| 1 | //$$ newmatnl.cpp Non-linear optimisation |
|---|
| 2 | |
|---|
| 3 | // Copyright (C) 1993,4,5,6: R B Davies |
|---|
| 4 | |
|---|
| 5 | |
|---|
| 6 | #define WANT_MATH |
|---|
| 7 | #define WANT_STREAM |
|---|
| 8 | |
|---|
| 9 | #include "newmatap.h" |
|---|
| 10 | #include "newmatnl.h" |
|---|
| 11 | |
|---|
| 12 | #ifdef use_namespace |
|---|
| 13 | namespace NEWMAT { |
|---|
| 14 | #endif |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | |
|---|
| 18 | void FindMaximum2::Fit(ColumnVector& Theta, int n_it) |
|---|
| 19 | { |
|---|
| 20 | Tracer tr("FindMaximum2::Fit"); |
|---|
| 21 | enum State {Start, Restart, Continue, Interpolate, Extrapolate, |
|---|
| 22 | Fail, Convergence}; |
|---|
| 23 | State TheState = Start; |
|---|
| 24 | Real z,w,x,x2,g,l1,l2,l3,d1,d2=0,d3; |
|---|
| 25 | ColumnVector Theta1, Theta2, Theta3; |
|---|
| 26 | int np = Theta.Nrows(); |
|---|
| 27 | ColumnVector H1(np), H3, HP(np), K, K1(np); |
|---|
| 28 | bool oorg, conv; |
|---|
| 29 | int counter = 0; |
|---|
| 30 | Theta1 = Theta; HP = 0.0; g = 0.0; |
|---|
| 31 | |
|---|
| 32 | // This is really a set of gotos and labels, but they do not work |
|---|
| 33 | // correctly in AT&T C++ and Sun 4.01 C++. |
|---|
| 34 | |
|---|
| 35 | for(;;) |
|---|
| 36 | { |
|---|
| 37 | switch (TheState) |
|---|
| 38 | { |
|---|
| 39 | case Start: |
|---|
| 40 | tr.ReName("FindMaximum2::Fit/Start"); |
|---|
| 41 | Value(Theta1, true, l1, oorg); |
|---|
| 42 | if (oorg) Throw(ProgramException("invalid starting value\n")); |
|---|
| 43 | |
|---|
| 44 | case Restart: |
|---|
| 45 | tr.ReName("FindMaximum2::Fit/ReStart"); |
|---|
| 46 | conv = NextPoint(H1, d1); |
|---|
| 47 | if (conv) { TheState = Convergence; break; } |
|---|
| 48 | if (counter++ > n_it) { TheState = Fail; break; } |
|---|
| 49 | |
|---|
| 50 | z = 1.0 / sqrt(d1); |
|---|
| 51 | H3 = H1 * z; K = (H3 - HP) * g; HP = H3; |
|---|
| 52 | g = 0.0; // de-activate to use curved projection |
|---|
| 53 | if (g==0.0) K1 = 0.0; else K1 = K * 0.2 + K1 * 0.6; |
|---|
| 54 | // (K - K1) * alpha + K1 * (1 - alpha) |
|---|
| 55 | // = K * alpha + K1 * (1 - 2 * alpha) |
|---|
| 56 | K = K1 * d1; g = z; |
|---|
| 57 | |
|---|
| 58 | case Continue: |
|---|
| 59 | tr.ReName("FindMaximum2::Fit/Continue"); |
|---|
| 60 | Theta2 = Theta1 + H1 + K; |
|---|
| 61 | Value(Theta2, false, l2, oorg); |
|---|
| 62 | if (counter++ > n_it) { TheState = Fail; break; } |
|---|
| 63 | if (oorg) |
|---|
| 64 | { |
|---|
| 65 | H1 *= 0.5; K *= 0.25; d1 *= 0.5; g *= 2.0; |
|---|
| 66 | TheState = Continue; break; |
|---|
| 67 | } |
|---|
| 68 | d2 = LastDerivative(H1 + K * 2.0); |
