Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/collision_detection/obb_tree_node.cc @ 5431

Last change on this file since 5431 was 5431, checked in by bensch, 19 years ago

orxonox/trunk: changed the static values back

File size: 36.4 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "vector.h"
23#include "abstract_model.h"
24#include "world_entity.h"
25
26#include <math.h>
27
28#include "stdincl.h"
29
30#include "lin_alg.h"
31#include "glincl.h"
32
33
34
35using namespace std;
36
37OBBTree*  OBBTreeNode::obbTree = NULL;
38
39float**  OBBTreeNode::coMat = NULL;
40float**  OBBTreeNode::eigvMat = NULL;
41float*   OBBTreeNode::eigvlMat = NULL;
42int*     OBBTreeNode::rotCount = NULL;
43GLUquadricObj* OBBTreeNode_sphereObj = NULL;
44
45/**
46 *  standard constructor
47 */
48OBBTreeNode::OBBTreeNode ()
49{
50  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
51  this->nodeLeft = NULL;
52  this->nodeRight = NULL;
53  this->bvElement = NULL;
54
55  if(OBBTreeNode::coMat == NULL)
56  {
57    OBBTreeNode::coMat = new float*[4];
58    for(int i = 0; i < 4; i++)
59      OBBTreeNode::coMat[i] = new float[4];
60  }
61  if(OBBTreeNode::eigvMat == NULL)
62  {
63    OBBTreeNode::eigvMat = new float*[4];
64    for(int i = 0; i < 4; i++)
65      OBBTreeNode::eigvMat[i] = new float[4];
66  }
67  if( OBBTreeNode::eigvlMat == NULL)
68  {
69    OBBTreeNode::eigvlMat = new float[4];
70  }
71  if( OBBTreeNode::rotCount == NULL)
72    OBBTreeNode::rotCount = new int;
73
74  if (OBBTreeNode_sphereObj == NULL)
75    OBBTreeNode_sphereObj = gluNewQuadric();
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85  {
86    delete this->nodeLeft;
87    this->nodeLeft = NULL;
88  }
89  if( this->nodeRight)
90  {
91    delete this->nodeRight;
92    this->nodeRight = NULL;
93  }
94  if( this->bvElement)
95    delete this->bvElement;
96  this->bvElement = NULL;
97}
98
99
100
101/**
102 *  creates a new BVTree or BVTree partition
103 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
104 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
105 */
106void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length)
107{
108  PRINT(3)("\n");
109  this->treeIndex = this->obbTree->getID();
110  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
111  this->depth = depth;
112
113
114  this->bvElement = new OBB();
115  this->bvElement->vertices = verticesList;
116  this->bvElement->numOfVertices = length;
117  PRINTF(3)("Created OBBox\n");
118  this->calculateBoxCovariance(this->bvElement, verticesList, length);
119  PRINTF(3)("Calculated attributes1\n");
120  this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
121  PRINTF(3)("Calculated attributes2\n");
122  this->calculateBoxAxis(this->bvElement, verticesList, length);
123  PRINTF(3)("Calculated attributes3\n");
124
125  /* if this is the first node, the vertices data are the original ones of the model itself, so dont delete them in cleanup */
126  if( this->treeIndex == 1)
127    this->bvElement->bOrigVertices = true;
128
129  if( likely( this->depth > 0))
130  {
131    this->forkBox(this->bvElement);
132
133
134    if(this->tmpLen1 > 2)
135    {
136      OBBTreeNode* node1 = new OBBTreeNode();
137      this->nodeLeft = node1;
138      this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
139    }
140    else
141    {
142      PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
143    }
144
145    if( this->tmpLen2 > 2)
146    {
147      OBBTreeNode* node2 = new OBBTreeNode();
148      this->nodeRight = node2;
149      this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
150    }
151    else
152    {
153      PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
154    }
155
156  }
157}
158
159
160
161void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length)
162{
163  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
164  float     face = 0.0f;                             //!< surface area of the entire convex hull
165  Vector    centroid[length];                        //!< centroid of the i'th convex hull
166  Vector    center;                                  //!< the center of the entire hull
167  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
168  Vector    t1, t2;                                  //!< temporary values
169  float     covariance[3][3];                        //!< the covariance matrix
170  int       mode = 0;                                //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle
171
172  this->numOfVertices = length;
173  this->vertices = verticesList;
174
175
176  if( likely(mode == 0))
177  {
178    /* fist compute all the convex hull face/facelets and centroids */
179    for( int i = 0; i+3 < length ; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
180    {
181      p = verticesList[i];
182      q = verticesList[i + 1];
183      r = verticesList[i + 2];
184
185      t1 = p - q; t2 = p - r;
186
187      /* finding the facelet surface via cross-product */
