| 1 | /*! |
|---|
| 2 | * @file lin_alg.h |
|---|
| 3 | * Definition of some important linear algebra formulas |
|---|
| 4 | |
|---|
| 5 | compute the eigenpairs (eigenvalues and eigenvectors) of a real symmetric matrix "A" by the Jacobi method |
|---|
| 6 | */ |
|---|
| 7 | |
|---|
| 8 | |
|---|
| 9 | /************************************************************ |
|---|
| 10 | * This subroutine computes all eigenvalues and eigenvectors * |
|---|
| 11 | * of a real symmetric square matrix A(N,N). On output, ele- * |
|---|
| 12 | * ments of A above the diagonal are destroyed. D(N) returns * |
|---|
| 13 | * the eigenvalues of matrix A. V(N,N) contains, on output, * |
|---|
| 14 | * the eigenvectors of A by columns. THe normalization to * |
|---|
| 15 | * unity is made by main program before printing results. * |
|---|
| 16 | * NROT returns the number of Jacobi matrix rotations which * |
|---|
| 17 | * were required. * |
|---|
| 18 | * --------------------------------------------------------- * |
|---|
| 19 | * Ref.:"NUMERICAL RECIPES IN FORTRAN, Cambridge University * |
|---|
| 20 | * Press, 1986, chap. 11, pages 346-348". * |
|---|
| 21 | * * |
|---|
| 22 | * C++ version by J-P Moreau, Paris. * |
|---|
| 23 | ************************************************************/ |
|---|
| 24 | void JacobI(float **A,int N,float *D, float **V, int *NROT) { |
|---|
| 25 | float *B, *Z; |
|---|
| 26 | double c,g,h,s,sm,t,tau,theta,tresh; |
|---|
| 27 | int i,j,ip,iq; |
|---|
| 28 | |
|---|
| 29 | // void *vmblock1 = NULL; |
|---|
| 30 | |
|---|
| 31 | //allocate vectors B, Z |
|---|
| 32 | //vmblock1 = vminit(); |
|---|
| 33 | B = (float *) calloc(100, 32); |
|---|
| 34 | Z = (float *) calloc(100, 32); |
|---|
| 35 | |
|---|
| 36 | for (ip=1; ip<=N; ip++) { //initialize V to identity matrix |
|---|
| 37 | for (iq=1; iq<=N; iq++) V[ip][iq]=0; |
|---|
| 38 | V[ip][ip]=1; |
|---|
| 39 | } |
|---|
| 40 | for (ip=1; ip<=N; ip++) { |
|---|
| 41 | B[ip]=A[ip][ip]; |
|---|
| 42 | D[ip]=B[ip]; |
|---|
| 43 | Z[ip]=0; |
|---|
| 44 | } |
|---|
| 45 | *NROT=0; |
|---|
| 46 | for (i=1; i<=50; i++) { |
|---|
| 47 | sm=0; |
|---|
| 48 | for (ip=1; ip<N; ip++) //sum off-diagonal elements |
|---|
| 49 | for (iq=ip+1; iq<=N; iq++) |
|---|
| 50 | sm=sm+fabs(A[ip][iq]); |
|---|
| 51 | if (sm==0) |
|---|
| 52 | { |
|---|
| 53 | free(B); |
|---|
| 54 | free(Z); |
|---|
| 55 | return; //normal return |
|---|
| 56 | } |
|---|
| 57 | if (i < 4) |
|---|
| 58 | tresh=0.2*sm*sm; |
|---|
| 59 | else |
|---|
| 60 | tresh=0; |
|---|
| 61 | for (ip=1; ip<N; ip++) { |
|---|
| 62 | for (iq=ip+1; iq<=N; iq++) { |
|---|