|---|
| 69 | |
|---|
| 70 | case Interpolate: |
|---|
| 71 | tr.ReName("FindMaximum2::Fit/Interpolate"); |
|---|
| 72 | z = d1 + d2 - 3.0 * (l2 - l1); |
|---|
| 73 | w = z * z - d1 * d2; |
|---|
| 74 | if (w < 0.0) { TheState = Extrapolate; break; } |
|---|
| 75 | w = z + sqrt(w); |
|---|
| 76 | if (1.5 * w + d1 < 0.0) |
|---|
| 77 | { TheState = Extrapolate; break; } |
|---|
| 78 | if (d2 > 0.0 && l2 > l1 && w > 0.0) |
|---|
| 79 | { TheState = Extrapolate; break; } |
|---|
| 80 | x = d1 / (w + d1); x2 = x * x; g /= x; |
|---|
| 81 | Theta3 = Theta1 + H1 * x + K * x2; |
|---|
| 82 | Value(Theta3, true, l3, oorg); |
|---|
| 83 | if (counter++ > n_it) { TheState = Fail; break; } |
|---|
| 84 | if (oorg) |
|---|
| 85 | { |
|---|
| 86 | if (x <= 1.0) |
|---|
| 87 | { x *= 0.5; x2 = x*x; g *= 2.0; d1 *= x; H1 *= x; K *= x2; } |
|---|
| 88 | else |
|---|
| 89 | { |
|---|
| 90 | x = 0.5 * (x-1.0); x2 = x*x; Theta1 = Theta2; |
|---|
| 91 | H1 = (H1 + K * 2.0) * x; |
|---|
| 92 | K *= x2; g = 0.0; d1 = x * d2; l1 = l2; |
|---|
| 93 | } |
|---|
| 94 | TheState = Continue; break; |
|---|
| 95 | } |
|---|
| 96 | |
|---|
| 97 | if (l3 >= l1 && l3 >= l2) |
|---|
| 98 | { Theta1 = Theta3; l1 = l3; TheState = Restart; break; } |
|---|
| 99 | |
|---|
| 100 | d3 = LastDerivative(H1 + K * 2.0); |
|---|
| 101 | if (l1 > l2) |
|---|
| 102 | { H1 *= x; K *= x2; Theta2 = Theta3; d1 *= x; d2 = d3*x; } |
|---|
| 103 | else |
|---|
| 104 | { |
|---|
| 105 | Theta1 = Theta2; Theta2 = Theta3; |
|---|
| 106 | x -= 1.0; x2 = x*x; g = 0.0; H1 = (H1 + K * 2.0) * x; |
|---|
| 107 | K *= x2; l1 = l2; l2 = l3; d1 = x*d2; d2 = x*d3; |
|---|
| 108 | if (d1 <= 0.0) { TheState = Start; break; } |
|---|
| 109 | } |
|---|
| 110 | TheState = Interpolate; break; |
|---|
| 111 | |
|---|
| 112 | case Extrapolate: |
|---|
| 113 | tr.ReName("FindMaximum2::Fit/Extrapolate"); |
|---|
| 114 | Theta1 = Theta2; g = 0.0; K *= 4.0; H1 = (H1 * 2.0 + K); |
|---|
| 115 | d1 = 2.0 * d2; l1 = l2; |
|---|
| 116 | TheState = Continue; break; |
|---|
| 117 | |
|---|
| 118 | case Fail: |
|---|
| 119 | Throw(ConvergenceException(Theta)); |
|---|
| 120 | |
|---|
| 121 | case Convergence: |
|---|
| 122 | Theta = Theta1; return; |
|---|
| 123 | } |
|---|
| 124 | } |
|---|
| 125 | } |
|---|
| 126 | |
|---|
| 127 | |
|---|
| 128 | |
|---|
| 129 | void NonLinearLeastSquares::Value |
|---|
| 130 | (const ColumnVector& Parameters, bool, Real& v, bool& oorg) |
|---|
| 131 | { |
|---|
| 132 | Tracer tr("NonLinearLeastSquares::Value"); |
|---|
| 133 | Y.ReSize(n_obs); X.ReSize(n_obs,n_param); |
|---|
| 134 | // put the fitted values in Y, the derivatives in X. |
