Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/collision_detection/obb_tree_node.cc @ 7734

Last change on this file since 7734 was 7734, checked in by patrick, 18 years ago

trunk: less cd debug infos

File size: 35.5 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13*/
14
15#define DEBUG_SPECIAL_MODULE 3/* DEBUG_MODULE_COLLISION_DETECTION*/
16
17#include "obb_tree_node.h"
18#include "obb_tree.h"
19#include "obb.h"
20
21#include "matrix.h"
22#include "model.h"
23#include "world_entity.h"
24#include "plane.h"
25
26#include "color.h"
27#include "glincl.h"
28
29#include <list>
30#include <vector>
31#include "debug.h"
32
33
34
35using namespace std;
36
37
38GLUquadricObj* OBBTreeNode_sphereObj = NULL;
39
40
41/**
42 *  standard constructor
43 * @param tree: reference to the obb tree
44 * @param depth: the depth of the obb tree to generate
45 */
46OBBTreeNode::OBBTreeNode (const OBBTree& tree, OBBTreeNode* prev, int depth)
47    : BVTreeNode()
48{
49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
50
51  this->obbTree = &tree;
52  this->nodePrev = prev;
53  this->depth = depth;
54  this->nextID = 0;
55
56  this->nodeLeft = NULL;
57  this->nodeRight = NULL;
58  this->bvElement = NULL;
59
60  this->triangleIndexList1 = NULL;
61  this->triangleIndexList2 = NULL;
62
63  this->modelInf = NULL;
64  this->triangleIndexes = NULL;
65
66  if( OBBTreeNode_sphereObj == NULL)
67    OBBTreeNode_sphereObj = gluNewQuadric();
68
69  this->owner = NULL;
70
71  /* debug ids */
72  if( this->nodePrev)
73    this->treeIndex = 100 * this->depth + this->nodePrev->getID();
74  else
75    this->treeIndex = 0;
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85    delete this->nodeLeft;
86  if( this->nodeRight)
87    delete this->nodeRight;
88
89  if( this->bvElement)
90    delete this->bvElement;
91
92//   if( this->triangleIndexList1 != NULL)
93//     delete [] this->triangleIndexList1;
94//   if( this->triangleIndexList2 != NULL)
95//     delete [] this->triangleIndexList2;
96}
97
98
99/**
100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param modInfo: model informations from the abstrac model
103 *
104 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
105 * on the triangle informations (triangle soup not polygon soup)
106 */
107void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, int length)
108{
109  PRINTF(4)("\n==============================Creating OBB Tree Node==================\n");
110  PRINT(4)(" OBB Tree Infos: \n");
111  PRINT(4)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, this->treeIndex, length);
112  this->depth = depth;
113
114  this->bvElement = new OBB();
115  this->bvElement->modelInf = &modelInf;
116  this->bvElement->triangleIndexes = triangleIndexes;
117  this->bvElement->triangleIndexesLength = length;
118
119  // full debug output
120
121  //indexes debug
122//   for( int i = 0; i < length; ++i)
123//   {
124//     PRINTF(2)("triangle[%i], index: %i\n", i, triangleIndexes[i]);
125//   }
126//   for( int i = 0; i < length; ++i)
127//   {
128//     PRINTF(2)("triangle[%i]\n", i);
129//     for(int j = 0; j < 3; ++j)
130//     {
131//       PRINTF(2)("  vertex[%i]: %f, %f, %f\n", j,
132//       (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[0],
133//       (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[1],
134//       (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[2]);
135//     }
136//   }
137//   PRINT(0)("\n\n\n");
138//   for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
139//     PRINTF(0)(  "vertex[%i]: %f, %f, %f\n", i, this->bvElement->modelInf->pVertices[i],
140//                this->bvElement->modelInf->pVertices[i+1],
141//                this->bvElement->modelInf->pVertices[i+2]);
142
143
144
145  /* create the bounding boxes in three steps */
146  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
147  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
148//   this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
149//   this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
150  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
151
152  /* do we need to descent further in the obb tree?*/
153  if( likely( this->depth > 0))
154  {
155    this->forkBox(*this->bvElement);
156
157    if( this->triangleIndexLength1 >= 3)
158    {
159      this->nodeLeft = new OBBTreeNode(*this->obbTree, this, depth - 1);