| 63 | g=100*fabs(A[ip][iq]); |
|---|
| 64 | // after 4 sweeps, skip the rotation if the off-diagonal element is small |
|---|
| 65 | if ((i > 4) && (fabs(D[ip])+g == fabs(D[ip])) && (fabs(D[iq])+g == fabs(D[iq]))) |
|---|
| 66 | A[ip][iq]=0; |
|---|
| 67 | else if (fabs(A[ip][iq]) > tresh) { |
|---|
| 68 | h=D[iq]-D[ip]; |
|---|
| 69 | if (fabs(h)+g == fabs(h)) |
|---|
| 70 | t=A[ip][iq]/h; |
|---|
| 71 | else { |
|---|
| 72 | theta=0.5*h/A[ip][iq]; |
|---|
| 73 | t=1/(fabs(theta)+sqrt(1.0+theta*theta)); |
|---|
| 74 | if (theta < 0) t=-t; |
|---|
| 75 | } |
|---|
| 76 | c=1.0/sqrt(1.0+t*t); |
|---|
| 77 | s=t*c; |
|---|
| 78 | tau=s/(1.0+c); |
|---|
| 79 | h=t*A[ip][iq]; |
|---|
| 80 | Z[ip] -= h; |
|---|
| 81 | Z[iq] += h; |
|---|
| 82 | D[ip] -= h; |
|---|
| 83 | D[iq] += h; |
|---|
| 84 | A[ip][iq]=0; |
|---|
| 85 | for (j=1; j<ip; j++) { |
|---|
| 86 | g=A[j][ip]; |
|---|
| 87 | h=A[j][iq]; |
|---|
| 88 | A[j][ip] = g-s*(h+g*tau); |
|---|
| 89 | A[j][iq] = h+s*(g-h*tau); |
|---|
| 90 | } |
|---|
| 91 | for (j=ip+1; j<iq; j++) { |
|---|
| 92 | g=A[ip][j]; |
|---|
| 93 | h=A[j][iq]; |
|---|
| 94 | A[ip][j] = g-s*(h+g*tau); |
|---|
| 95 | A[j][iq] = h+s*(g-h*tau); |
|---|
| 96 | } |
|---|
| 97 | for (j=iq+1; j<=N; j++) { |
|---|
| 98 | g=A[ip][j]; |
|---|
| 99 | h=A[iq][j]; |
|---|
| 100 | A[ip][j] = g-s*(h+g*tau); |
|---|
| 101 | A[iq][j] = h+s*(g-h*tau); |
|---|
| 102 | } |
|---|
| 103 | for (j=1; j<=N; j++) { |
|---|
| 104 | g=V[j][ip]; |
|---|
| 105 | h=V[j][iq]; |
|---|
| 106 | V[j][ip] = g-s*(h+g*tau); |
|---|
| 107 | V[j][iq] = h+s*(g-h*tau); |
|---|
| 108 | } |
|---|
| 109 | *NROT=*NROT+1; |
|---|
| 110 | } //end ((i.gt.4)...else if |
|---|
| 111 | } // main iq loop |
|---|
| 112 | } // main ip loop |
|---|
| 113 | for (ip=1; ip<=N; ip++) { |
|---|
| 114 | B[ip] += Z[ip]; |
|---|
| 115 | D[ip]=B[ip]; |
|---|
| 116 | Z[ip]=0; |
|---|
| 117 | } |
|---|
| 118 | } //end of main i loop |
|---|
| 119 | printf("\n 50 iterations !\n"); |
|---|
| 120 | return; //too many iterations |
|---|
| 121 | } |
|---|
| 122 | |
|---|
| 123 | |
|---|
| 124 | |
|---|
| 125 | |
|---|
| 126 | |
|---|
| 127 | #include "abstract_model.h" |
|---|
| 128 | |
|---|
| 129 | #include <stdio.h> |
|---|
| 130 | #include <math.h> |
|---|
| 131 | |
|---|
| 132 | #define NDIM 3 |
|---|
| 133 | |
|---|
| 134 | |
|---|
| 135 | typedef float MatrixX[3][3]; |
|---|
| 136 | |
|---|
| 137 | // |
|---|
| 138 | // class "EVJacobi" for computing the eigenpairs |
|---|
| 139 | // (members) |
|---|
| 140 | // ndim int ... dimension |
|---|
| 141 | // "ndim" must satisfy 1 < ndim < NDIM |
|---|
| 142 | // ("NDIM" is given above). |
