias) | 
|---|
| 382 | btVector3 axisA, axisB; | 
|---|
| 383 | btScalar kAxisAInv = 0, kAxisBInv = 0; | 
|---|
| 384 |  | 
|---|
| 385 | if (dOmegaA.length2() > SIMD_EPSILON) | 
|---|
| 386 | { | 
|---|
| 387 | axisA = dOmegaA.normalized(); | 
|---|
| 388 | kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(axisA); | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 | if (dOmegaB.length2() > SIMD_EPSILON) | 
|---|
| 392 | { | 
|---|
| 393 | axisB = dOmegaB.normalized(); | 
|---|
| 394 | kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(axisB); | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | btVector3 avgAxis = kAxisAInv * axisA + kAxisBInv * axisB; | 
|---|
| 398 |  | 
|---|
| 399 | static bool bDoTorque = true; | 
|---|
| 400 | if (bDoTorque && avgAxis.length2() > SIMD_EPSILON) | 
|---|
| 401 | { | 
|---|
| 402 | avgAxis.normalize(); | 
|---|
| 403 | kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(avgAxis); | 
|---|
| 404 | kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(avgAxis); | 
|---|
| 405 | btScalar kInvCombined = kAxisAInv + kAxisBInv; | 
|---|
| 406 |  | 
|---|
| 407 | btVector3 impulse = (kAxisAInv * dOmegaA - kAxisBInv * dOmegaB) / | 
|---|
| 408 | (kInvCombined * kInvCombined); | 
|---|
| 409 |  | 
|---|
| 410 | if (m_maxMotorImpulse >= 0) | 
|---|
| 411 | { | 
|---|
| 412 | btScalar fMaxImpulse = m_maxMotorImpulse; | 
|---|
| 413 | if (m_bNormalizedMotorStrength) | 
|---|
| 414 | fMaxImpulse = fMaxImpulse/kAxisAInv; | 
|---|
| 415 |  | 
|---|
| 416 | btVector3 newUnclampedAccImpulse = m_accMotorImpulse + impulse; | 
|---|
| 417 | btScalar  newUnclampedMag = newUnclampedAccImpulse.length(); | 
|---|
| 418 | if (newUnclampedMag > fMaxImpulse) | 
|---|
| 419 | { | 
|---|
| 420 | newUnclampedAccImpulse.normalize(); | 
|---|
| 421 | newUnclampedAccImpulse *= fMaxImpulse; | 
|---|
| 422 | impulse = newUnclampedAccImpulse - m_accMotorImpulse; | 
|---|
| 423 | } | 
|---|
| 424 | m_accMotorImpulse += impulse; | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | btScalar  impulseMag  = impulse.length(); | 
|---|
| 428 | btVector3 impulseAxis =  impulse / impulseMag; | 
|---|
| 429 |  | 
|---|
| 430 | bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag); | 
|---|
| 431 | bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag); | 
|---|
| 432 |  | 
|---|
| 433 | } | 
|---|
| 434 | } | 
|---|
| 435 | else if (m_damping > SIMD_EPSILON) // no motor: do a little damping | 
|---|
| 436 | { | 
|---|
| 437 | btVector3 angVelA; bodyA.internalGetAngularVelocity(angVelA); | 
|---|
| 438 | btVector3 angVelB; bodyB.internalGetAngularVelocity(angVelB); | 
|---|
| 439 | btVector3 relVel = angVelB - angVelA; | 
|---|
| 440 | if (relVel.length2() > SIMD_EPSILON) | 
|---|
| 441 | { | 
|---|
| 442 | btVector3 relVelAxis = relVel.normalized(); | 
|---|
| 443 | btScalar m_kDamping =  btScalar(1.) / | 
|---|
| 444 | (getRigidBodyA().computeAngularImpulseDenominator(relVelAxis) + | 
|---|
| 445 | getRigidBodyB().computeAngularImpulseDenominator(relVelAxis)); | 
|---|
| 446 | btVector3 impulse = m_damping * m_kDamping * relVel; | 
|---|
| 447 |  | 
|---|
| 448 | btScalar  impulseMag  = impulse.length(); | 
|---|
| 449 | btVector3 impulseAxis = impulse / impulseMag; | 
|---|
| 450 | bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag); | 
|---|
| 451 | bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag); | 
|---|
| 452 | } | 
|---|
| 453 | } | 
|---|
| 454 |  | 
|---|
| 455 | // joint limits | 
|---|
| 456 | { | 
|---|
| 457 | ///solve angular part | 
|---|
| 458 | btVector3 angVelA; | 
|---|
| 459 | bodyA.internalGetAngularVelocity(angVelA); | 
|---|
| 460 | btVector3 angVelB; | 
|---|
| 461 | bodyB.internalGetAngularVelocity(angVelB); | 
|---|
| 462 |  | 
|---|
| 463 | // solve swing limit | 
|---|
| 464 | if (m_solveSwingLimit) | 
|---|
| 465 | { | 
|---|
| 466 | btScalar amplitude = m_swingLimitRatio * m_swingCorrection*m_biasFactor/timeStep; | 
|---|
| 467 | btScalar relSwingVel = (angVelB - angVelA).dot(m_swingAxis); | 
|---|
| 468 | if (relSwingVel > 0) | 
|---|
| 469 | amplitude += m_swingLimitRatio * relSwingVel * m_relaxationFactor; | 
|---|
| 470 | btScalar impulseMag = amplitude * m_kSwing; | 
|---|
| 471 |  | 
|---|
| 472 | // Clamp the accumulated impulse | 