188      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
189      /* update the entire convex hull surface */
190      face += facelet[i];
191
192      /* calculate the cetroid of the hull triangles */
193      centroid[i] = (p + q + r) * 1/3;
194      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
195      center += centroid[i] * facelet[i];
196    }
197    /* take the average of the centroid sum */
198    center /= face;
199    PRINTF(3)("-- Calculated Center\n");
200
201
202    /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */
203    for( int j = 0; j < 3; ++j)
204    {
205      for( int k = 0; k < 3; ++k)
206      {
207        for( int i = 0; i + 3 < length; i+=3)
208        {
209          p = verticesList[i];
210          q = verticesList[i + 1];
211          r = verticesList[i + 2];
212
213          covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
214              q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
215        }
216      }
217    }
218    PRINTF(3)("-- Calculated Covariance\n");
219  }
220  else if( mode == 1)
221  {
222    for( int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
223    {
224      p = verticesList[i];
225      q = verticesList[i + 1];
226      r = verticesList[i + 2];
227
228      centroid[i] = (p + q + r) / 3.0f;
229      center += centroid[i];
230    }
231    center /= length;
232
233    for( int j = 0; j < 3; ++j)
234    {
235      for( int k = 0; k < 3; ++k)
236      {
237        for( int i = 0; i + 3 < length; i+=3)
238        {
239          p = verticesList[i];
240          q = verticesList[i +1];
241          r = verticesList[i + 2];
242
243          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
244        }
245        covariance[j][k] /= (3.0f * length);
246      }
247    }
248    PRINTF(3)("-- Calculated Covariance\n");
249  }
250  else if( mode == 2)
251  {
252    /* fist compute all the convex hull face/facelets and centroids */
253    for(int i = 0; i + 3 < length; i+=3)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
254    {
255      p = verticesList[i];
256      q = verticesList[i + 1];
257      r = verticesList[i + 2];
258
259      t1 = p - q; t2 = p - r;
260
261      /* finding the facelet surface via cross-product */
262      facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
263      /* update the entire convex hull surface */
264      face += facelet[i];
265
266      /* calculate the cetroid of the hull triangles */
267      centroid[i] = (p + q + r) * 1/3;
268      /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
269      center += centroid[i] * facelet[i];
270    }
271    /* take the average of the centroid sum */
272    center /= face;
273    PRINTF(3)("-- Calculated Center\n");
274
275    for( int j = 0; j < 3; ++j)
276    {
277      for( int k = 0; k < 3; ++k)
278      {
279        for( int i = 0; i + 3 < length; i+=3)
280        {
281          p = verticesList[i];
282          q = verticesList[i +1];
283          r = verticesList[i + 2];
284
285          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
286        }
287        covariance[j][k] /= (3.0f * length);
288      }
289    }
290    PRINTF(3)("-- Calculated Covariance\n");
291  }
292  else
293  {
294    for( int i = 0; i < length; ++i)          /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/
295    {
296      center += verticesList[i];
297    }
298    center /= length;
299
300    for( int j = 0; j < 3; ++j)
301    {
302      for( int k = 0; k < 3; ++k)
303      {
304        for( int i = 0; i + 3 < length; i+=3)
305        {
306          p = verticesList[i];
307          q = verticesList[i +1];
308          r = verticesList[i + 2];
309
310          covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k];
311        }
312        covariance[j][k] /= (3.0f * length);
313      }
314    }
315    PRINTF(3)("-- Calculated Covariance\n");
316  }
317
318  PRINTF(3)("\nVertex Data:\n");
319  for(int i = 0; i < length; i++)
320  {
321    PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]);
322  }
323
324
325  PRINTF(3)("\nCovariance Matrix:\n");
326  for(int j = 0; j < 3; ++j)
327  {
328    PRINT(3)(" |");
329    for(int k = 0; k < 3; ++k)
330    {
331      PRINT(3)(" \b%f ", covariance[j][k]);
332    }
333    PRINT(3)(" |\n");
334  }
335
336  PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z);
337
338
339  for(int i = 0; i < 3; ++i)
340  {
341    box->covarianceMatrix[i][0] = covariance[i][0];
342    box->covarianceMatrix[i][1] = covariance[i][1];
343    box->covarianceMatrix[i][2] = covariance[i][2];
344  }
345  *box->center = center;
346  PRINTF(3)("-- Written Result to obb\n");
347}
348
349
350
351void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length)
352{
353
354  /* now getting spanning vectors of the sub-space:
355  the eigenvectors of a symmertric matrix, such as the
356  covarience matrix are mutually orthogonal.