|---|
| 135 | Pred.Set(Parameters); |
|---|
| 136 | if (!Pred.IsValid()) { oorg=true; return; } |
|---|
| 137 | for (int i=1; i<=n_obs; i++) |
|---|
| 138 | { |
|---|
| 139 | Y(i) = Pred(i); |
|---|
| 140 | X.Row(i) = Pred.Derivatives(); |
|---|
| 141 | } |
|---|
| 142 | if (!Pred.IsValid()) { oorg=true; return; } // check afterwards as well |
|---|
| 143 | Y = *DataPointer - Y; Real ssq = Y.SumSquare(); |
|---|
| 144 | errorvar = ssq / (n_obs - n_param); |
|---|
| 145 | cout << "\n" << setw(15) << setprecision(10) << " " << errorvar; |
|---|
| 146 | Derivs = Y.t() * X; // get the derivative and stash it |
|---|
| 147 | oorg = false; v = -0.5 * ssq; |
|---|
| 148 | } |
|---|
| 149 | |
|---|
| 150 | bool NonLinearLeastSquares::NextPoint(ColumnVector& Adj, Real& test) |
|---|
| 151 | { |
|---|
| 152 | Tracer tr("NonLinearLeastSquares::NextPoint"); |
|---|
| 153 | QRZ(X, U); QRZ(X, Y, M); // do the QR decomposition |
|---|
| 154 | test = M.SumSquare(); |
|---|
| 155 | cout << " " << setw(15) << setprecision(10) |
|---|
| 156 | << test << " " << Y.SumSquare() / (n_obs - n_param); |
|---|
| 157 | Adj = U.i() * M; |
|---|
| 158 | if (test < errorvar * criterion) return true; |
|---|
| 159 | else return false; |
|---|
| 160 | } |
|---|
| 161 | |
|---|
| 162 | Real NonLinearLeastSquares::LastDerivative(const ColumnVector& H) |
|---|
| 163 | { return (Derivs * H).AsScalar(); } |
|---|
| 164 | |
|---|
| 165 | void NonLinearLeastSquares::Fit(const ColumnVector& Data, |
|---|
| 166 | ColumnVector& Parameters) |
|---|
| 167 | { |
|---|
| 168 | Tracer tr("NonLinearLeastSquares::Fit"); |
|---|
| 169 | n_param = Parameters.Nrows(); n_obs = Data.Nrows(); |
|---|
| 170 | DataPointer = &Data; |
|---|
| 171 | FindMaximum2::Fit(Parameters, Lim); |
|---|
| 172 | cout << "\nConverged\n"; |
|---|
| 173 | } |
|---|
| 174 | |
|---|
| 175 | void NonLinearLeastSquares::MakeCovariance() |
|---|
| 176 | { |
|---|
| 177 | if (Covariance.Nrows()==0) |
|---|
| 178 | { |
|---|
| 179 | UpperTriangularMatrix UI = U.i(); |
|---|
| 180 | Covariance << UI * UI.t() * errorvar; |
|---|
| 181 | SE << Covariance; // get diagonals |
|---|
| 182 | for (int i = 1; i<=n_param; i++) SE(i) = sqrt(SE(i)); |
|---|
| 183 | } |
|---|
| 184 | } |
|---|
| 185 | |
|---|
| 186 | void NonLinearLeastSquares::GetStandardErrors(ColumnVector& SEX) |
|---|
| 187 | { MakeCovariance(); SEX = SE.AsColumn(); } |
|---|
| 188 | |
|---|
| 189 | void NonLinearLeastSquares::GetCorrelations(SymmetricMatrix& Corr) |
|---|
| 190 | { MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); } |
|---|
| 191 | |
|---|