|---|
| 473 | btScalar temp = m_accSwingLimitImpulse; | 
|---|
| 474 | m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) ); | 
|---|
| 475 | impulseMag = m_accSwingLimitImpulse - temp; | 
|---|
| 476 |  | 
|---|
| 477 | btVector3 impulse = m_swingAxis * impulseMag; | 
|---|
| 478 |  | 
|---|
| 479 | // don't let cone response affect twist | 
|---|
| 480 | // (this can happen since body A's twist doesn't match body B's AND we use an elliptical cone limit) | 
|---|
| 481 | { | 
|---|
| 482 | btVector3 impulseTwistCouple = impulse.dot(m_twistAxisA) * m_twistAxisA; | 
|---|
| 483 | btVector3 impulseNoTwistCouple = impulse - impulseTwistCouple; | 
|---|
| 484 | impulse = impulseNoTwistCouple; | 
|---|
| 485 | } | 
|---|
| 486 |  | 
|---|
| 487 | impulseMag = impulse.length(); | 
|---|
| 488 | btVector3 noTwistSwingAxis = impulse / impulseMag; | 
|---|
| 489 |  | 
|---|
| 490 | bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*noTwistSwingAxis, impulseMag); | 
|---|
| 491 | bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*noTwistSwingAxis, -impulseMag); | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 |  | 
|---|
| 495 | // solve twist limit | 
|---|
| 496 | if (m_solveTwistLimit) | 
|---|
| 497 | { | 
|---|
| 498 | btScalar amplitude = m_twistLimitRatio * m_twistCorrection*m_biasFactor/timeStep; | 
|---|
| 499 | btScalar relTwistVel = (angVelB - angVelA).dot( m_twistAxis ); | 
|---|
| 500 | if (relTwistVel > 0) // only damp when moving towards limit (m_twistAxis flipping is important) | 
|---|
| 501 | amplitude += m_twistLimitRatio * relTwistVel * m_relaxationFactor; | 
|---|
| 502 | btScalar impulseMag = amplitude * m_kTwist; | 
|---|
| 503 |  | 
|---|
| 504 | // Clamp the accumulated impulse | 
|---|
| 505 | btScalar temp = m_accTwistLimitImpulse; | 
|---|
| 506 | m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) ); | 
|---|
| 507 | impulseMag = m_accTwistLimitImpulse - temp; | 
|---|
| 508 |  | 
|---|
| 509 | btVector3 impulse = m_twistAxis * impulseMag; | 
|---|
| 510 |  | 
|---|
| 511 | bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*m_twistAxis,impulseMag); | 
|---|
| 512 | bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*m_twistAxis,-impulseMag); | 
|---|
| 513 | } | 
|---|
| 514 | } | 
|---|
| 515 | } | 
|---|
| 516 | #else | 
|---|
| 517 | btAssert(0); | 
|---|
| 518 | #endif //__SPU__ | 
|---|
| 519 | } | 
|---|
| 520 |  | 
|---|
| 521 |  | 
|---|
| 522 |  | 
|---|
| 523 |  | 
|---|
| 524 | void    btConeTwistConstraint::updateRHS(btScalar       timeStep) | 
|---|
| 525 | { | 
|---|
| 526 | (void)timeStep; | 
|---|
| 527 |  | 
|---|
| 528 | } | 
|---|
| 529 |  | 
|---|
| 530 |  | 
|---|
| 531 | #ifndef __SPU__ | 
|---|
| 532 | void btConeTwistConstraint::calcAngleInfo() | 
|---|
| 533 | { | 
|---|
| 534 | m_swingCorrection = btScalar(0.); | 
|---|
| 535 | m_twistLimitSign = btScalar(0.); | 
|---|
| 536 | m_solveTwistLimit = false; | 
|---|
| 537 | m_solveSwingLimit = false; | 
|---|
| 538 |  | 
|---|
| 539 | btVector3 b1Axis1,b1Axis2,b1Axis3; | 
|---|
| 540 | btVector3 b2Axis1,b2Axis2; | 
|---|
| 541 |  | 
|---|
| 542 | b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0); | 
|---|
| 543 | b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0); | 
|---|
| 544 |  | 
|---|
| 545 | btScalar swing1=btScalar(0.),swing2 = btScalar(0.); | 
|---|
| 546 |  | 
|---|
| 547 | btScalar swx=btScalar(0.),swy = btScalar(0.); | 
|---|
| 548 | btScalar thresh = btScalar(10.); | 
|---|
| 549 | btScalar fact; | 
|---|
| 550 |  | 
|---|
| 551 | // Get Frame into world space | 
|---|
| 552 | if (m_swingSpan1 >= btScalar(0.05f)) | 
|---|
| 553 | { | 
|---|
| 554 | b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1); | 
|---|
| 555 | swx = b2Axis1.dot(b1Axis1); | 
|---|
| 556 | swy = b2Axis1.dot(b1Axis2); | 
|---|
| 557 | swing1  = btAtan2Fast(swy, swx); | 
|---|
| 558 | fact = (swy*swy + swx*swx) * thresh * thresh; | 
|---|
| 559 | fact = fact / (fact + btScalar(1.0)); | 
|---|
| 560 | swing1 *= fact; | 
|---|
| 561 | } | 
|---|
| 562 |  | 
|---|
| 563 | if (m_swingSpan2 >= btScalar(0.05f)) | 
|---|
| 564 | { | 
|---|
| 565 | b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2); | 
|---|
| 566 | swx = b2Axis1.dot(b1Axis1); | 
|---|