160      this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1);
161    }
162    if( this->triangleIndexLength2 >= 3)
163    {
164      this->nodeRight = new OBBTreeNode(*this->obbTree, this, depth - 1);
165      this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2);
166    }
167  }
168}
169
170
171
172/**
173 *  calculate the box covariance matrix
174 * @param box: reference to the box
175 * @param modelInf: the model info structure of the model
176 * @param tirangleIndexes: an array with the indexes of the triangles inside this
177 * @param length: the length of the indexes array
178 */
179void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
180{
181  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
182  float     face = 0.0f;                             //!< surface area of the entire convex hull
183  Vector    centroid[length];                        //!< centroid of the i'th convex hull
184  Vector    center;                                  //!< the center of the entire hull
185  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
186  Vector    t1, t2;                                  //!< temporary values
187  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
188  const float*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
189
190  /* fist compute all the convex hull face/facelets and centroids */
191  for( int i = 0; i < length ; ++i)
192  {
193    p = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]];
194    q = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]];
195    r = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]];
196
197    /* finding the facelet surface via cross-product */
198    t1 = p - q;
199    t2 = p - r;
200    facelet[i] = 0.5f * /*fabs*/( t1.cross(t2).len() );
201    /* update the entire convex hull surface */
202    face += facelet[i];
203
204    /* calculate the cetroid of the hull triangles */
205    centroid[i] = (p + q + r) / 3.0f;
206    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
207    center += centroid[i] * facelet[i];
208    /* the arithmetical center */
209  }
210  /* take the average of the centroid sum */
211  center /= face;
212
213
214  /* now calculate the covariance matrix - if not written in three for-loops,
215     it would compute faster: minor */
216  for( int j = 0; j < 3; ++j)
217  {
218    for( int k = 0; k < 3; ++k)
219    {
220      for( int i = 0; i < length; ++i)
221      {
222        p = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
223        q = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
224        r = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
225
226        covariance[j][k] = facelet[i] * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
227                           q[j] * q[k] + r[j] * r[k]);
228      }
229      covariance[j][k] = covariance[j][k] / (12.0f * face) - center[j] * center[k];
230    }
231  }
232  for( int i = 0; i < 3; ++i)
233  {
234    box.covarianceMatrix[i][0] = covariance[i][0];
235    box.covarianceMatrix[i][1] = covariance[i][1];
236    box.covarianceMatrix[i][2] = covariance[i][2];
237  }
238  box.center = center;
239
240  /* debug output section*/
241  PRINTF(4)("\nOBB Covariance Matrix:\n");
242  for(int j = 0; j < 3; ++j)
243  {
244    PRINT(4)("\t\t");
245    for(int k = 0; k < 3; ++k)
246    {
247      PRINT(4)("%11.4f\t", covariance[j][k]);
248    }
249    PRINT(4)("\n");
250  }
251  PRINTF(4)("\nWeighteed OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", center.x, center.y, center.z);
252}
253
254
255
256/**
257 *  calculate the eigenvectors for the object oriented box
258 * @param box: reference to the box
259 * @param modelInf: the model info structure of the model
260 * @param tirangleIndexes: an array with the indexes of the triangles inside this
261 * @param length: the length of the indexes array
262 */
263void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modelInf,
264    const int* triangleIndexes, int length)
265{
266
267  Vector         axis[3];                            //!< the references to the obb axis
268  Matrix         covMat(  box.covarianceMatrix  );   //!< covariance matrix (in the matrix dataform)
269
270  /*
271  now getting spanning vectors of the sub-space:
272  the eigenvectors of a symmertric matrix, such as the
273  covarience matrix are mutually orthogonal.