357  after normalizing them, they can be used as a the basis
358  vectors
359  */
360  Vector*              axis = new Vector[3];                //!< the references to the obb axis
361
362  OBBTreeNode::coMat[1][1] = box->covarianceMatrix[0][0]; OBBTreeNode::coMat[1][2] = box->covarianceMatrix[0][1]; OBBTreeNode::coMat[1][3] = box->covarianceMatrix[0][2];
363  OBBTreeNode::coMat[2][1] = box->covarianceMatrix[1][0]; OBBTreeNode::coMat[2][2] = box->covarianceMatrix[1][1]; OBBTreeNode::coMat[2][3] = box->covarianceMatrix[1][2];
364  OBBTreeNode::coMat[3][1] = box->covarianceMatrix[2][0]; OBBTreeNode::coMat[3][2] = box->covarianceMatrix[2][1]; OBBTreeNode::coMat[3][3] = box->covarianceMatrix[2][2];
365
366//   OBBTreeNode::coMat[0][0] = box->covarianceMatrix[0][0];
367//   OBBTreeNode::coMat[0][1] = box->covarianceMatrix[0][1];
368//   OBBTreeNode::coMat[0][2] = box->covarianceMatrix[0][2];
369//
370//   OBBTreeNode::coMat[1][0] = box->covarianceMatrix[1][0];
371//   OBBTreeNode::coMat[1][1] = box->covarianceMatrix[1][1];
372//   OBBTreeNode::coMat[1][3] = box->covarianceMatrix[1][2];
373//
374//   OBBTreeNode::coMat[2][0] = box->covarianceMatrix[2][0];
375//   OBBTreeNode::coMat[2][1] = box->covarianceMatrix[2][1];
376//   OBBTreeNode::coMat[2][2] = box->covarianceMatrix[2][2];
377
378
379  /* new jacobi tests */
380  JacobI(OBBTreeNode::coMat, 3, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
381  PRINTF(3)("-- Done Jacobi Decomposition\n");
382
383
384//   PRINTF(3)("Jacobi\n");
385//   for(int j = 1; j < 4; ++j)
386//   {
387//     PRINTF(3)(" |");
388//     for(int k = 1; k < 4; ++k)
389//     {
390//       PRINTF(3)(" \b%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
391//     }
392//     PRINTF(3)(" |\n");
393//   }
394
395  axis[0].x = OBBTreeNode::eigvMat[1][1]; axis[0].y = OBBTreeNode::eigvMat[2][1]; axis[0].z = OBBTreeNode::eigvMat[3][1];
396  axis[1].x = OBBTreeNode::eigvMat[1][2]; axis[1].y = OBBTreeNode::eigvMat[2][2]; axis[1].z = OBBTreeNode::eigvMat[3][2];
397  axis[2].x = OBBTreeNode::eigvMat[1][3]; axis[2].y = OBBTreeNode::eigvMat[2][3]; axis[2].z = OBBTreeNode::eigvMat[3][3];
398  axis[0].normalize();
399  axis[1].normalize();
400  axis[2].normalize();
401  box->axis = axis;
402
403  PRINTF(3)("-- Got Axis\n");
404
405  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[0].x, box->axis[0].y, box->axis[0].z);
406  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[1].x, box->axis[1].y, box->axis[1].z);
407  PRINTF(3)("eigenvector: %f, %f, %f\n", box->axis[2].x, box->axis[2].y, box->axis[2].z);
408}
409
410
411void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length)
412{
413
414  /* now get the axis length */
415  Line                ax[3];                                 //!< the axis
416  float*              halfLength = new float[3];             //!< half length of the axis
417  float               tmpLength;                             //!< tmp save point for the length
418  Plane               p0(box->axis[0], *box->center);       //!< the axis planes
419  Plane               p1(box->axis[1], *box->center);
420  Plane               p2(box->axis[2], *box->center);
421  float               maxLength[3];
422  float               minLength[3];
423
424
425  /* get a bad bounding box */
426  halfLength[0] = -1.0f;
427  for(int j = 0; j < length; ++j)
428    {
429      tmpLength = fabs(p0.distancePoint(vertices[j]));
430      if( tmpLength > halfLength[0])
431        halfLength[0] = tmpLength;
432    }
433
434  halfLength[1] = -1.0f;
435  for(int j = 0; j < length; ++j)
436    {
437      tmpLength = fabs(p1.distancePoint(vertices[j]));
438      if( tmpLength > halfLength[1])
439        halfLength[1] = tmpLength;
440    }
441
442  halfLength[2] = -1.0f;
443  for(int j = 0; j < length; ++j)
444    {
445      tmpLength = fabs(p2.distancePoint(vertices[j]));
446      if( tmpLength > halfLength[2])
447        halfLength[2] = tmpLength;
448    }
449
450
451
452  /* get the maximal dimensions of the body in all directions */
453    maxLength[0] = p0.distancePoint(vertices[0]);
454    minLength[0] = p0.distancePoint(vertices[0]);
455   for(int j = 0; j < length; ++j)
456   {
457     tmpLength = p0.distancePoint(vertices[j]);
458     if( tmpLength > maxLength[0])
459       maxLength[0] = tmpLength;
460     else if( tmpLength < minLength[0])
461       minLength[0] = tmpLength;
462   }
463
464   maxLength[1] = p1.distancePoint(vertices[0]);
465   minLength[1] = p1.distancePoint(vertices[0]);
466   for(int j = 0; j < length; ++j)
467   {
468     tmpLength = p1.distancePoint(vertices[j]);
469     if( tmpLength > maxLength[1])
470       maxLength[1] = tmpLength;
471     else if( tmpLength < minLength[1])
472       minLength[1] = tmpLength;
473   }
474
475   maxLength[2] = p2.distancePoint(vertices[0]);
476   minLength[2] = p2.distancePoint(vertices[0]);
477   for(int j = 0; j < length; ++j)
478   {
479     tmpLength = p2.distancePoint(vertices[j]);
480     if( tmpLength > maxLength[2])
481       maxLength[2] = tmpLength;
482     else if( tmpLength < minLength[2])
483       minLength[2] = tmpLength;
484   }
485
486