| 567 | swy = b2Axis1.dot(b1Axis3); | 
|---|
| 568 | swing2  = btAtan2Fast(swy, swx); | 
|---|
| 569 | fact = (swy*swy + swx*swx) * thresh * thresh; | 
|---|
| 570 | fact = fact / (fact + btScalar(1.0)); | 
|---|
| 571 | swing2 *= fact; | 
|---|
| 572 | } | 
|---|
| 573 |  | 
|---|
| 574 | btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1); | 
|---|
| 575 | btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2); | 
|---|
| 576 | btScalar EllipseAngle = btFabs(swing1*swing1)* RMaxAngle1Sq + btFabs(swing2*swing2) * RMaxAngle2Sq; | 
|---|
| 577 |  | 
|---|
| 578 | if (EllipseAngle > 1.0f) | 
|---|
| 579 | { | 
|---|
| 580 | m_swingCorrection = EllipseAngle-1.0f; | 
|---|
| 581 | m_solveSwingLimit = true; | 
|---|
| 582 | // Calculate necessary axis & factors | 
|---|
| 583 | m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3)); | 
|---|
| 584 | m_swingAxis.normalize(); | 
|---|
| 585 | btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f; | 
|---|
| 586 | m_swingAxis *= swingAxisSign; | 
|---|
| 587 | } | 
|---|
| 588 |  | 
|---|
| 589 | // Twist limits | 
|---|
| 590 | if (m_twistSpan >= btScalar(0.)) | 
|---|
| 591 | { | 
|---|
| 592 | btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1); | 
|---|
| 593 | btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1); | 
|---|
| 594 | btVector3 TwistRef = quatRotate(rotationArc,b2Axis2); | 
|---|
| 595 | btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) ); | 
|---|
| 596 | m_twistAngle = twist; | 
|---|
| 597 |  | 
|---|
| 598 | //              btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.); | 
|---|
| 599 | btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? btScalar(1.0f) : btScalar(0.); | 
|---|
| 600 | if (twist <= -m_twistSpan*lockedFreeFactor) | 
|---|
| 601 | { | 
|---|
| 602 | m_twistCorrection = -(twist + m_twistSpan); | 
|---|
| 603 | m_solveTwistLimit = true; | 
|---|
| 604 | m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; | 
|---|
| 605 | m_twistAxis.normalize(); | 
|---|
| 606 | m_twistAxis *= -1.0f; | 
|---|
| 607 | } | 
|---|
| 608 | else if (twist >  m_twistSpan*lockedFreeFactor) | 
|---|
| 609 | { | 
|---|
| 610 | m_twistCorrection = (twist - m_twistSpan); | 
|---|
| 611 | m_solveTwistLimit = true; | 
|---|
| 612 | m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; | 
|---|
| 613 | m_twistAxis.normalize(); | 
|---|
| 614 | } | 
|---|
| 615 | } | 
|---|
| 616 | } | 
|---|
| 617 | #endif //__SPU__ | 
|---|
| 618 |  | 
|---|
| 619 | static btVector3 vTwist(1,0,0); // twist axis in constraint's space | 
|---|
| 620 |  | 
|---|
| 621 |  | 
|---|
| 622 |  | 
|---|
| 623 | void btConeTwistConstraint::calcAngleInfo2(const btTransform& transA, const btTransform& transB, const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB) | 
|---|
| 624 | { | 
|---|
| 625 | m_swingCorrection = btScalar(0.); | 
|---|
| 626 | m_twistLimitSign = btScalar(0.); | 
|---|
| 627 | m_solveTwistLimit = false; | 
|---|
| 628 | m_solveSwingLimit = false; | 
|---|
| 629 | // compute rotation of A wrt B (in constraint space) | 
|---|
| 630 | if (m_bMotorEnabled && (!m_useSolveConstraintObsolete)) | 
|---|
| 631 | {       // it is assumed that setMotorTarget() was alredy called | 
|---|
| 632 | // and motor target m_qTarget is within constraint limits | 
|---|
| 633 | // TODO : split rotation to pure swing and pure twist | 
|---|
| 634 | // compute desired transforms in world | 
|---|
| 635 | btTransform trPose(m_qTarget); | 
|---|
| 636 | btTransform trA = transA * m_rbAFrame; | 
|---|
| 637 | btTransform trB = transB * m_rbBFrame; | 
|---|
| 638 | btTransform trDeltaAB = trB * trPose * trA.inverse(); | 
|---|
| 639 | btQuaternion qDeltaAB = trDeltaAB.getRotation(); | 
|---|
| 640 | btVector3 swingAxis =   btVector3(qDeltaAB.x(), qDeltaAB.y(), qDeltaAB.z()); | 
|---|
| 641 | m_swingAxis = swingAxis; | 
|---|
| 642 | m_swingAxis.normalize(); | 
|---|
| 643 | m_swingCorrection = qDeltaAB.getAngle(); | 
|---|
| 644 | if(!btFuzzyZero(m_swingCorrection)) | 
|---|
| 645 | { | 
|---|
| 646 | m_solveSwingLimit = true; | 
|---|
| 647 | } | 
|---|
| 648 | return; | 
|---|
| 649 | } | 
|---|
| 650 |  | 
|---|
| 651 |  | 
|---|
| 652 | { | 
|---|
| 653 | // compute rotation of A wrt B (in constraint space) | 
|---|