274  after normalizing them, they can be used as a the basis
275  vectors
276  */
277
278  /* calculate the axis */
279  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
280  box.axis[0] = axis[0];
281  box.axis[1] = axis[1];
282  box.axis[2] = axis[2];
283
284//   box.axis[0] = Vector(1,0,0);
285//   box.axis[1] = Vector(0,1,0);
286//   box.axis[2] = Vector(0,0,1);
287
288  PRINTF(4)("Eigenvectors:\n");
289  PRINT(4)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
290  PRINT(4)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
291  PRINT(4)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
292}
293
294
295
296
297/**
298 *  calculate the eigenvectors for the object oriented box
299 * @param box: reference to the box
300 * @param modelInf: the model info structure of the model
301 * @param tirangleIndexes: an array with the indexes of the triangles inside this
302 * @param length: the length of the indexes array
303 */
304void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
305{
306
307  PRINTF(4)("Calculate Box Axis\n");
308  /* now get the axis length */
309  float               halfLength[3];                         //!< half length of the axis
310  float               tmpLength;                             //!< tmp save point for the length
311  Plane               p0(box.axis[0], box.center);           //!< the axis planes
312  Plane               p1(box.axis[1], box.center);           //!< the axis planes
313  Plane               p2(box.axis[2], box.center);           //!< the axis planes
314  float               maxLength[3];                          //!< maximal lenth of the axis
315  float               minLength[3];                          //!< minimal length of the axis
316  const float*        tmpVec;                                //!< variable taking tmp vectors
317  float               centerOffset[3];
318
319  /* get the maximal dimensions of the body in all directions */
320  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
321  for( int k = 0; k  < 3; k++)
322  {
323    tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
324    Plane* p;
325    if( k == 0)
326      p = &p0;
327    else if( k == 1)
328      p = &p1;
329    else
330      p = &p2;
331    maxLength[k] = p->distancePoint(tmpVec);
332    minLength[k] = p->distancePoint(tmpVec);
333
334    for( int j = 0; j < length; ++j) {
335      for( int i = 0; i < 3; ++i) {
336        tmpVec = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]];
337        tmpLength = p->distancePoint(tmpVec);
338
339        if( tmpLength > maxLength[k])
340          maxLength[k] = tmpLength;
341        else if( tmpLength < minLength[k])
342          minLength[k] = tmpLength;
343      }
344    }
345  }
346
347
348
349  /* calculate the real centre of the body by using the axis length */
350  for( int i = 0; i < 3; ++i)
351  {
352    if( maxLength[i] > 0.0f && minLength[i] > 0.0f)  // both axis positiv
353      centerOffset[i] = minLength[i] + (maxLength[i] - minLength[i]) / 2.0f;
354    else if( maxLength[i] > 0.0f && maxLength[i] < 0.0f) // positiv and negativ
355      centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;
356    else //both negativ
357     centerOffset[i] = minLength[i] + (maxLength[i] - minLength[i]) / 2.0f;
358
359    box.halfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;
360  }
361
362  box.center += (box.axis[0] * centerOffset[0]);
363  box.center += (box.axis[1] * centerOffset[1]);
364  box.center += (box.axis[2] * centerOffset[2]);
365
366
367  PRINTF(4)("\n");
368  PRINT(4)("\tAxis halflength x: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[0], maxLength[0], minLength[0], centerOffset[0]);
369  PRINT(4)("\tAxis halflength y: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[1], maxLength[1], minLength[1], centerOffset[1] );
370  PRINT(4)("\tAxis halflength z: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[2], maxLength[2], minLength[2], centerOffset[2]);
371}
372
373
374
375/**
376 *  this separates an ob-box in the middle
377 * @param box: the box to separate
378 *
379 * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
380 */
381void OBBTreeNode::forkBox(OBB& box)
382{
383
384  PRINTF(4)("Fork Box\n");
385  PRINTF(4)("Calculating the longest Axis\n");
386  /* get the longest axis of the box */
387  float               longestAxis = -1.0f;                 //!< the length of the longest axis
388  int                 longestAxisIndex = 0;                //!< this is the nr of the longest axis
389
390
391  /* now get the longest axis of the three exiting */
392  for( int i = 0; i < 3; ++i)
393  {
394    if( longestAxis < box.halfLength[i])
395    {
396      longestAxis = box.halfLength[i];
397      longestAxisIndex = i;
398    }
399  }
400  PRINTF(4)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis);
401
402
403  PRINTF(4)("Separating along the longest axis\n");
404  /* get the closest vertex near the center */
405  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
406  float               tmpDist;                             //!< variable to save diverse distances temporarily
407  int                 vertexIndex;                         //!< index of the vertex near the center
408  Plane               middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane
409  const sVec3D*       tmpVec;                              //!< temp simple 3D vector
410
411
412  /* now definin the separation plane through this specified nearest point and partition
413  the points depending on which side they are located
414  */
415  std::list<int>           partition1;                           //!< the vertex partition 1
416  std::list<int>           partition2;                           //!< the vertex partition 2
417  float*                   triangleCenter = new float[3];        //!< the center of the triangle
418  const float*             a;                                    //!< triangle  edge a
419  const float*             b;                                    //!< triangle  edge b
420  const float*             c;                                    //!< triangle  edge c
421
422
423  /* find the center of the box */
424  this->separationPlane = Plane(box.axis[longestAxisIndex], box.center);
425  this->sepPlaneCenter[0] = box.center.x;
426  this->sepPlaneCenter[1] = box.center.y;
427  this->sepPlaneCenter[2] = box.center.z;
428  this->longestAxisIndex = longestAxisIndex;
429
430  for( int i = 0; i < box.triangleIndexesLength; ++i)