487   /* calculate the real centre of the body by using the axis length */
488   float centerOffset[3];
489   float newHalfLength[3];
490   for(int i = 0; i < 3; ++i)
491     {
492       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
493       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
494       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
495       *box->center +=  (box->axis[i] * centerOffset[i]);            // update the new center vector
496       halfLength[i] = newHalfLength[i];
497     }
498
499
500
501  box->halfLength = halfLength;
502  PRINTF(3)("-- Written Axis to obb\n");
503  PRINTF(3)("-- Finished Calculating Attributes\n");
504
505}
506
507
508
509/**
510  \brief this separates an ob-box in the middle
511* @param box: the box to separate
512
513  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
514 */
515void OBBTreeNode::forkBox(OBB* box)
516{
517  /* get the longest axis of the box */
518  float               aLength = -1.0f;                     //!< the length of the longest axis
519  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
520
521  for(int i = 0; i < 3; ++i)
522  {
523    if( aLength < box->halfLength[i])
524    {
525      aLength = box->halfLength[i];
526      axisIndex = i;
527    }
528  }
529
530   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
531
532
533  /* get the closest vertex near the center */
534  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
535  float               tmpDist;                             //!< temporary distance
536  int                 vertexIndex;
537  Plane               middlePlane(box->axis[axisIndex], *box->center); //!< the middle plane
538
539  vertexIndex = 0;
540  for(int i = 0; i < box->numOfVertices; ++i)
541  {
542    tmpDist = fabs(middlePlane.distancePoint(box->vertices[i]));
543    if( tmpDist < dist)
544    {
545      dist = tmpDist;
546      vertexIndex = i;
547    }
548  }
549
550  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
551
552
553  /* now definin the separation plane through this specified nearest point and partition
554  the points depending on which side they are located
555  */
556  tList<sVec3D>      partition1;                           //!< the vertex partition 1
557  tList<sVec3D>      partition2;                           //!< the vertex partition 2
558
559
560  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box->numOfVertices);
561  this->separationPlane = new Plane(box->axis[axisIndex], box->vertices[vertexIndex]);  //!< separation plane
562  this->sepPlaneCenter = &box->vertices[vertexIndex];
563  this->longestAxisIndex = axisIndex;
564
565  for(int i = 0; i < box->numOfVertices; ++i)
566  {
567    if( i == vertexIndex) continue;
568    tmpDist = this->separationPlane->distancePoint(box->vertices[i]);
569    if( tmpDist > 0.0)
570      partition1.add(&box->vertices[i]); /* positive numbers plus zero */
571    else
572      partition2.add(&box->vertices[i]); /* negatice numbers */
573  }
574  partition1.add(&box->vertices[vertexIndex]);
575  partition2.add(&box->vertices[vertexIndex]);
576
577  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
578
579
580  /* now comes the separation into two different sVec3D arrays */
581  tIterator<sVec3D>* iterator;                             //!< the iterator to go through the lists
582  sVec3D*            element;                              //!< the elements
583  int                index;                                //!< index storage place
584  sVec3D*            vertList1;                            //!< the vertex list 1
585  sVec3D*            vertList2;                            //!< the vertex list 2
586
587  vertList1 = new sVec3D[partition1.getSize()];
588  vertList2 = new sVec3D[partition2.getSize()];
589
590  iterator = partition1.getIterator();
591  element = iterator->firstElement();
592  index = 0;
593  while( element != NULL)
594  {
595    vertList1[index][0] = element[0][0];
596    vertList1[index][1] = element[0][1];
597    vertList1[index][2] = element[0][2];
598    ++index;
599    element = iterator->nextElement();
600  }
601
602//   PRINTF(0)("\npartition 1:\n");
603//   for(int i = 0; i < partition1.getSize(); ++i)
604//   {
605//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
606//   }
607
608  iterator = partition2.getIterator();
609  element = iterator->firstElement();
610  index = 0;
611  while( element != NULL)
612  {
613    vertList2[index][0] = element[0][0];
614    vertList2[index][1] = element[0][1];
615    vertList2[index][2] = element[0][2];
616    ++index;
617    element = iterator->nextElement();
618  }
619
620  this->tmpVert1 = vertList1;
621  this->tmpVert2 = vertList2;
622  this->tmpLen1 = partition1.getSize();
623  this->tmpLen2 = partition2.getSize();
624
625  delete iterator;
626
627//   PRINTF(0)("\npartition 2:\n");
628//   for(int i = 0; i < partition2.getSize(); ++i)
629//   {
630//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
631//   }
632}
633
634
635
636
637void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
638{
639  PRINTF(3)("collideWith\n");
640  /* if the obb overlap, make subtests: check which node is realy overlaping  */
