| 1 | /* | 
|---|
| 2 |    orxonox - the future of 3D-vertical-scrollers | 
|---|
| 3 |  | 
|---|
| 4 |    Copyright (C) 2004 orx | 
|---|
| 5 |  | 
|---|
| 6 |    This program is free software; you can redistribute it and/or modify | 
|---|
| 7 |    it under the terms of the GNU General Public License as published by | 
|---|
| 8 |    the Free Software Foundation; either version 2, or (at your option) | 
|---|
| 9 |    any later version. | 
|---|
| 10 |  | 
|---|
| 11 | ### File Specific: | 
|---|
| 12 |    main-programmer: Christian Meyer | 
|---|
| 13 |    co-programmer: ... | 
|---|
| 14 | */ | 
|---|
| 15 |  | 
|---|
| 16 | /*! | 
|---|
| 17 |  * @file quaternion.h | 
|---|
| 18 |  * A basic 3D quaternion math framework | 
|---|
| 19 |  * | 
|---|
| 20 |  * Contains classes to handle vectors, lines, rotations and planes | 
|---|
| 21 | */ | 
|---|
| 22 |  | 
|---|
| 23 | #ifndef __QUATERNION_H_ | 
|---|
| 24 | #define __QUATERNION_H_ | 
|---|
| 25 |  | 
|---|
| 26 | #include <math.h> | 
|---|
| 27 | #include "compiler.h" | 
|---|
| 28 | //! PI the circle-constant | 
|---|
| 29 | #define PI 3.14159265359f | 
|---|
| 30 | #include "vector.h" | 
|---|
| 31 |  | 
|---|
| 32 | //! Quaternion | 
|---|
| 33 | /** | 
|---|
| 34 |    Class to handle 3-dimensional rotation efficiently | 
|---|
| 35 | */ | 
|---|
| 36 | class Quaternion | 
|---|
| 37 | { | 
|---|
| 38 |  public: | 
|---|
| 39 |   /** creates a Default quaternion (multiplicational identity Quaternion)*/ | 
|---|
| 40 |   inline Quaternion () { w = 1; v = Vector(0,0,0); } | 
|---|
| 41 |   /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */ | 
|---|
| 42 |   inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; } | 
|---|
| 43 |   Quaternion (float m[4][4]); | 
|---|
| 44 |   Quaternion (float m[3][3]); | 
|---|
| 45 |   /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */ | 
|---|
| 46 |   inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2.0); v = axis * sin(angle/2.0); } | 
|---|
| 47 |   Quaternion (const Vector& dir, const Vector& up); | 
|---|
| 48 |   Quaternion (float roll, float pitch, float yaw); | 
|---|
| 49 |  | 
|---|
| 50 |   /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */ | 
|---|
| 51 |   inline bool operator== (const Quaternion& q) const { return (unlikely(this->v==q.v&&this->w==q.w))?true:false; }; | 
|---|
| 52 |   /** @param f: a real value @return a Quaternion containing the quotient */ | 
|---|
| 53 |   inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); }; | 
|---|
| 54 |   /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */ | 
|---|
| 55 |   inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;} | 
|---|
| 56 |   /** @param f: a real value @return a Quaternion containing the product */ | 
|---|
| 57 |   inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); }; | 
|---|
| 58 |   /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */ | 
|---|
| 59 |   inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;} | 
|---|
| 60 |   /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */ | 
|---|
| 61 |   Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y, | 
|---|
| 62 |                                                                          this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z, | 
|---|
| 63 |                                                                          this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x), | 
|---|
| 64 |                                                                          this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); }; | 
|---|
| 65 |   /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */ | 
|---|
| 66 |   inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; }; | 
|---|
| 67 |   /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */ | 
|---|
| 68 |   inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); }; | 
|---|
| 69 |   /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */ | 
|---|
| 70 |   inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; }; | 
|---|
| 71 |   /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */ | 
|---|
| 72 |   inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); }; | 
|---|
| 73 |   /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */ | 
|---|
| 74 |   inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; }; | 
|---|
| 75 |   /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */ | 
|---|
| 76 |   inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); } | 
|---|
| 77 |   /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */ | 
|---|
| 78 |   inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; }; | 
|---|
| 79 |   /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */ | 
|---|
| 80 |   inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;} | 
|---|
| 81 |   /** conjugates this Quaternion @returns the conjugate */ | 
|---|
| 82 |   inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); }; | 
|---|
| 83 |   /** @returns the norm of The Quaternion */ | 
|---|
| 84 |   inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; | 
|---|
| 85 |   /** @returns the inverted Quaterntion of this */ | 
|---|
| 86 |   inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; | 
|---|
| 87 |   /** @returns the dot Product of a Quaternion */ | 
|---|
| 88 |   inline float dot (const Quaternion& q) const { return v.x*q.v.x + v.y*q.v.y + v.z*q.v.z + w*q.w; }; | 
|---|
| 89 |   /** @retuns the Distance between two Quaternions */ | 
|---|
| 90 |   inline float distance(const Quaternion& q) const { return 2*acos(fabsf(this->dot(q))); }; | 
|---|
| 91 |   /** @param v: the Vector  @return a new Vector representing v rotated by the Quaternion */ | 
|---|
| 92 |   inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; }; | 
|---|
| 93 |   void matrix (float m[4][4]) const; | 
|---|
| 94 |   /** @returns the normalized Quaternion (|this|) */ | 
|---|
| 95 |   inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); }; | 
|---|
| 96 |   /** normalizes the current Quaternion */ | 
|---|
| 97 |   inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; }; | 
|---|
| 98 |  | 
|---|
| 99 |   float getHeading() const; | 
|---|
| 100 |   Quaternion getHeadingQuat() const; | 
|---|
| 101 |   float getAttitude() const; | 
|---|
| 102 |   Quaternion getAttitudeQuat() const; | 
|---|
| 103 |   float getBank() const; | 
|---|
| 104 |   Quaternion getBankQuat() const; | 
|---|
| 105 |   /** @returns the rotational axis of this Quaternion */ | 
|---|
| 106 |   inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ }; | 
|---|
| 107 |   /** @returns the rotational angle of this Quaternion around getSpacialAxis()  !! IN DEGREE !! */ | 
|---|
| 108 |   inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos( this->w ); }; | 
|---|
| 109 |  | 
|---|
| 110 |  | 
|---|
| 111 |   inline void slerpTo(const Quaternion& toQuat, float t); | 
|---|
| 112 |   static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t); | 
|---|
| 113 |  | 
|---|
| 114 |   void debug() const; | 
|---|
| 115 |   void debug2() const; | 
|---|
| 116 |  | 
|---|
| 117 |  | 
|---|
| 118 |  public: | 
|---|
| 119 |   Vector    v;        //!< Imaginary Vector | 
|---|
| 120 |   float     w;        //!< Real part of the number | 
|---|
| 121 | }; | 
|---|
| 122 |  | 
|---|
| 123 |  | 
|---|
| 124 |  | 
|---|
| 125 | #endif /* __QUATERNION_H_ */ | 
|---|
| 126 |  | 
|---|