| 654 | btQuaternion qA = transA.getRotation() * m_rbAFrame.getRotation(); | 
|---|
| 655 | btQuaternion qB = transB.getRotation() * m_rbBFrame.getRotation(); | 
|---|
| 656 | btQuaternion qAB = qB.inverse() * qA; | 
|---|
| 657 | // split rotation into cone and twist | 
|---|
| 658 | // (all this is done from B's perspective. Maybe I should be averaging axes...) | 
|---|
| 659 | btVector3 vConeNoTwist = quatRotate(qAB, vTwist); vConeNoTwist.normalize(); | 
|---|
| 660 | btQuaternion qABCone  = shortestArcQuat(vTwist, vConeNoTwist); qABCone.normalize(); | 
|---|
| 661 | btQuaternion qABTwist = qABCone.inverse() * qAB; qABTwist.normalize(); | 
|---|
| 662 |  | 
|---|
| 663 | if (m_swingSpan1 >= m_fixThresh && m_swingSpan2 >= m_fixThresh) | 
|---|
| 664 | { | 
|---|
| 665 | btScalar swingAngle, swingLimit = 0; btVector3 swingAxis; | 
|---|
| 666 | computeConeLimitInfo(qABCone, swingAngle, swingAxis, swingLimit); | 
|---|
| 667 |  | 
|---|
| 668 | if (swingAngle > swingLimit * m_limitSoftness) | 
|---|
| 669 | { | 
|---|
| 670 | m_solveSwingLimit = true; | 
|---|
| 671 |  | 
|---|
| 672 | // compute limit ratio: 0->1, where | 
|---|
| 673 | // 0 == beginning of soft limit | 
|---|
| 674 | // 1 == hard/real limit | 
|---|
| 675 | m_swingLimitRatio = 1.f; | 
|---|
| 676 | if (swingAngle < swingLimit && m_limitSoftness < 1.f - SIMD_EPSILON) | 
|---|
| 677 | { | 
|---|
| 678 | m_swingLimitRatio = (swingAngle - swingLimit * m_limitSoftness)/ | 
|---|
| 679 | (swingLimit - swingLimit * m_limitSoftness); | 
|---|
| 680 | } | 
|---|
| 681 |  | 
|---|
| 682 | // swing correction tries to get back to soft limit | 
|---|
| 683 | m_swingCorrection = swingAngle - (swingLimit * m_limitSoftness); | 
|---|
| 684 |  | 
|---|
| 685 | // adjustment of swing axis (based on ellipse normal) | 
|---|
| 686 | adjustSwingAxisToUseEllipseNormal(swingAxis); | 
|---|
| 687 |  | 
|---|
| 688 | // Calculate necessary axis & factors | 
|---|
| 689 | m_swingAxis = quatRotate(qB, -swingAxis); | 
|---|
| 690 |  | 
|---|
| 691 | m_twistAxisA.setValue(0,0,0); | 
|---|
| 692 |  | 
|---|
| 693 | m_kSwing =  btScalar(1.) / | 
|---|
| 694 | (computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldA) + | 
|---|
| 695 | computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldB)); | 
|---|
| 696 | } | 
|---|
| 697 | } | 
|---|
| 698 | else | 
|---|
| 699 | { | 
|---|
| 700 | // you haven't set any limits; | 
|---|
| 701 | // or you're trying to set at least one of the swing limits too small. (if so, do you really want a conetwist constraint?) | 
|---|
| 702 | // anyway, we have either hinge or fixed joint | 
|---|
| 703 | btVector3 ivA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0); | 
|---|
| 704 | btVector3 jvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1); | 
|---|
| 705 | btVector3 kvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(2); | 
|---|
| 706 | btVector3 ivB = transB.getBasis() * m_rbBFrame.getBasis().getColumn(0); | 
|---|
| 707 | btVector3 target; | 
|---|
| 708 | btScalar x = ivB.dot(ivA); | 
|---|
| 709 | btScalar y = ivB.dot(jvA); | 
|---|
| 710 | btScalar z = ivB.dot(kvA); | 
|---|
| 711 | if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh)) | 
|---|
| 712 | { // fixed. We'll need to add one more row to constraint | 
|---|
| 713 | if((!btFuzzyZero(y)) || (!(btFuzzyZero(z)))) | 
|---|
| 714 | { | 
|---|
| 715 | m_solveSwingLimit = true; | 
|---|
| 716 | m_swingAxis = -ivB.cross(ivA); | 
|---|
| 717 | } | 
|---|
| 718 | } | 
|---|
| 719 | else | 
|---|
| 720 | { | 
|---|
| 721 | if(m_swingSpan1 < m_fixThresh) | 
|---|
| 722 | { // hinge around Y axis | 
|---|
| 723 | if(!(btFuzzyZero(y))) | 
|---|
| 724 | { | 
|---|
| 725 | m_solveSwingLimit = true; | 
|---|
| 726 | if(m_swingSpan2 >= m_fixThresh) | 
|---|
| 727 | { | 
|---|
| 728 | y = btScalar(0.f); | 
|---|
| 729 | btScalar span2 = btAtan2(z, x); | 
|---|
| 730 | if(span2 > m_swingSpan2) | 
|---|
| 731 | { | 
|---|
| 732 | x = btCos(m_swingSpan2); | 
|---|
| 733 | z = btSin(m_swingSpan2); | 
|---|
| 734 | } | 
|---|
| 735 | else if(span2 < -m_swingSpan2) | 
|---|
| 736 | { | 
|---|
| 737 | x =  btCos(m_swingSpan2); | 
|---|
| 738 | z = -btSin(m_swingSpan2); | 
|---|
| 739 | } | 
|---|
| 740 | } | 
|---|
| 741 | } | 
|---|
| 742 | } | 