431  {
432    /* first calculate the middle of the triangle */
433    a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]];
434    b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]];
435    c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]];
436
437    triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f;
438    triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f;
439    triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f;
440    tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter));
441
442    if( tmpDist > 0.0f)
443      partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */
444    else if( tmpDist < 0.0f)
445      partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */
446    else {
447      partition1.push_back(box.triangleIndexes[i]); /* 0.0f? unprobable... */
448      partition2.push_back(box.triangleIndexes[i]);
449    }
450  }
451  PRINTF(4)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size());
452
453
454  /* now comes the separation into two different sVec3D arrays */
455  int                index;                                //!< index storage place
456  int*               triangleIndexList1;                   //!< the vertex list 1
457  int*               triangleIndexList2;                   //!< the vertex list 2
458  std::list<int>::iterator element;                        //!< the list iterator
459
460  triangleIndexList1 = new int[partition1.size()];
461  triangleIndexList2 = new int[partition2.size()];
462
463  for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++)
464    triangleIndexList1[index] = (*element);
465
466  for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++)
467    triangleIndexList2[index] = (*element);
468
469  if( this->triangleIndexList1!= NULL)
470    delete[] this->triangleIndexList1;
471  this->triangleIndexList1 = triangleIndexList1;
472  this->triangleIndexLength1 = partition1.size();
473
474  if( this->triangleIndexList2 != NULL)
475    delete[] this->triangleIndexList2;
476  this->triangleIndexList2 = triangleIndexList2;
477  this->triangleIndexLength2 = partition2.size();
478}
479
480
481
482/**
483 * collides one tree with an other
484 *  @param treeNode the other bv tree node
485 *  @param nodeA  the worldentity belonging to this bv
486 *  @param nodeB the worldentity belonging to treeNode
487 */
488void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
489{
490  if( unlikely(treeNode == NULL || nodeA == NULL || nodeB == NULL))
491  {
492//     assert(false);
493    return;
494  }
495
496  PRINTF(4)("collideWith\n");
497  PRINTF(5)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
498
499  // for now only collide with OBBTreeNodes
500  this->collideWithOBB((OBBTreeNode*)treeNode, nodeA, nodeB);
501}
502
503
504
505/**
506 * collides one obb tree with an other
507 *  @param treeNode the other bv tree node
508 *  @param nodeA  the worldentity belonging to this bv
509 *  @param nodeB the worldentity belonging to treeNode
510 */
511void OBBTreeNode::collideWithOBB(OBBTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
512{
513
514  if( this->overlapTest(this->bvElement, treeNode->bvElement, nodeA, nodeB))
515  {
516    PRINTF(5)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
517
518    /* check if left node overlaps */
519    if( likely( this->nodeLeft != NULL))
520    {
521      PRINTF(5)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
522      if( this->overlapTest(this->nodeLeft->bvElement, treeNode->bvElement, nodeA, nodeB))
523      {
524        this->nodeLeft->collideWith(treeNode->nodeLeft, nodeA, nodeB);
525        this->nodeLeft->collideWith(treeNode->nodeRight, nodeA, nodeB);
526      }
527    }
528    /* check if right node overlaps */
529    if( likely( this->nodeRight != NULL))
530    {
531      PRINTF(5)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
532      if(this->overlapTest(this->nodeRight->bvElement, treeNode->bvElement, nodeA, nodeB))
533      {
534        this->nodeRight->collideWith(treeNode->nodeLeft, nodeA, nodeB);
535        this->nodeRight->collideWith(treeNode->nodeRight, nodeA, nodeB);
536      }
537    }
538
539    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
540    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
541    if( unlikely(this->nodeRight == NULL || this->nodeLeft == NULL))
542    {
543      nodeA->collidesWith(nodeB, treeNode->bvElement->center);
544      nodeB->collidesWith(nodeA, this->bvElement->center);
545    }
546
547  }
548}
549
550
551/**
552 * this actualy checks if one obb box touches the other
553 * @param boxA the box from nodeA
554 * @param boxB the box from nodeB
555 * @param nodeA the node itself
556 * @param nodeB the node itself
557 */
558bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
559{
560  //HACK remove this again
561  this->owner = nodeA;
562  //   if( boxB == NULL || boxA == NULL)
563  //     return false;
564
565  /* first check all axis */
566  Vector      t;
567  float       rA = 0.0f;
568  float       rB = 0.0f;
569  Vector      l;
570  Vector      rotAxisA[3];
571  Vector      rotAxisB[3];
572
573  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
574  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
575  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
576
577  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
578  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
579  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
580
581  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB->center));
582
583  /* All 3 axis of the object A */
584  for( int j = 0; j < 3; ++j)
585  {
586    rA = 0.0f;
587    rB = 0.0f;
588    l = rotAxisA[j];
589
590    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
591    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
592    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
593
594    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
595    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
596    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
597
598    PRINTF(5)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
599
600    if( (rA + rB) < fabs(t.dot(l)))
601    {
602      PRINTF(4)("no Collision\n");
603      return false;
604    }
605  }
606
607  /* All 3 axis of the object B */
608  for( int j = 0; j < 3; ++j)
609  {
610    rA = 0.0f;
611    rB = 0.0f;
612    l = rotAxisB[j];
613
614    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