|---|
| 143 | // a double [NDIM][NDIM] ... matrix A |
|---|
| 144 | // aa double ... the square root of |
|---|
| 145 | // (1/2) x (the sum of the off-diagonal elements squared) |
|---|
| 146 | // ev double [NDIM] ... eigenvalues |
|---|
| 147 | // evec double [NDIM][NDIM] ... eigenvectors |
|---|
| 148 | // evec[i][k], i=1,2,...,ndim are the elements of the eigenvector |
|---|
| 149 | // corresponding to the k-th eigenvalue ev[k] |
|---|
| 150 | // vec double [NDIM][NDIM] ... the 2-dimensional array where the matrix elements are stored |
|---|
| 151 | // lSort int ... |
|---|
| 152 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
|---|
| 153 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
|---|
| 154 | // if lSort = 0, in the ascending order, i.e., |
|---|
| 155 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
|---|
| 156 | // lMatSize int ... If 1 < ndim < NDIM, lMatSize = 1 |
|---|
| 157 | // otherwise, lMatSize = 0 |
|---|
| 158 | // p int [NDIM] ... index vector for sorting the eigenvalues |
|---|
| 159 | // (public member functions) |
|---|
| 160 | // setMatrix void ... give the matrix A |
|---|
| 161 | // getEigenValue void ... get the eigenvalues |
|---|
| 162 | // getEigenVector void ... get the eigenvectors |
|---|
| 163 | // sortEigenpair void ... sort the eigenpairs |
|---|
| 164 | // (private member functions) |
|---|
| 165 | // ComputeEigenpair void ... compute the eigenpairs |
|---|
| 166 | // matrixUpdate void ... each step of the Jacobi method, i.e., |
|---|
| 167 | // update of the matrix A by Givens' transform. |
|---|
| 168 | // getP void ... get the index vector p, i.e., sort the eigenvalues. |
|---|
| 169 | // printMatrix void ... print the elements of the matrix A. |
|---|
| 170 | // |
|---|
| 171 | |
|---|
| 172 | class EVJacobi |
|---|
| 173 | { |
|---|
| 174 | public: |
|---|
| 175 | void setMatrix(int, double [][NDIM], int, int); |
|---|
| 176 | void getEigenValue(double []); |
|---|
| 177 | void getEigenVector(double [][NDIM]); |
|---|
| 178 | void sortEigenpair(int); |
|---|
| 179 | |
|---|
| 180 | private: |
|---|
| 181 | void ComputeEigenpair(int); |
|---|
| 182 | void matrixUpdate(); |
|---|
| 183 | void getP(); |
|---|
| 184 | void printMatrix(); |
|---|
| 185 | |
|---|
| 186 | private: |
|---|
| 187 | double a[NDIM][NDIM], aa, ev[NDIM], evec[NDIM][NDIM], vec[NDIM][NDIM]; |
|---|
| 188 | int ndim, lSort, p[NDIM], lMatSize; |
|---|
| 189 | }; |
|---|
| 190 | |
|---|
| 191 | //------------public member function of the class "EVJacobi"------------------------------ |
|---|
| 192 | // |
|---|