|---|
| 743 | else | 
|---|
| 744 | { // hinge around Z axis | 
|---|
| 745 | if(!btFuzzyZero(z)) | 
|---|
| 746 | { | 
|---|
| 747 | m_solveSwingLimit = true; | 
|---|
| 748 | if(m_swingSpan1 >= m_fixThresh) | 
|---|
| 749 | { | 
|---|
| 750 | z = btScalar(0.f); | 
|---|
| 751 | btScalar span1 = btAtan2(y, x); | 
|---|
| 752 | if(span1 > m_swingSpan1) | 
|---|
| 753 | { | 
|---|
| 754 | x = btCos(m_swingSpan1); | 
|---|
| 755 | y = btSin(m_swingSpan1); | 
|---|
| 756 | } | 
|---|
| 757 | else if(span1 < -m_swingSpan1) | 
|---|
| 758 | { | 
|---|
| 759 | x =  btCos(m_swingSpan1); | 
|---|
| 760 | y = -btSin(m_swingSpan1); | 
|---|
| 761 | } | 
|---|
| 762 | } | 
|---|
| 763 | } | 
|---|
| 764 | } | 
|---|
| 765 | target[0] = x * ivA[0] + y * jvA[0] + z * kvA[0]; | 
|---|
| 766 | target[1] = x * ivA[1] + y * jvA[1] + z * kvA[1]; | 
|---|
| 767 | target[2] = x * ivA[2] + y * jvA[2] + z * kvA[2]; | 
|---|
| 768 | target.normalize(); | 
|---|
| 769 | m_swingAxis = -ivB.cross(target); | 
|---|
| 770 | m_swingCorrection = m_swingAxis.length(); | 
|---|
| 771 | m_swingAxis.normalize(); | 
|---|
| 772 | } | 
|---|
| 773 | } | 
|---|
| 774 |  | 
|---|
| 775 | if (m_twistSpan >= btScalar(0.f)) | 
|---|
| 776 | { | 
|---|
| 777 | btVector3 twistAxis; | 
|---|
| 778 | computeTwistLimitInfo(qABTwist, m_twistAngle, twistAxis); | 
|---|
| 779 |  | 
|---|
| 780 | if (m_twistAngle > m_twistSpan*m_limitSoftness) | 
|---|
| 781 | { | 
|---|
| 782 | m_solveTwistLimit = true; | 
|---|
| 783 |  | 
|---|
| 784 | m_twistLimitRatio = 1.f; | 
|---|
| 785 | if (m_twistAngle < m_twistSpan && m_limitSoftness < 1.f - SIMD_EPSILON) | 
|---|
| 786 | { | 
|---|
| 787 | m_twistLimitRatio = (m_twistAngle - m_twistSpan * m_limitSoftness)/ | 
|---|
| 788 | (m_twistSpan  - m_twistSpan * m_limitSoftness); | 
|---|
| 789 | } | 
|---|
| 790 |  | 
|---|
| 791 | // twist correction tries to get back to soft limit | 
|---|
| 792 | m_twistCorrection = m_twistAngle - (m_twistSpan * m_limitSoftness); | 
|---|
| 793 |  | 
|---|
| 794 | m_twistAxis = quatRotate(qB, -twistAxis); | 
|---|
| 795 |  | 
|---|
| 796 | m_kTwist = btScalar(1.) / | 
|---|
| 797 | (computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldA) + | 
|---|
| 798 | computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldB)); | 
|---|
| 799 | } | 
|---|
| 800 |  | 
|---|
| 801 | if (m_solveSwingLimit) | 
|---|
| 802 | m_twistAxisA = quatRotate(qA, -twistAxis); | 
|---|
| 803 | } | 
|---|
| 804 | else | 
|---|
| 805 | { | 
|---|
| 806 | m_twistAngle = btScalar(0.f); | 
|---|
| 807 | } | 
|---|
| 808 | } | 
|---|
| 809 | } | 
|---|
| 810 |  | 
|---|
| 811 |  | 
|---|
| 812 |  | 
|---|
| 813 | // given a cone rotation in constraint space, (pre: twist must already be removed) | 
|---|
| 814 | // this method computes its corresponding swing angle and axis. | 
|---|
| 815 | // more interestingly, it computes the cone/swing limit (angle) for this cone "pose". | 
|---|
| 816 | void btConeTwistConstraint::computeConeLimitInfo(const btQuaternion& qCone, | 
|---|
| 817 | btScalar& swingAngle, // out | 
|---|
| 818 | btVector3& vSwingAxis, // out | 
|---|
| 819 | btScalar& swingLimit) // out | 
|---|
| 820 | { | 
|---|
| 821 | swingAngle = qCone.getAngle(); | 
|---|
| 822 | if (swingAngle > SIMD_EPSILON) | 
|---|
| 823 | { | 
|---|
| 824 | vSwingAxis = btVector3(qCone.x(), qCone.y(), qCone.z()); | 
|---|
| 825 | vSwingAxis.normalize(); | 
|---|
| 826 | if (fabs(vSwingAxis.x()) > SIMD_EPSILON) | 
|---|
| 827 | { | 
|---|
| 828 | // non-zero twist?! this should never happen. | 
|---|
| 829 | int wtf = 0; wtf = wtf; | 
|---|
| 830 | } | 
|---|
| 831 |  | 
|---|
| 832 | // Compute limit for given swing. tricky: | 
|---|
| 833 | // Given a swing axis, we're looking for the intersection with the bounding cone ellipse. | 
|---|
| 834 | // (Since we're dealing with angles, this ellipse is embedded on the surface of a sphere.) | 
|---|
| 835 |  | 
|---|
| 836 | // For starters, compute the direction from center to surface of ellipse. | 
|---|
| 837 | // This is just the perpendicular (ie. rotate 2D vector by PI/2) of the swing axis. | 
|---|
| 838 | // (vSwingAxis is the cone rotation (in z,y); change vars and rotate to (x,y) coords.) | 
|---|
| 839 | btScalar xEllipse =  vSwingAxis.y(); | 