615    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
616    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
617
618    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
619    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
620    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
621
622    PRINTF(5)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
623
624    if( (rA + rB) < fabs(t.dot(l)))
625    {
626      PRINTF(4)("no Collision\n");
627      return false;
628    }
629  }
630
631
632  /* Now check for all face cross products */
633
634  for( int j = 0; j < 3; ++j)
635  {
636    for(int k = 0; k < 3; ++k )
637    {
638      rA = 0.0f;
639      rB = 0.0f;
640      l = rotAxisA[j].cross(rotAxisB[k]);
641
642      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
643      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
644      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
645
646      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
647      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
648      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
649
650      PRINTF(5)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
651
652      if( (rA + rB) < fabs(t.dot(l)))
653      {
654        PRINTF(4)("keine Kollision\n");
655        return false;
656      }
657    }
658  }
659
660  /* FIXME: there is no collision mark set now */
661     boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
662     boxB->bCollided = true;
663
664
665  PRINTF(4)("Kollision!\n");
666  return true;
667}
668
669
670/**
671 *
672 * draw the BV tree - debug mode
673 */
674void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
675{
676  /* this function can be used to draw the triangles and/or the points only  */
677  if( 1 /*drawMode & DRAW_MODEL || drawMode & DRAW_ALL*/)
678  {
679    if( depth == 0/*!(drawMode & DRAW_SINGLE && depth != 0)*/)
680    {
681      if( 1 /*drawMode & DRAW_POINTS*/)
682      {
683        glBegin(GL_POINTS);
684        glColor3f(0.3, 0.8, 0.54);
685        for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
686          glVertex3f(this->bvElement->modelInf->pVertices[i],
687                     this->bvElement->modelInf->pVertices[i+1],
688                     this->bvElement->modelInf->pVertices[i+2]);
689        glEnd();
690      }
691    }
692  }
693
694  if (top)
695  {
696    glPushAttrib(GL_ENABLE_BIT);
697    glDisable(GL_LIGHTING);
698    glDisable(GL_TEXTURE_2D);
699  }
700  glColor3f(color.x, color.y, color.z);
701
702
703  /* draw world axes */
704  if( 1 /*drawMode & DRAW_BV_AXIS*/)
705  {
706    glBegin(GL_LINES);
707    glColor3f(1.0, 0.0, 0.0);
708    glVertex3f(0.0, 0.0, 0.0);
709    glVertex3f(3.0, 0.0, 0.0);
710
711    glColor3f(0.0, 1.0, 0.0);
712    glVertex3f(0.0, 0.0, 0.0);
713    glVertex3f(0.0, 3.0, 0.0);
714
715    glColor3f(0.0, 0.0, 1.0);
716    glVertex3f(0.0, 0.0, 0.0);
717    glVertex3f(0.0, 0.0, 3.0);
718    glEnd();
719  }
720
721
722  if( 1/*drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL*/)
723  {
724    if( 1/*drawMode & DRAW_SINGLE && depth != 0*/)
725    {
726      /* draw the obb axes */
727      glBegin(GL_LINES);
728      glColor3f(1.0, 0.0, 0.0);
729      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
730      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
731                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
732                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
733
734      glColor3f(0.0, 1.0, 0.0);
735      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
736      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
737                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
738                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
739
740      glColor3f(0.0, 0.0, 1.0);
741      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
742      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
743                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
744                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
745      glEnd();
746    }
747  }
748
749
750  /* DRAW POLYGONS */
751  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
752  {
753    if (top)
754    {
755      glEnable(GL_BLEND);
756      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
757    }
758
759    if( this->nodeLeft == NULL && this->nodeRight == NULL)
760      depth = 0;
761
762    if( depth == 0 /*!(drawMode & DRAW_SINGLE && depth != 0)*/)
763    {
764
765
766      Vector cen = this->bvElement->center;
767      Vector* axis = this->bvElement->axis;
768      float* len = this->bvElement->halfLength;
769
770      if( this->bvElement->bCollided)
771      {
772        glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
773      }
774      else if( drawMode & DRAW_BV_BLENDED)
775      {
776        glColor4f(color.x, color.y, color.z, .5);
777      }
778
779      // debug out
780      if( this->obbTree->getOwner() != NULL)
781      {
782        PRINTF(4)("debug poly draw: depth: %i, mode: %i, entity-name: %s, class: %s\n", depth, drawMode, this->obbTree->getOwner()->getName(), this->obbTree->getOwner()->getClassName());
783      }
784      else
785        PRINTF(4)("debug poly draw: depth: %i, mode: %i\n", depth, drawMode);
786
787
788      /* draw bounding box */
789      if( drawMode & DRAW_BV_BLENDED)
790        glBegin(GL_QUADS);
791      else
792        glBegin(GL_LINE_LOOP);
793      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
794                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
795                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
796      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
797                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
798                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
799      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
800                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
801                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
802      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
803                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
804                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
805      glEnd();
806
807      if( drawMode & DRAW_BV_BLENDED)
808        glBegin(GL_QUADS);
809      else