| 193 | // give the dimension "ndim" and the matrix "A" and compute the eigenpairs |
|---|
| 194 | // (input) |
|---|
| 195 | // ndim0 int ... dimension |
|---|
| 196 | // a0 double[][NDIM] matrix A |
|---|
| 197 | // lSort0 int ... lSort |
|---|
| 198 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
|---|
| 199 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
|---|
| 200 | // if lSort = 0, in the ascending order, i.e., |
|---|
| 201 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
|---|
| 202 | // l_print int ... |
|---|
| 203 | // If l_print = 1, print the matrices during the iterations. |
|---|
| 204 | // |
|---|
| 205 | void EVJacobi::setMatrix(int ndim0, double a0[][NDIM], int lSort0, int l_print) |
|---|
| 206 | { |
|---|
| 207 | ndim = ndim0; |
|---|
| 208 | if (ndim < NDIM && ndim > 1) |
|---|
| 209 | { |
|---|
| 210 | lMatSize = 1; |
|---|
| 211 | lSort = lSort0; |
|---|
| 212 | for (int i=1; i<=ndim; ++i) |
|---|
| 213 | for (int j=1; j<=ndim; ++j) |
|---|
| 214 | a[i][j] = a0[i][j]; |
|---|
| 215 | // |
|---|
| 216 | aa = 0.0; |
|---|
| 217 | for (int i=1; i<=ndim; ++i) |
|---|
| 218 | for (int j=1; j<=i-1; ++j) |
|---|
| 219 | aa += a[i][j]*a[i][j]; |
|---|
| 220 | aa = sqrt(aa); |
|---|
| 221 | // |
|---|
| 222 | ComputeEigenpair(l_print); |
|---|
| 223 | getP(); |
|---|
| 224 | } |
|---|
| 225 | else |
|---|
| 226 | { |
|---|
| 227 | lMatSize = 0; |
|---|
| 228 | printf("ndim = %d\n", ndim); |
|---|
| 229 | printf("ndim must satisfy 1 < ndim < NDIM=%d\n", NDIM); |
|---|
| 230 | } |
|---|
| 231 | } |
|---|
| 232 | // |
|---|
| 233 | // get the eigenvalues |
|---|
| 234 | // (input) |
|---|
| 235 | // ev0[NDIM] double ... the array where the eigenvalues are written |
|---|
| 236 | void EVJacobi::getEigenValue(double ev0[]) |
|---|
| 237 | { |
|---|
| 238 | for (int k=1; k<=ndim; ++k) ev0[k] = ev[p[k]]; |
|---|
| 239 | } |
|---|
| 240 | // |
|---|
| 241 | // get the eigenvectors |
|---|
| 242 | // (input) |
|---|
| 243 | // evec0[NDIM][NDIM] double ... the two-dimensional array |
|---|
| 244 | // where the eigenvectors are written in such a way that |
|---|
| 245 | // evec0[k][i], i=1,2,...,ndim are the elements of the eigenvector |
|---|
| 246 | // corresponding to the k-th eigenvalue ev0[k] |
|---|
| 247 | // |
|---|
| 248 | void EVJacobi::getEigenVector(double evec0[][NDIM]) |
|---|
| 249 | { |
|---|
| 250 | for (int k=1; k<=ndim; ++k) |
|---|
| 251 | for (int i=1; i<=ndim; ++i) |
|---|
| 252 | evec0[k][i] = evec[p[k]][i]; |
|---|
| 253 | } |
|---|
| 254 | // |
|---|
| 255 | // sort the eigenpairs |
|---|
| 256 | // (input) |
|---|
| 257 | // lSort0 int |
|---|