|---|
| 840 | btScalar yEllipse = -vSwingAxis.z(); | 
|---|
| 841 |  | 
|---|
| 842 | // Now, we use the slope of the vector (using x/yEllipse) and find the length | 
|---|
| 843 | // of the line that intersects the ellipse: | 
|---|
| 844 | //  x^2   y^2 | 
|---|
| 845 | //  --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits) | 
|---|
| 846 | //  a^2   b^2 | 
|---|
| 847 | // Do the math and it should be clear. | 
|---|
| 848 |  | 
|---|
| 849 | swingLimit = m_swingSpan1; // if xEllipse == 0, we have a pure vSwingAxis.z rotation: just use swingspan1 | 
|---|
| 850 | if (fabs(xEllipse) > SIMD_EPSILON) | 
|---|
| 851 | { | 
|---|
| 852 | btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse); | 
|---|
| 853 | btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2); | 
|---|
| 854 | norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1); | 
|---|
| 855 | btScalar swingLimit2 = (1 + surfaceSlope2) / norm; | 
|---|
| 856 | swingLimit = sqrt(swingLimit2); | 
|---|
| 857 | } | 
|---|
| 858 |  | 
|---|
| 859 | // test! | 
|---|
| 860 | /*swingLimit = m_swingSpan2; | 
|---|
| 861 | if (fabs(vSwingAxis.z()) > SIMD_EPSILON) | 
|---|
| 862 | { | 
|---|
| 863 | btScalar mag_2 = m_swingSpan1*m_swingSpan1 + m_swingSpan2*m_swingSpan2; | 
|---|
| 864 | btScalar sinphi = m_swingSpan2 / sqrt(mag_2); | 
|---|
| 865 | btScalar phi = asin(sinphi); | 
|---|
| 866 | btScalar theta = atan2(fabs(vSwingAxis.y()),fabs(vSwingAxis.z())); | 
|---|
| 867 | btScalar alpha = 3.14159f - theta - phi; | 
|---|
| 868 | btScalar sinalpha = sin(alpha); | 
|---|
| 869 | swingLimit = m_swingSpan1 * sinphi/sinalpha; | 
|---|
| 870 | }*/ | 
|---|
| 871 | } | 
|---|
| 872 | else if (swingAngle < 0) | 
|---|
| 873 | { | 
|---|
| 874 | // this should never happen! | 
|---|
| 875 | int wtf = 0; wtf = wtf; | 
|---|
| 876 | } | 
|---|
| 877 | } | 
|---|
| 878 |  | 
|---|
| 879 | btVector3 btConeTwistConstraint::GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const | 
|---|
| 880 | { | 
|---|
| 881 | // compute x/y in ellipse using cone angle (0 -> 2*PI along surface of cone) | 
|---|
| 882 | btScalar xEllipse = btCos(fAngleInRadians); | 
|---|
| 883 | btScalar yEllipse = btSin(fAngleInRadians); | 
|---|
| 884 |  | 
|---|
| 885 | // Use the slope of the vector (using x/yEllipse) and find the length | 
|---|
| 886 | // of the line that intersects the ellipse: | 
|---|
| 887 | //  x^2   y^2 | 
|---|
| 888 | //  --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits) | 
|---|
| 889 | //  a^2   b^2 | 
|---|
| 890 | // Do the math and it should be clear. | 
|---|
| 891 |  | 
|---|
| 892 | float swingLimit = m_swingSpan1; // if xEllipse == 0, just use axis b (1) | 
|---|
| 893 | if (fabs(xEllipse) > SIMD_EPSILON) | 
|---|
| 894 | { | 
|---|
| 895 | btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse); | 
|---|
| 896 | btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2); | 
|---|
| 897 | norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1); | 
|---|
| 898 | btScalar swingLimit2 = (1 + surfaceSlope2) / norm; | 
|---|
| 899 | swingLimit = sqrt(swingLimit2); | 
|---|
| 900 | } | 
|---|
| 901 |  | 
|---|
| 902 | // convert into point in constraint space: | 
|---|
| 903 | // note: twist is x-axis, swing 1 and 2 are along the z and y axes respectively | 
|---|
| 904 | btVector3 vSwingAxis(0, xEllipse, -yEllipse); | 
|---|
| 905 | btQuaternion qSwing(vSwingAxis, swingLimit); | 
|---|
| 906 | btVector3 vPointInConstraintSpace(fLength,0,0); | 
|---|
| 907 | return quatRotate(qSwing, vPointInConstraintSpace); | 
|---|
| 908 | } | 
|---|
| 909 |  | 
|---|
| 910 | // given a twist rotation in constraint space, (pre: cone must already be removed) | 
|---|
| 911 | // this method computes its corresponding angle and axis. | 
|---|
| 912 | void btConeTwistConstraint::computeTwistLimitInfo(const btQuaternion& qTwist, | 
|---|
| 913 | btScalar& twistAngle, // out | 
|---|
| 914 | btVector3& vTwistAxis) // out | 
|---|
| 915 | { | 
|---|
| 916 | btQuaternion qMinTwist = qTwist; | 
|---|
| 917 | twistAngle = qTwist.getAngle(); | 
|---|
| 918 |  | 
|---|
| 919 | if (twistAngle > SIMD_PI) // long way around. flip quat and recalculate. | 
|---|
| 920 | { | 
|---|
| 921 | qMinTwist = operator-(qTwist); | 
|---|
