| 1 | // This is an example of a non-linear least squares fit. The example |
|---|
| 2 | // is from "Nonlinear estimation" by Gavin Ross (Springer,1990), p 63. |
|---|
| 3 | // There are better ways of doing the fit in this case so this |
|---|
| 4 | // example is just an example. |
|---|
| 5 | |
|---|
| 6 | // The model is E(y) = a + b exp(-kx) and there are 6 data points. |
|---|
| 7 | |
|---|
| 8 | #define WANT_STREAM |
|---|
| 9 | #define WANT_MATH |
|---|
| 10 | #include "newmatnl.h" |
|---|
| 11 | #include "newmatio.h" |
|---|
| 12 | |
|---|
| 13 | #ifdef use_namespace |
|---|
| 14 | using namespace RBD_LIBRARIES; |
|---|
| 15 | #endif |
|---|
| 16 | |
|---|
| 17 | |
|---|
| 18 | // first define the class describing the predictor function |
|---|
| 19 | |
|---|
| 20 | class Model_3pe : public R1_Col_I_D |
|---|
| 21 | { |
|---|
| 22 | ColumnVector x_values; // the values of "x" |
|---|
| 23 | RowVector deriv; // values of derivatives |
|---|
| 24 | public: |
|---|
| 25 | Model_3pe(const ColumnVector& X_Values) |
|---|
| 26 | : x_values(X_Values) { deriv.ReSize(3); } |
|---|
| 27 | // load X data |
|---|
| 28 | Real operator()(int); |
|---|
| 29 | bool IsValid() { return para(3)>0; } |
|---|
| 30 | // require "k" > 0 |
|---|
| 31 | ReturnMatrix Derivatives() { return deriv; } |
|---|
| 32 | }; |
|---|
| 33 | |
|---|
| 34 | Real Model_3pe::operator()(int i) |
|---|
| 35 | { |
|---|
| 36 | Real a = para(1); Real b = para(2); Real k = para(3); |
|---|
| 37 | Real xvi = x_values(i); |
|---|
| 38 | Real e = exp(-k * xvi); |
|---|
| 39 | deriv(1) = 1.0; // calculate derivatives |
|---|
| 40 | deriv(2) = e; |
|---|
| 41 | deriv(3) = - b * e * xvi; |
|---|
| 42 | return a + b * e; // function value |
|---|
| 43 | } |
|---|
| 44 | |
|---|
| 45 | int main() |
|---|
| 46 | { |
|---|
| 47 | { |
|---|
| 48 | // Get the data |
|---|
| 49 | ColumnVector X(6); |
|---|
| 50 | ColumnVector Y(6); |
|---|
| 51 | X << 1 << 2 << 3 << 4 << 6 << 8; |
|---|
| 52 | Y << 3.2 << 7.9 << 11.1 << 14.5 << 16.7 << 18.3; |
|---|
| 53 | |
|---|
| 54 | |
|---|
| 55 | // Do the fit |
|---|
| 56 | Model_3pe model(X); // the model object |
|---|
| 57 | NonLinearLeastSquares NLLS(model); // the non-linear least squares |
|---|
| 58 | // object |
|---|
| 59 | ColumnVector Para(3); // for the parameters |
|---|
| 60 | Para << 9 << -6 << .5; // trial values of parameters |
|---|
| 61 | cout << "Fitting parameters\n"; |
|---|
| 62 | NLLS.Fit(Y,Para); // do the fit |
|---|
| 63 | |
|---|
| 64 | // Inspect the results |
|---|
| 65 | ColumnVector SE; // for the standard errors |
|---|
| 66 | NLLS.GetStandardErrors(SE); |
|---|
| 67 | cout << "\n\nEstimates and standard errors\n" << |
|---|
| 68 | setw(10) << setprecision(2) << (Para | SE) << endl; |
|---|
| 69 | Real ResidualSD = sqrt(NLLS.ResidualVariance()); |
|---|
| 70 | cout << "\nResidual s.d. = " << setw(10) << setprecision(2) << |
|---|
| 71 | ResidualSD << endl; |
|---|
| 72 | SymmetricMatrix Correlations; |
|---|
| 73 | NLLS.GetCorrelations(Correlations); |
|---|
| 74 | cout << "\nCorrelationMatrix\n" << |
|---|
| 75 | setw(10) << setprecision(2) << Correlations << endl; |
|---|
| 76 | ColumnVector Residuals; |
|---|
| 77 | NLLS.GetResiduals(Residuals); |
|---|
| 78 | DiagonalMatrix Hat; |
|---|
| 79 | NLLS.GetHatDiagonal(Hat); |
|---|
| 80 | cout << "\nX, Y, Residual, Hat\n" << setw(10) << setprecision(2) << |
|---|
| 81 | (X | Y | Residuals | Hat.AsColumn()) << endl; |
|---|
| 82 | // recover var/cov matrix |
|---|
| 83 | SymmetricMatrix D; |
|---|
| 84 | D << SE.AsDiagonal() * Correlations * SE.AsDiagonal(); |
|---|
| 85 | cout << "\nVar/cov\n" << setw(14) << setprecision(4) << D << endl; |
|---|
| 86 | } |
|---|
| 87 | |
|---|
| 88 | #ifdef DO_FREE_CHECK |
|---|
| 89 | FreeCheck::Status(); |
|---|
| 90 | #endif |
|---|
| 91 | |
|---|
| 92 | return 0; |
|---|
| 93 | } |
|---|