| 258 | // If lSort0 = 1, the eigenvalues are sorted in the descending order, i.e., |
|---|
| 259 | // ev0[1] >= ev0[2] >= ... >= ev0[ndim] |
|---|
| 260 | // and if lSort0 = 0, in the ascending order, i.e., |
|---|
| 261 | // ev0[1] <= ev0[2] <= ... <= ev0[ndim] |
|---|
| 262 | // |
|---|
| 263 | void EVJacobi::sortEigenpair(int lSort0) |
|---|
| 264 | { |
|---|
| 265 | lSort = lSort0; |
|---|
| 266 | getP(); |
|---|
| 267 | } |
|---|
| 268 | //-------private member function of the class "EVJacobi"----- |
|---|
| 269 | // |
|---|
| 270 | // compute the eigenpairs |
|---|
| 271 | // (input) |
|---|
| 272 | // l_print int |
|---|
| 273 | // If l_print = 1, print the matrices during the iterations. |
|---|
| 274 | // |
|---|
| 275 | void EVJacobi::ComputeEigenpair(int l_print) |
|---|
| 276 | { |
|---|
| 277 | if (lMatSize==1) |
|---|
| 278 | { |
|---|
| 279 | if (l_print==1) |
|---|
| 280 | { |
|---|
| 281 | printf("step %d\n", 0); |
|---|
| 282 | printMatrix(); |
|---|
| 283 | printf("\n"); |
|---|
| 284 | } |
|---|
| 285 | // |
|---|
| 286 | double eps = 1.0e-15, epsa = eps * aa; |
|---|
| 287 | int kend = 1000, l_conv = 0; |
|---|
| 288 | // |
|---|
| 289 | for (int i=1; i<=ndim; ++i) |
|---|
| 290 | for (int j=1; j<=ndim; ++j) |
|---|
| 291 | vec[i][j] = 0.0; |
|---|
| 292 | for (int i=1; i<=ndim; ++i) |
|---|
| 293 | vec[i][i] = 1.0; |
|---|
| 294 | // |
|---|
| 295 | for (int k=1; k<=kend; ++k) |
|---|
| 296 | { |
|---|
| 297 | matrixUpdate(); |
|---|
| 298 | double a1 = 0.0; |
|---|
| 299 | for (int i=1; i<=ndim; ++i) |
|---|
| 300 | for (int j=1; j<=i-1; ++j) |
|---|
| 301 | a1 += a[i][j] * a[i][j]; |
|---|
| 302 | a1 = sqrt(a1); |
|---|
| 303 | if (a1 < epsa) |
|---|
| 304 | { |
|---|
| 305 | if (l_print==1) |
|---|
| 306 | { |
|---|
| 307 | printf("converged at step %d\n", k); |
|---|
| 308 | printMatrix(); |
|---|
| 309 | printf("\n"); |
|---|
| 310 | } |
|---|
| 311 | l_conv = 1; |
|---|
| 312 | break; |
|---|
| 313 | } |
|---|
| 314 | if (l_print==1) |
|---|
| 315 | if (k%10==0) |
|---|
| 316 | { |
|---|
| 317 | printf("step %d\n", k); |
|---|
| 318 | printMatrix(); |
|---|
| 319 | printf("\n"); |
|---|
| 320 | } |
|---|
| 321 | } |
|---|
| 322 | // |
|---|
| 323 | if (l_conv == 0) printf("Jacobi method not converged.\n"); |
|---|
| 324 | for (int k=1; k<=ndim; ++k) |
|---|
| 325 | { |
|---|
| 326 | ev[k] = a[k][k]; |
|---|
| 327 | for (int i=1; i<=ndim; ++i) evec[k][i] = vec[i][k]; |
|---|
| 328 | } |
|---|
| 329 | } |
|---|
| 330 | } |
|---|
| 331 | // |
|---|
| 332 | void EVJacobi::printMatrix() |
|---|
| 333 | { |
|---|
| 334 | for (int i=1; i<=ndim; ++i) |
|---|
| 335 | { |
|---|