810        glBegin(GL_LINE_LOOP);
811      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
812                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
813                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
814      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
815                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
816                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
817      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
818                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
819                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
820      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
821                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
822                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
823      glEnd();
824
825      if( drawMode & DRAW_BV_BLENDED)
826        glBegin(GL_QUADS);
827      else
828        glBegin(GL_LINE_LOOP);
829      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
830                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
831                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
832      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
833                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
834                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
835      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
836                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
837                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
838      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
839                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
840                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
841      glEnd();
842
843      if( drawMode & DRAW_BV_BLENDED)
844        glBegin(GL_QUADS);
845      else
846        glBegin(GL_LINE_LOOP);
847      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
848                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
849                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
850      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
851                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
852                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
853      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
854                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
855                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
856      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
857                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
858                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
859      glEnd();
860
861
862      if( drawMode & DRAW_BV_BLENDED)
863      {
864        glBegin(GL_QUADS);
865        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
866                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
867                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
868        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
869                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
870                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
871        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
872                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
873                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
874        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
875                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
876                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
877        glEnd();
878
879        glBegin(GL_QUADS);
880        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
881                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
882                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
883        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
884                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
885                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
886        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
887                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
888                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
889        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
890                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
891                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
892        glEnd();
893      }
894
895      if( drawMode & DRAW_BV_BLENDED)
896        glColor3f(color.x, color.y, color.z);
897    }
898  }
899
900  /* DRAW SEPARATING PLANE */
901  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
902  {
903    if( !(drawMode & DRAW_SINGLE && depth != 0))
904    {
905      if( drawMode & DRAW_BV_BLENDED)
906        glColor4f(color.x, color.y, color.z, .6);
907
908      /* now draw the separation plane */
909      Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
910      Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
911      Vector c = this->bvElement->center;
912      float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
913      float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
914      glBegin(GL_QUADS);
915      glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
916      glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
917      glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
918      glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
919      glEnd();
920
921      if( drawMode & DRAW_BV_BLENDED)
922        glColor4f(color.x, color.y, color.z, 1.0);
923
924    }
925  }
926
927
928
929  if (depth > 0)
930  {
931    if( this->nodeLeft != NULL)
932      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
933    if( this->nodeRight != NULL)
934      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
935  }
936  this->bvElement->bCollided = false;
937
938  if (top)
939    glPopAttrib();
940}
941
942
943
944void OBBTreeNode::debug() const
945{
946  PRINT(0)("========OBBTreeNode::debug()=====\n");
947  PRINT(0)(" Current depth: %i", this->depth);
948  PRINT(0)(" ");
949  PRINT(0)("=================================\n");
950}
Note: See TracBrowser for help on using the repository browser.