| 1 | //$$ example.cpp Example of use of matrix package |
|---|
| 2 | |
|---|
| 3 | #define WANT_STREAM // include.h will get stream fns |
|---|
| 4 | #define WANT_MATH // include.h will get math fns |
|---|
| 5 | // newmatap.h will get include.h |
|---|
| 6 | |
|---|
| 7 | #include "newmatap.h" // need matrix applications |
|---|
| 8 | |
|---|
| 9 | #include "newmatio.h" // need matrix output routines |
|---|
| 10 | |
|---|
| 11 | #ifdef use_namespace |
|---|
| 12 | using namespace NEWMAT; // access NEWMAT namespace |
|---|
| 13 | #endif |
|---|
| 14 | |
|---|
| 15 | |
|---|
| 16 | // demonstration of matrix package on linear regression problem |
|---|
| 17 | |
|---|
| 18 | |
|---|
| 19 | void test1(Real* y, Real* x1, Real* x2, int nobs, int npred) |
|---|
| 20 | { |
|---|
| 21 | cout << "\n\nTest 1 - traditional, bad\n"; |
|---|
| 22 | |
|---|
| 23 | // traditional sum of squares and products method of calculation |
|---|
| 24 | // but not adjusting means; maybe subject to round-off error |
|---|
| 25 | |
|---|
| 26 | // make matrix of predictor values with 1s into col 1 of matrix |
|---|
| 27 | int npred1 = npred+1; // number of cols including col of ones. |
|---|
| 28 | Matrix X(nobs,npred1); |
|---|
| 29 | X.Column(1) = 1.0; |
|---|
| 30 | |
|---|
| 31 | // load x1 and x2 into X |
|---|
| 32 | // [use << rather than = when loading arrays] |
|---|
| 33 | X.Column(2) << x1; X.Column(3) << x2; |
|---|
| 34 | |
|---|
| 35 | // vector of Y values |
|---|
| 36 | ColumnVector Y(nobs); Y << y; |
|---|
| 37 | |
|---|
| 38 | // form sum of squares and product matrix |
|---|
| 39 | // [use << rather than = for copying Matrix into SymmetricMatrix] |
|---|
| 40 | SymmetricMatrix SSQ; SSQ << X.t() * X; |
|---|
| 41 | |
|---|
| 42 | // calculate estimate |
|---|
| 43 | // [bracket last two terms to force this multiplication first] |
|---|
| 44 | // [ .i() means inverse, but inverse is not explicity calculated] |
|---|
| 45 | ColumnVector A = SSQ.i() * (X.t() * Y); |
|---|
| 46 | |
|---|
| 47 | // Get variances of estimates from diagonal elements of inverse of SSQ |
|---|
| 48 | // get inverse of SSQ - we need it for finding D |
|---|
| 49 | DiagonalMatrix D; D << SSQ.i(); |
|---|
| 50 | ColumnVector V = D.AsColumn(); |
|---|
| 51 | |
|---|
| 52 | // Calculate fitted values and residuals |
|---|
| 53 | ColumnVector Fitted = X * A; |
|---|
| 54 | ColumnVector Residual = Y - Fitted; |
|---|
| 55 | Real ResVar = Residual.SumSquare() / (nobs-npred1); |
|---|
| 56 | |
|---|
| 57 | // Get diagonals of Hat matrix (an expensive way of doing this) |
|---|
| 58 | DiagonalMatrix Hat; Hat << X * (X.t() * X).i() * X.t(); |
|---|
| 59 | |
|---|
| 60 | // print out answers |
|---|
| 61 | cout << "\nEstimates and their standard errors\n\n"; |
|---|
| 62 | |
|---|
| 63 | // make vector of standard errors |
|---|
| 64 | ColumnVector SE(npred1); |
|---|
| 65 | for (int i=1; i<=npred1; i++) SE(i) = sqrt(V(i)*ResVar); |
|---|
| 66 | // use concatenation function to form matrix and use matrix print |
|---|
| 67 | // to get two columns |
|---|
| 68 | cout << setw(11) << setprecision(5) << (A | SE) << endl; |
|---|
| 69 | |
|---|
| 70 | cout << "\nObservations, fitted value, residual value, hat value\n"; |
|---|
| 71 | |
|---|
| 72 | // use concatenation again; select only columns 2 to 3 of X |
|---|
| 73 | cout << setw(9) << setprecision(3) << |
|---|
| 74 | (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn()); |
|---|
| 75 | cout << "\n\n"; |
|---|
| 76 | } |
|---|
| 77 | |
|---|
| 78 | void test2(Real* y, Real* x1, Real* x2, int nobs, int npred) |
|---|
| 79 | { |
|---|
| 80 | cout << "\n\nTest 2 - traditional, OK\n"; |
|---|
| 81 | |
|---|
| 82 | // traditional sum of squares and products method of calculation |
|---|
| 83 | // with subtraction of means - less subject to round-off error |
|---|
| 84 | // than test1 |
|---|
| 85 | |
|---|