641  PRINT(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
642  if( unlikely(treeNode == NULL)) return;
643
644  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
645  {
646    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
647
648    /* check if left node overlaps */
649    if( likely( this->nodeLeft != NULL))
650    {
651      PRINT(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
652      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
653      {
654        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
655        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
656      }
657    }
658    /* check if right node overlaps */
659    if( likely( this->nodeRight != NULL))
660    {
661      PRINT(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
662      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
663      {
664       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
665       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
666      }
667    }
668
669    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
670    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
671    {
672      nodeA->collidesWith(nodeB, *((OBBTreeNode*)treeNode)->bvElement->center);
673
674      nodeB->collidesWith(nodeA, *this->bvElement->center);
675    }
676
677  }
678}
679
680
681
682bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
683{
684  /* first check all axis */
685  Vector t;
686  float rA = 0.0f;
687  float rB = 0.0f;
688  Vector l;
689  Vector rotAxisA[3];
690  Vector rotAxisB[3];
691
692  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
693  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
694  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
695
696  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
697  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
698  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
699
700  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(*boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(*boxB->center));
701
702//   printf("\n");
703//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
704//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
705//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
706//
707//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
708//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
709//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
710
711
712  /* All 3 axis of the object A */
713  for( int j = 0; j < 3; ++j)
714  {
715    rA = 0.0f;
716    rB = 0.0f;
717    l = rotAxisA[j];
718
719    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
720    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
721    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
722
723    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
724    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
725    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
726
727    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
728
729    if( (rA + rB) < fabs(t.dot(l)))
730    {
731      PRINT(3)("keine Kollision\n");
732      return false;
733    }
734  }
735
736  /* All 3 axis of the object B */
737  for( int j = 0; j < 3; ++j)
738  {
739    rA = 0.0f;
740    rB = 0.0f;
741    l = rotAxisB[j];
742
743    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
744    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
745    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
746
747    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
748    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
749    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
750
751    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
752
753    if( (rA + rB) < fabs(t.dot(l)))
754    {
755      PRINT(3)("keine Kollision\n");
756      return false;
757    }
758  }
759
760
761  /* Now check for all face cross products */
762
763  for( int j = 0; j < 3; ++j)
764  {
765    for(int k = 0; k < 3; ++k )
766    {
767      rA = 0.0f;
768      rB = 0.0f;
769      l = rotAxisA[j].cross(rotAxisB[k]);
770
771      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
772      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
773      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
774
775      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
776      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
777      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
778
779      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
780
781      if( (rA + rB) < fabs(t.dot(l)))
782      {
783        PRINT(3)("keine Kollision\n");
784        return false;
785      }
786    }
787  }
788
789
790  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
791  boxB->bCollided = true;
792  PRINT(3)("Kollision!\n");
793  return true;
794}
795
796
797
798
799
800void OBBTreeNode::drawBV(int depth, int drawMode)
801{
802  this->obbTree->getMaterial(treeIndex)->select();
803
804  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
805  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
806  {