| 336 | for (int j=1; j<=ndim; ++j) printf("%8.1e ",a[i][j]); |
|---|
| 337 | printf("\n"); |
|---|
| 338 | } |
|---|
| 339 | } |
|---|
| 340 | // |
|---|
| 341 | void EVJacobi::matrixUpdate() |
|---|
| 342 | { |
|---|
| 343 | double a_new[NDIM][NDIM], vec_new[NDIM][NDIM]; |
|---|
| 344 | // |
|---|
| 345 | int p=2, q=1; |
|---|
| 346 | double amax = fabs(a[p][q]); |
|---|
| 347 | for (int i=3; i<=ndim; ++i) |
|---|
| 348 | for (int j=1; j<=i-1; ++j) |
|---|
| 349 | if (fabs(a[i][j]) > amax) |
|---|
| 350 | { |
|---|
| 351 | p = i; |
|---|
| 352 | q = j; |
|---|
| 353 | amax = fabs(a[i][j]); |
|---|
| 354 | } |
|---|
| 355 | // |
|---|
| 356 | // Givens' rotation by Rutishauser's rule |
|---|
| 357 | // |
|---|
| 358 | double z, t, c, s, u; |
|---|
| 359 | z = (a[q][q] - a[p][p]) / (2.0 * a[p][q]); |
|---|
| 360 | t = fabs(z) + sqrt(1.0 + z*z); |
|---|
| 361 | if (z < 0.0) t = - t; |
|---|
| 362 | t = 1.0 / t; |
|---|
| 363 | c = 1.0 / sqrt(1.0 + t*t); |
|---|
| 364 | s = c * t; |
|---|
| 365 | u = s / (1.0 + c); |
|---|
| 366 | // |
|---|
| 367 | for (int i=1; i<=ndim; ++i) |
|---|
| 368 | for (int j=1; j<=ndim; ++j) |
|---|
| 369 | a_new[i][j] = a[i][j]; |
|---|
| 370 | // |
|---|
| 371 | a_new[p][p] = a[p][p] - t * a[p][q]; |
|---|
| 372 | a_new[q][q] = a[q][q] + t * a[p][q]; |
|---|
| 373 | a_new[p][q] = 0.0; |
|---|
| 374 | a_new[q][p] = 0.0; |
|---|
| 375 | for (int j=1; j<=ndim; ++j) |
|---|
| 376 | if (j!=p && j!=q) |
|---|
| 377 | { |
|---|
| 378 | a_new[p][j] = a[p][j] - s * (a[q][j] + u * a[p][j]); |
|---|
| 379 | a_new[j][p] = a_new[p][j]; |
|---|
| 380 | a_new[q][j] = a[q][j] + s * (a[p][j] - u * a[q][j]); |
|---|
| 381 | a_new[j][q] = a_new[q][j]; |
|---|
| 382 | } |
|---|
| 383 | // |
|---|
| 384 | for (int i=1; i<=ndim; ++i) |
|---|
| 385 | { |
|---|
| 386 | vec_new[i][p] = vec[i][p] * c - vec[i][q] * s; |
|---|
| 387 | vec_new[i][q] = vec[i][p] * s + vec[i][q] * c; |
|---|
| 388 | for (int j=1; j<=ndim; ++j) |
|---|
| 389 | if (j!=p && j!=q) vec_new[i][j] = vec[i][j]; |
|---|
| 390 | } |
|---|
| 391 | // |
|---|
| 392 | for (int i=1; i<=ndim; ++i) |
|---|
| 393 | for (int j=1; j<=ndim; ++j) |
|---|
| 394 | { |
|---|
| 395 | a[i][j] = a_new[i][j]; |
|---|
| 396 | vec[i][j] = vec_new[i][j]; |
|---|
| 397 | } |
|---|
| 398 | } |
|---|
| 399 | // |
|---|
| 400 | // sort the eigenpairs |
|---|
| 401 | // If l_print=1, sort the eigenvalues in the descending order, i.e., |
|---|
| 402 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
|---|
| 403 | // if l_print=0, in the ascending order, i.e., |
|---|
| 404 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
|---|