| 86 | // make matrix of predictor values |
|---|
| 87 | Matrix X(nobs,npred); |
|---|
| 88 | |
|---|
| 89 | // load x1 and x2 into X |
|---|
| 90 | // [use << rather than = when loading arrays] |
|---|
| 91 | X.Column(1) << x1; X.Column(2) << x2; |
|---|
| 92 | |
|---|
| 93 | // vector of Y values |
|---|
| 94 | ColumnVector Y(nobs); Y << y; |
|---|
| 95 | |
|---|
| 96 | // make vector of 1s |
|---|
| 97 | ColumnVector Ones(nobs); Ones = 1.0; |
|---|
| 98 | |
|---|
| 99 | // calculate means (averages) of x1 and x2 [ .t() takes transpose] |
|---|
| 100 | RowVector M = Ones.t() * X / nobs; |
|---|
| 101 | |
|---|
| 102 | // and subtract means from x1 and x1 |
|---|
| 103 | Matrix XC(nobs,npred); |
|---|
| 104 | XC = X - Ones * M; |
|---|
| 105 | |
|---|
| 106 | // do the same to Y [use Sum to get sum of elements] |
|---|
| 107 | ColumnVector YC(nobs); |
|---|
| 108 | Real m = Sum(Y) / nobs; YC = Y - Ones * m; |
|---|
| 109 | |
|---|
| 110 | // form sum of squares and product matrix |
|---|
| 111 | // [use << rather than = for copying Matrix into SymmetricMatrix] |
|---|
| 112 | SymmetricMatrix SSQ; SSQ << XC.t() * XC; |
|---|
| 113 | |
|---|
| 114 | // calculate estimate |
|---|
| 115 | // [bracket last two terms to force this multiplication first] |
|---|
| 116 | // [ .i() means inverse, but inverse is not explicity calculated] |
|---|
| 117 | ColumnVector A = SSQ.i() * (XC.t() * YC); |
|---|
| 118 | |
|---|
| 119 | // calculate estimate of constant term |
|---|
| 120 | // [AsScalar converts 1x1 matrix to Real] |
|---|
| 121 | Real a = m - (M * A).AsScalar(); |
|---|
| 122 | |
|---|
| 123 | // Get variances of estimates from diagonal elements of inverse of SSQ |
|---|
| 124 | // [ we are taking inverse of SSQ - we need it for finding D ] |
|---|
| 125 | Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ; |
|---|
| 126 | ColumnVector V = D.AsColumn(); |
|---|
| 127 | Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar(); |
|---|
| 128 | // for calc variance of const |
|---|
| 129 | |
|---|
| 130 | // Calculate fitted values and residuals |
|---|
| 131 | int npred1 = npred+1; |
|---|
| 132 | ColumnVector Fitted = X * A + a; |
|---|
| 133 | ColumnVector Residual = Y - Fitted; |
|---|
| 134 | Real ResVar = Residual.SumSquare() / (nobs-npred1); |
|---|
| 135 | |
|---|
| 136 | // Get diagonals of Hat matrix (an expensive way of doing this) |
|---|
| 137 | Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X; |
|---|
| 138 | DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t(); |
|---|
| 139 | |
|---|
| 140 | // print out answers |
|---|
| 141 | cout << "\nEstimates and their standard errors\n\n"; |
|---|
| 142 | cout.setf(ios::fixed, ios::floatfield); |
|---|
| 143 | cout << setw(11) << setprecision(5) << a << " "; |
|---|
| 144 | cout << setw(11) << setprecision(5) << sqrt(v*ResVar) << endl; |
|---|
| 145 | // make vector of standard errors |
|---|
| 146 | ColumnVector SE(npred); |
|---|
| 147 | for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar); |
|---|
| 148 | // use concatenation function to form matrix and use matrix print |
|---|
| 149 | // to get two columns |
|---|
| 150 | cout << setw(11) << setprecision(5) << (A | SE) << endl; |
|---|
| 151 | cout << "\nObservations, fitted value, residual value, hat value\n"; |
|---|
| 152 | cout << setw(9) << setprecision(3) << |
|---|
| 153 | (X | Y | Fitted | Residual | Hat.AsColumn()); |
|---|
| 154 | cout << "\n\n"; |
|---|
| 155 | } |
|---|
| 156 | |
|---|
| 157 | void test3(Real* y, Real* x1, Real* x2, int nobs, int npred) |
|---|
| 158 | { |
|---|
| 159 | cout << "\n\nTest 3 - Cholesky\n"; |
|---|
| 160 | |
|---|
| 161 | // traditional sum of squares and products method of calculation |
|---|
| 162 | // with subtraction of means - using Cholesky decomposition |
|---|
| 163 | |
|---|
| 164 | Matrix X(nobs,npred); |
|---|