807    if( !(drawMode & DRAW_SINGLE && depth != 0))
808    {
809      if( drawMode & DRAW_POINTS)
810        glBegin(GL_POINTS);
811      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
812      {
813        if( drawMode & DRAW_POINTS)
814          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
815        else
816        {
817          glPushMatrix();
818          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
819          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
820          glPopMatrix();
821        }
822      }
823      if( drawMode & DRAW_POINTS)
824        glEnd();
825    }
826  }
827
828
829  /* draw world axes */
830  if( drawMode & DRAW_BV_AXIS)
831  {
832    glBegin(GL_LINES);
833    glColor3f(0.0, 0.4, 0.3);
834    glVertex3f(0.0, 0.0, 0.0);
835    glVertex3f(3.0, 0.0, 0.0);
836
837    glVertex3f(0.0, 0.0, 0.0);
838    glVertex3f(0.0, 3.0, 0.0);
839
840    glVertex3f(0.0, 0.0, 0.0);
841    glVertex3f(0.0, 0.0, 3.0);
842    glEnd();
843  }
844
845
846  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
847  {
848    if( !(drawMode & DRAW_SINGLE && depth != 0))
849    {
850      /* draw the obb axes */
851      glBegin(GL_LINES);
852      glColor3f(0.0, 0.4, 0.3);
853      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
854      glVertex3f(this->bvElement->center->x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
855                 this->bvElement->center->y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
856                 this->bvElement->center->z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
857
858      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
859      glVertex3f(this->bvElement->center->x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
860                 this->bvElement->center->y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
861                 this->bvElement->center->z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
862
863      glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z);
864      glVertex3f(this->bvElement->center->x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
865                 this->bvElement->center->y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
866                 this->bvElement->center->z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
867      glEnd();
868    }
869  }
870
871
872  /* DRAW POLYGONS */
873  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
874  {
875    if(this->nodeLeft == NULL || this->nodeRight == NULL)
876      depth = 0;
877    if( !(drawMode & DRAW_SINGLE && depth != 0))
878    {
879    Vector cen = *this->bvElement->center;
880    Vector* axis = this->bvElement->axis;
881    float* len = this->bvElement->halfLength;
882
883    if( this->bvElement->bCollided)
884      this->obbTree->getCollisionMaterial()->select();
885    else if( drawMode & DRAW_BV_BLENDED)
886      this->obbTree->getTransparentMaterial(treeIndex)->select();
887
888
889
890    /* draw bounding box */
891    if( drawMode & DRAW_BV_BLENDED)
892      glBegin(GL_QUADS);
893    else
894      glBegin(GL_LINE_LOOP);
895    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
896               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
897               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
898    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
899               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
900               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
901    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
902               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
903               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
904    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
905               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
906               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
907    glEnd();
908
909    if( drawMode & DRAW_BV_BLENDED)
910      glBegin(GL_QUADS);
911    else
912      glBegin(GL_LINE_LOOP);
913    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
914               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
915               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
916    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
917               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
918               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
919    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
920               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
921               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
922    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
923               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
924               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
925    glEnd();
926
927    if( drawMode & DRAW_BV_BLENDED)
928      glBegin(GL_QUADS);
929    else
930      glBegin(GL_LINE_LOOP);
931    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
932               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