| 405 | // |
|---|
| 406 | void EVJacobi::getP() |
|---|
| 407 | { |
|---|
| 408 | for (int i=1; i<=ndim; ++i) p[i] = i; |
|---|
| 409 | // |
|---|
| 410 | if (lSort==1) |
|---|
| 411 | { |
|---|
| 412 | for (int k=1; k<=ndim; ++k) |
|---|
| 413 | { |
|---|
| 414 | double emax = ev[p[k]]; |
|---|
| 415 | for (int i=k+1; i<=ndim; ++i) |
|---|
| 416 | { |
|---|
| 417 | if (emax < ev[p[i]]) |
|---|
| 418 | { |
|---|
| 419 | emax = ev[p[i]]; |
|---|
| 420 | int pp = p[k]; |
|---|
| 421 | p[k] = p[i]; |
|---|
| 422 | p[i] = pp; |
|---|
| 423 | } |
|---|
| 424 | } |
|---|
| 425 | } |
|---|
| 426 | } |
|---|
| 427 | if (lSort==0) |
|---|
| 428 | { |
|---|
| 429 | for (int k=1; k<=ndim; ++k) |
|---|
| 430 | { |
|---|
| 431 | double emin = ev[p[k]]; |
|---|
| 432 | for (int i=k+1; i<=ndim; ++i) |
|---|
| 433 | { |
|---|
| 434 | if (emin > ev[p[i]]) |
|---|
| 435 | { |
|---|
| 436 | emin = ev[p[i]]; |
|---|
| 437 | int pp = p[k]; |
|---|
| 438 | p[k] = p[i]; |
|---|
| 439 | p[i] = pp; |
|---|
| 440 | } |
|---|
| 441 | } |
|---|
| 442 | } |
|---|
| 443 | } |
|---|
| 444 | } |
|---|
| 445 | |
|---|
| 446 | |
|---|
| 447 | |
|---|
| 448 | |
|---|
| 449 | |
|---|
| 450 | |
|---|
| 451 | |
|---|
| 452 | // void jacobi(Matrix A, int n, sVec3D d, Matrix V, int *nRot) |
|---|
| 453 | // { |
|---|
| 454 | // sVec3D B, Z; |
|---|
| 455 | // double c, g, h, s, sm, t, tau, theta, tresh; |
|---|
| 456 | // int i, j, ip, iq; |
|---|
| 457 | // |
|---|
| 458 | // void *vmblock1 = NULL; |
|---|
| 459 | // |
|---|
| 460 | // //allocate vectors B, Z |
|---|
| 461 | // vmblock1 = vminit(); |
|---|
| 462 | // //B = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
|---|
| 463 | // //Z = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
|---|
| 464 | // |
|---|
| 465 | // //initialize V to identity matrix |
|---|
| 466 | // for(int i = 1; i <= n; i++) |
|---|
| 467 | // { |
|---|
| 468 | // for(int j = 1; j <= n; j++) |
|---|
| 469 | // V[i][j] = 0; |
|---|
| 470 | // V[i][i] = 1; |
|---|
| 471 | // } |
|---|
| 472 | // |
|---|
| 473 | // for(int i = 1; i <= n; i++) |
|---|
| 474 | // { |
|---|
| 475 | // B[i] = A[i][i]; |
|---|
| 476 | // D[i] = B[i]; |
|---|
| 477 | // Z[i] = 0; |
|---|
| 478 | // } |
|---|
| 479 | // |
|---|
| 480 | // *nRot = 0; |
|---|
| 481 | // for(int i = 1; i<=50; i++) |
|---|
| 482 | // { |
|---|
| 483 | // sm = 0; |
|---|
| 484 | // for(int k = 1; k < n; k++) //sum off-diagonal elements |
|---|
| 485 | // for (int l = k + 1; l <= n; k++) |
|---|
| 486 | // sm = sm + fabs(A[k][l]); |
|---|
| 487 | // if ( sm == 0 ) |
|---|
| 488 | // { |
|---|
| 489 | // //vmfree(vmblock1); |