| 922 | twistAngle = qMinTwist.getAngle(); | 
|---|
| 923 | } | 
|---|
| 924 | if (twistAngle < 0) | 
|---|
| 925 | { | 
|---|
| 926 | // this should never happen | 
|---|
| 927 | int wtf = 0; wtf = wtf; | 
|---|
| 928 | } | 
|---|
| 929 |  | 
|---|
| 930 | vTwistAxis = btVector3(qMinTwist.x(), qMinTwist.y(), qMinTwist.z()); | 
|---|
| 931 | if (twistAngle > SIMD_EPSILON) | 
|---|
| 932 | vTwistAxis.normalize(); | 
|---|
| 933 | } | 
|---|
| 934 |  | 
|---|
| 935 |  | 
|---|
| 936 | void btConeTwistConstraint::adjustSwingAxisToUseEllipseNormal(btVector3& vSwingAxis) const | 
|---|
| 937 | { | 
|---|
| 938 | // the swing axis is computed as the "twist-free" cone rotation, | 
|---|
| 939 | // but the cone limit is not circular, but elliptical (if swingspan1 != swingspan2). | 
|---|
| 940 | // so, if we're outside the limits, the closest way back inside the cone isn't | 
|---|
| 941 | // along the vector back to the center. better (and more stable) to use the ellipse normal. | 
|---|
| 942 |  | 
|---|
| 943 | // convert swing axis to direction from center to surface of ellipse | 
|---|
| 944 | // (ie. rotate 2D vector by PI/2) | 
|---|
| 945 | btScalar y = -vSwingAxis.z(); | 
|---|
| 946 | btScalar z =  vSwingAxis.y(); | 
|---|
| 947 |  | 
|---|
| 948 | // do the math... | 
|---|
| 949 | if (fabs(z) > SIMD_EPSILON) // avoid division by 0. and we don't need an update if z == 0. | 
|---|
| 950 | { | 
|---|
| 951 | // compute gradient/normal of ellipse surface at current "point" | 
|---|
| 952 | btScalar grad = y/z; | 
|---|
| 953 | grad *= m_swingSpan2 / m_swingSpan1; | 
|---|
| 954 |  | 
|---|
| 955 | // adjust y/z to represent normal at point (instead of vector to point) | 
|---|
| 956 | if (y > 0) | 
|---|
| 957 | y =  fabs(grad * z); | 
|---|
| 958 | else | 
|---|
| 959 | y = -fabs(grad * z); | 
|---|
| 960 |  | 
|---|
| 961 | // convert ellipse direction back to swing axis | 
|---|
| 962 | vSwingAxis.setZ(-y); | 
|---|
| 963 | vSwingAxis.setY( z); | 
|---|
| 964 | vSwingAxis.normalize(); | 
|---|
| 965 | } | 
|---|
| 966 | } | 
|---|
| 967 |  | 
|---|
| 968 |  | 
|---|
| 969 |  | 
|---|
| 970 | void btConeTwistConstraint::setMotorTarget(const btQuaternion &q) | 
|---|
| 971 | { | 
|---|
| 972 | btTransform trACur = m_rbA.getCenterOfMassTransform(); | 
|---|
| 973 | btTransform trBCur = m_rbB.getCenterOfMassTransform(); | 
|---|
| 974 | btTransform trABCur = trBCur.inverse() * trACur; | 
|---|
| 975 | btQuaternion qABCur = trABCur.getRotation(); | 
|---|
| 976 | btTransform trConstraintCur = (trBCur * m_rbBFrame).inverse() * (trACur * m_rbAFrame); | 
|---|
| 977 | btQuaternion qConstraintCur = trConstraintCur.getRotation(); | 
|---|
| 978 |  | 
|---|
| 979 | btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * q * m_rbAFrame.getRotation(); | 
|---|
| 980 | setMotorTargetInConstraintSpace(qConstraint); | 
|---|
| 981 | } | 
|---|
| 982 |  | 
|---|
| 983 |  | 
|---|
| 984 | void btConeTwistConstraint::setMotorTargetInConstraintSpace(const btQuaternion &q) | 
|---|
| 985 | { | 
|---|
| 986 | m_qTarget = q; | 
|---|
| 987 |  | 
|---|
| 988 | // clamp motor target to within limits | 
|---|
| 989 | { | 
|---|
| 990 | btScalar softness = 1.f;//m_limitSoftness; | 
|---|
| 991 |  | 
|---|
| 992 | // split into twist and cone | 
|---|
| 993 | btVector3 vTwisted = quatRotate(m_qTarget, vTwist); | 
|---|
| 994 | btQuaternion qTargetCone  = shortestArcQuat(vTwist, vTwisted); qTargetCone.normalize(); | 
|---|
| 995 | btQuaternion qTargetTwist = qTargetCone.inverse() * m_qTarget; qTargetTwist.normalize(); | 
|---|
| 996 |  | 
|---|
| 997 | // clamp cone | 
|---|
| 998 | if (m_swingSpan1 >= btScalar(0.05f) && m_swingSpan2 >= btScalar(0.05f)) | 
|---|
| 999 | { | 
|---|
| 1000 | btScalar swingAngle, swingLimit; btVector3 swingAxis; | 
|---|
| 1001 | computeConeLimitInfo(qTargetCone, swingAngle, swingAxis, swingLimit); | 
|---|
| 1002 |  | 
|---|
| 1003 | if (fabs(swingAngle) > SIMD_EPSILON) | 
|---|
| 1004 | { | 
|---|
| 1005 | if (swingAngle > swingLimit*softness) | 
|---|
| 1006 | swingAngle = swingLimit*softness; | 
|---|
| 1007 | else if (swingAngle < -swingLimit*softness) | 
|---|
| 1008 | swingAngle = -swingLimit*softness; | 
|---|
| 1009 | qTargetCone = btQuaternion(swingAxis, swingAngle); | 
|---|
| 1010 | } | 