933               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
934    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
935               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
936               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
937    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
938               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
939               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
940    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
941               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
942               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
943    glEnd();
944
945    if( drawMode & DRAW_BV_BLENDED)
946      glBegin(GL_QUADS);
947    else
948      glBegin(GL_LINE_LOOP);
949    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
950               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
951               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
952    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
953               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
954               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
955    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
956               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
957               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
958    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
959               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
960               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
961    glEnd();
962
963
964    if( drawMode & DRAW_BV_BLENDED)
965    {
966      glBegin(GL_QUADS);
967      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
968                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
969                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
970      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
971                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
972                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
973      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
974                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
975                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
976      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
977                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
978                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
979      glEnd();
980
981      glBegin(GL_QUADS);
982      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
983                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
984                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
985      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
986                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
987                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
988      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
989                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
990                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
991      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
992                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
993                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
994      glEnd();
995    }
996
997
998    if( drawMode & DRAW_BV_BLENDED)
999      this->obbTree->getMaterial(treeIndex)->select();
1000    }
1001
1002  }
1003
1004  /* DRAW SEPARATING PLANE */
1005  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
1006  {
1007    if( !(drawMode & DRAW_SINGLE && depth != 0))
1008    {
1009      if( drawMode & DRAW_BV_BLENDED)
1010        this->obbTree->getTransparentMaterial(treeIndex)->select();
1011
1012    /* now draw the separation plane */
1013    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1014    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
1015    Vector c = *this->bvElement->center;
1016    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1017    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1018    glBegin(GL_QUADS);
1019    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1020    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1021    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1022    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1023    glEnd();
1024
1025    if( drawMode & DRAW_BV_BLENDED)
1026      this->obbTree->getMaterial(treeIndex)->select();
1027
1028    }
1029  }
1030
1031
1032
1033  if( this->nodeLeft != NULL && depth != 0 )
1034    this->nodeLeft->drawBV(depth - 1, drawMode);
1035  if( this->nodeRight != NULL && depth != 0)
1036    this->nodeRight->drawBV(depth - 1, drawMode);
1037
1038  this->bvElement->bCollided = false;
1039}
1040
1041
1042
1043void OBBTreeNode::debug() const
1044{
1045
1046  /*
1047  for(int i = 0; i < length; i++)
1048  {
1049  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
1050}
1051  */
1052}
Note: See TracBrowser for help on using the repository browser.