|---|
| 490 | // return; //normal return |
|---|
| 491 | // } |
|---|
| 492 | // if (i < 4) |
|---|
| 493 | // tresh = 0.2 * sm * sm; |
|---|
| 494 | // else |
|---|
| 495 | // tresh = 0; |
|---|
| 496 | // for(int k = 1; k < n; k++) |
|---|
| 497 | // { |
|---|
| 498 | // for (iq=ip+1; iq<=N; iq++) { |
|---|
| 499 | // g=100*fabs(A[ip][iq]); |
|---|
| 500 | // // after 4 sweeps, skip the rotation if the off-diagonal element is small |
|---|
| 501 | // if ((i > 4) && (fabs(D[ip])+g == fabs(D[ip])) && (fabs(D[iq])+g == fabs(D[iq]))) |
|---|
| 502 | // A[ip][iq]=0; |
|---|
| 503 | // else if (fabs(A[ip][iq]) > tresh) { |
|---|
| 504 | // h=D[iq]-D[ip]; |
|---|
| 505 | // if (fabs(h)+g == fabs(h)) |
|---|
| 506 | // t=A[ip][iq]/h; |
|---|
| 507 | // else { |
|---|
| 508 | // theta=0.5*h/A[ip][iq]; |
|---|
| 509 | // t=1/(fabs(theta)+sqrt(1.0+theta*theta)); |
|---|
| 510 | // if (theta < 0) t=-t; |
|---|
| 511 | // } |
|---|
| 512 | // c=1.0/sqrt(1.0+t*t); |
|---|
| 513 | // s=t*c; |
|---|
| 514 | // tau=s/(1.0+c); |
|---|
| 515 | // h=t*A[ip][iq]; |
|---|
| 516 | // Z[ip] -= h; |
|---|
| 517 | // Z[iq] += h; |
|---|
| 518 | // D[ip] -= h; |
|---|
| 519 | // D[iq] += h; |
|---|
| 520 | // A[ip][iq]=0; |
|---|
| 521 | // for (j=1; j<ip; j++) { |
|---|
| 522 | // g=A[j][ip]; |
|---|
| 523 | // h=A[j][iq]; |
|---|
| 524 | // A[j][ip] = g-s*(h+g*tau); |
|---|
| 525 | // A[j][iq] = h+s*(g-h*tau); |
|---|
| 526 | // } |
|---|
| 527 | // for (j=ip+1; j<iq; j++) { |
|---|
| 528 | // g=A[ip][j]; |
|---|
| 529 | // h=A[j][iq]; |
|---|
| 530 | // A[ip][j] = g-s*(h+g*tau); |
|---|
| 531 | // A[j][iq] = h+s*(g-h*tau); |
|---|
| 532 | // } |
|---|
| 533 | // for (j=iq+1; j<=N; j++) { |
|---|
| 534 | // g=A[ip][j]; |
|---|
| 535 | // h=A[iq][j]; |
|---|
| 536 | // A[ip][j] = g-s*(h+g*tau); |
|---|
| 537 | // A[iq][j] = h+s*(g-h*tau); |
|---|
| 538 | // } |
|---|
| 539 | // for (j=1; j<=N; j++) { |
|---|
| 540 | // g=V[j][ip]; |
|---|
| 541 | // h=V[j][iq]; |
|---|
| 542 | // V[j][ip] = g-s*(h+g*tau); |
|---|
| 543 | // V[j][iq] = h+s*(g-h*tau); |
|---|
| 544 | // } |
|---|
| 545 | // *NROT=*NROT+1; |
|---|
| 546 | // } //end ((i.gt.4)...else if |
|---|
| 547 | // } // main iq loop |
|---|
| 548 | // } // main ip loop |
|---|
| 549 | // for (ip=1; ip<=N; ip++) { |
|---|
| 550 | // B[ip] += Z[ip]; |
|---|
| 551 | // D[ip]=B[ip]; |
|---|
| 552 | // Z[ip]=0; |
|---|
| 553 | // } |
|---|
| 554 | // } //end of main i loop |
|---|
| 555 | // printf("\n 50 iterations !\n"); |
|---|
| 556 | // vmfree(vmblock1); |
|---|
| 557 | // return; //too many iterations |
|---|
| 558 | // } |
|---|
| 559 | |
|---|