| 192 | void NonLinearLeastSquares::GetHatDiagonal(DiagonalMatrix& Hat) const |
|---|
| 193 | { |
|---|
| 194 | Hat.ReSize(n_obs); |
|---|
| 195 | for (int i = 1; i<=n_obs; i++) Hat(i) = X.Row(i).SumSquare(); |
|---|
| 196 | } |
|---|
| 197 | |
|---|
| 198 | |
|---|
| 199 | // the MLE_D_FI routines |
|---|
| 200 | |
|---|
| 201 | void MLE_D_FI::Value |
|---|
| 202 | (const ColumnVector& Parameters, bool wg, Real& v, bool& oorg) |
|---|
| 203 | { |
|---|
| 204 | Tracer tr("MLE_D_FI::Value"); |
|---|
| 205 | if (!LL.IsValid(Parameters,wg)) { oorg=true; return; } |
|---|
| 206 | v = LL.LogLikelihood(); |
|---|
| 207 | if (!LL.IsValid()) { oorg=true; return; } // check validity again |
|---|
| 208 | cout << "\n" << setw(20) << setprecision(10) << v; |
|---|
| 209 | oorg = false; |
|---|
| 210 | Derivs = LL.Derivatives(); // Get derivatives |
|---|
| 211 | } |
|---|
| 212 | |
|---|
| 213 | bool MLE_D_FI::NextPoint(ColumnVector& Adj, Real& test) |
|---|
| 214 | { |
|---|
| 215 | Tracer tr("MLE_D_FI::NextPoint"); |
|---|
| 216 | SymmetricMatrix FI = LL.FI(); |
|---|
| 217 | LT = Cholesky(FI); |
|---|
| 218 | ColumnVector Adj1 = LT.i() * Derivs; |
|---|
| 219 | Adj = LT.t().i() * Adj1; |
|---|
| 220 | test = SumSquare(Adj1); |
|---|
| 221 | cout << " " << setw(20) << setprecision(10) << test; |
|---|
| 222 | return (test < Criterion); |
|---|
| 223 | } |
|---|
| 224 | |
|---|
| 225 | Real MLE_D_FI::LastDerivative(const ColumnVector& H) |
|---|
| 226 | { return (Derivs.t() * H).AsScalar(); } |
|---|
| 227 | |
|---|
| 228 | void MLE_D_FI::Fit(ColumnVector& Parameters) |
|---|
| 229 | { |
|---|
| 230 | Tracer tr("MLE_D_FI::Fit"); |
|---|
| 231 | FindMaximum2::Fit(Parameters,Lim); |
|---|
| 232 | cout << "\nConverged\n"; |
|---|
| 233 | } |
|---|
| 234 | |
|---|
| 235 | void MLE_D_FI::MakeCovariance() |
|---|
| 236 | { |
|---|
| 237 | if (Covariance.Nrows()==0) |
|---|
| 238 | { |
|---|
| 239 | LowerTriangularMatrix LTI = LT.i(); |
|---|
| 240 | Covariance << LTI.t() * LTI; |
|---|
| 241 | SE << Covariance; // get diagonal |
|---|
| 242 | int n = Covariance.Nrows(); |
|---|
| 243 | for (int i=1; i <= n; i++) SE(i) = sqrt(SE(i)); |
|---|
| 244 | } |
|---|
| 245 | } |
|---|
| 246 | |
|---|
| 247 | void MLE_D_FI::GetStandardErrors(ColumnVector& SEX) |
|---|
| 248 | { MakeCovariance(); SEX = SE.AsColumn(); } |
|---|
| 249 | |
|---|
| 250 | void MLE_D_FI::GetCorrelations(SymmetricMatrix& Corr) |
|---|
| 251 | { MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); } |
|---|
| 252 | |
|---|
| 253 | |
|---|
| 254 | |
|---|
| 255 | #ifdef use_namespace |
|---|
| 256 | } |
|---|
| 257 | #endif |
|---|
| 258 | |
|---|