|---|
| 1011 | } | 
|---|
| 1012 |  | 
|---|
| 1013 | // clamp twist | 
|---|
| 1014 | if (m_twistSpan >= btScalar(0.05f)) | 
|---|
| 1015 | { | 
|---|
| 1016 | btScalar twistAngle; btVector3 twistAxis; | 
|---|
| 1017 | computeTwistLimitInfo(qTargetTwist, twistAngle, twistAxis); | 
|---|
| 1018 |  | 
|---|
| 1019 | if (fabs(twistAngle) > SIMD_EPSILON) | 
|---|
| 1020 | { | 
|---|
| 1021 | // eddy todo: limitSoftness used here??? | 
|---|
| 1022 | if (twistAngle > m_twistSpan*softness) | 
|---|
| 1023 | twistAngle = m_twistSpan*softness; | 
|---|
| 1024 | else if (twistAngle < -m_twistSpan*softness) | 
|---|
| 1025 | twistAngle = -m_twistSpan*softness; | 
|---|
| 1026 | qTargetTwist = btQuaternion(twistAxis, twistAngle); | 
|---|
| 1027 | } | 
|---|
| 1028 | } | 
|---|
| 1029 |  | 
|---|
| 1030 | m_qTarget = qTargetCone * qTargetTwist; | 
|---|
| 1031 | } | 
|---|
| 1032 | } | 
|---|
| 1033 |  | 
|---|
| 1034 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). | 
|---|
| 1035 | ///If no axis is provided, it uses the default axis for this constraint. | 
|---|
| 1036 | void btConeTwistConstraint::setParam(int num, btScalar value, int axis) | 
|---|
| 1037 | { | 
|---|
| 1038 | switch(num) | 
|---|
| 1039 | { | 
|---|
| 1040 | case BT_CONSTRAINT_ERP : | 
|---|
| 1041 | case BT_CONSTRAINT_STOP_ERP : | 
|---|
| 1042 | if((axis >= 0) && (axis < 3)) | 
|---|
| 1043 | { | 
|---|
| 1044 | m_linERP = value; | 
|---|
| 1045 | m_flags |= BT_CONETWIST_FLAGS_LIN_ERP; | 
|---|
| 1046 | } | 
|---|
| 1047 | else | 
|---|
| 1048 | { | 
|---|
| 1049 | m_biasFactor = value; | 
|---|
| 1050 | } | 
|---|
| 1051 | break; | 
|---|
| 1052 | case BT_CONSTRAINT_CFM : | 
|---|
| 1053 | case BT_CONSTRAINT_STOP_CFM : | 
|---|
| 1054 | if((axis >= 0) && (axis < 3)) | 
|---|
| 1055 | { | 
|---|
| 1056 | m_linCFM = value; | 
|---|
| 1057 | m_flags |= BT_CONETWIST_FLAGS_LIN_CFM; | 
|---|
| 1058 | } | 
|---|
| 1059 | else | 
|---|
| 1060 | { | 
|---|
| 1061 | m_angCFM = value; | 
|---|
| 1062 | m_flags |= BT_CONETWIST_FLAGS_ANG_CFM; | 
|---|
| 1063 | } | 
|---|
| 1064 | break; | 
|---|
| 1065 | default: | 
|---|
| 1066 | btAssertConstrParams(0); | 
|---|
| 1067 | break; | 
|---|
| 1068 | } | 
|---|
| 1069 | } | 
|---|
| 1070 |  | 
|---|
| 1071 | ///return the local value of parameter | 
|---|
| 1072 | btScalar btConeTwistConstraint::getParam(int num, int axis) const | 
|---|
| 1073 | { | 
|---|
| 1074 | btScalar retVal = 0; | 
|---|
| 1075 | switch(num) | 
|---|
| 1076 | { | 
|---|
| 1077 | case BT_CONSTRAINT_ERP : | 
|---|
| 1078 | case BT_CONSTRAINT_STOP_ERP : | 
|---|
| 1079 | if((axis >= 0) && (axis < 3)) | 
|---|
| 1080 | { | 
|---|
| 1081 | btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_ERP); | 
|---|
| 1082 | retVal = m_linERP; | 
|---|
| 1083 | } | 
|---|
| 1084 | else if((axis >= 3) && (axis < 6)) | 
|---|
| 1085 | { | 
|---|
| 1086 | retVal = m_biasFactor; | 
|---|
| 1087 | } | 
|---|
| 1088 | else | 
|---|
| 1089 | { | 
|---|
| 1090 | btAssertConstrParams(0); | 
|---|
| 1091 | } | 
|---|
| 1092 | break; | 
|---|
| 1093 | case BT_CONSTRAINT_CFM : | 
|---|
| 1094 | case BT_CONSTRAINT_STOP_CFM : | 
|---|
| 1095 | if((axis >= 0) && (axis < 3)) | 
|---|
| 1096 | { | 
|---|
| 1097 | btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_CFM); | 
|---|
| 1098 | retVal = m_linCFM; | 
|---|
| 1099 | } | 
|---|
| 1100 | else if((axis >= 3) && (axis < 6)) | 
|---|
| 1101 | { | 
|---|
| 1102 | btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_ANG_CFM); | 
|---|
| 1103 | retVal = m_angCFM; | 
|---|
| 1104 | } | 
|---|
| 1105 | else | 
|---|
| 1106 | { | 
|---|
| 1107 | btAssertConstrParams(0); | 
|---|
| 1108 | } | 
|---|
| 1109 | break; | 
|---|
| 1110 | default : | 
|---|
| 1111 | btAssertConstrParams(0); | 
|---|
| 1112 | } | 
|---|
| 1113 | return retVal; | 
|---|
| 1114 | } | 
|---|
| 1115 |  | 
|---|
| 1116 |  | 
|---|
| 1117 | void btConeTwistConstraint::setFrames(const btTransform & frameA, const btTransform & frameB) | 
|---|
| 1118 | { | 
|---|
| 1119 | m_rbAFrame = frameA; | 
|---|
| 1120 | m_rbBFrame = frameB; | 
|---|
| 1121 | buildJacobian(); | 
|---|
| 1122 | //calculateTransforms(); | 
|---|
| 1123 | } | 
|---|
| 1124 |  | 
|---|
| 1125 |  | 
|---|
| 1126 |  | 
|---|
| 1127 |  | 
|---|