| 165 | X.Column(1) << x1; X.Column(2) << x2; |
|---|
| 166 | ColumnVector Y(nobs); Y << y; |
|---|
| 167 | ColumnVector Ones(nobs); Ones = 1.0; |
|---|
| 168 | RowVector M = Ones.t() * X / nobs; |
|---|
| 169 | Matrix XC(nobs,npred); |
|---|
| 170 | XC = X - Ones * M; |
|---|
| 171 | ColumnVector YC(nobs); |
|---|
| 172 | Real m = Sum(Y) / nobs; YC = Y - Ones * m; |
|---|
| 173 | SymmetricMatrix SSQ; SSQ << XC.t() * XC; |
|---|
| 174 | |
|---|
| 175 | // Cholesky decomposition of SSQ |
|---|
| 176 | LowerTriangularMatrix L = Cholesky(SSQ); |
|---|
| 177 | |
|---|
| 178 | // calculate estimate |
|---|
| 179 | ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC)); |
|---|
| 180 | |
|---|
| 181 | // calculate estimate of constant term |
|---|
| 182 | Real a = m - (M * A).AsScalar(); |
|---|
| 183 | |
|---|
| 184 | // Get variances of estimates from diagonal elements of invoice of SSQ |
|---|
| 185 | DiagonalMatrix D; D << L.t().i() * L.i(); |
|---|
| 186 | ColumnVector V = D.AsColumn(); |
|---|
| 187 | Real v = 1.0/nobs + (L.i() * M.t()).SumSquare(); |
|---|
| 188 | |
|---|
| 189 | // Calculate fitted values and residuals |
|---|
| 190 | int npred1 = npred+1; |
|---|
| 191 | ColumnVector Fitted = X * A + a; |
|---|
| 192 | ColumnVector Residual = Y - Fitted; |
|---|
| 193 | Real ResVar = Residual.SumSquare() / (nobs-npred1); |
|---|
| 194 | |
|---|
| 195 | // Get diagonals of Hat matrix (an expensive way of doing this) |
|---|
| 196 | Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X; |
|---|
| 197 | DiagonalMatrix Hat; Hat << X1 * (X1.t() * X1).i() * X1.t(); |
|---|
| 198 | |
|---|
| 199 | // print out answers |
|---|
| 200 | cout << "\nEstimates and their standard errors\n\n"; |
|---|
| 201 | cout.setf(ios::fixed, ios::floatfield); |
|---|
| 202 | cout << setw(11) << setprecision(5) << a << " "; |
|---|
| 203 | cout << setw(11) << setprecision(5) << sqrt(v*ResVar) << endl; |
|---|
| 204 | ColumnVector SE(npred); |
|---|
| 205 | for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar); |
|---|
| 206 | cout << setw(11) << setprecision(5) << (A | SE) << endl; |
|---|
| 207 | cout << "\nObservations, fitted value, residual value, hat value\n"; |
|---|
| 208 | cout << setw(9) << setprecision(3) << |
|---|
| 209 | (X | Y | Fitted | Residual | Hat.AsColumn()); |
|---|
| 210 | cout << "\n\n"; |
|---|
| 211 | } |
|---|
| 212 | |
|---|
| 213 | void test4(Real* y, Real* x1, Real* x2, int nobs, int npred) |
|---|
| 214 | { |
|---|
| 215 | cout << "\n\nTest 4 - QR triangularisation\n"; |
|---|
| 216 | |
|---|
| 217 | // QR triangularisation method |
|---|
| 218 | |
|---|
| 219 | // load data - 1s into col 1 of matrix |
|---|
| 220 | int npred1 = npred+1; |
|---|
| 221 | Matrix X(nobs,npred1); ColumnVector Y(nobs); |
|---|
| 222 | X.Column(1) = 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y; |
|---|
| 223 | |
|---|
| 224 | // do Householder triangularisation |
|---|
| 225 | // no need to deal with constant term separately |
|---|
| 226 | Matrix X1 = X; // Want copy of matrix |
|---|
| 227 | ColumnVector Y1 = Y; |
|---|
| 228 | UpperTriangularMatrix U; ColumnVector M; |
|---|
| 229 | QRZ(X1, U); QRZ(X1, Y1, M); // Y1 now contains resids |
|---|
| 230 | ColumnVector A = U.i() * M; |
|---|
| 231 | ColumnVector Fitted = X * A; |
|---|
| 232 | Real ResVar = Y1.SumSquare() / (nobs-npred1); |
|---|
| 233 | |
|---|
| 234 | // get variances of estimates |
|---|
| 235 | U = U.i(); DiagonalMatrix D; D << U * U.t(); |
|---|
| 236 | |
|---|
| 237 | // Get diagonals of Hat matrix |
|---|
| 238 | DiagonalMatrix Hat; Hat << X1 * X1.t(); |
|---|
| 239 | |
|---|
| 240 | // print out answers |
|---|
| 241 | cout << "\nEstimates and their standard errors\n\n"; |
|---|
| 242 | ColumnVector SE(npred1); |
|---|
| 243 | for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar); |
|---|
| 244 | cout << setw(11) << setprecision(5) << (A | SE) << endl; |
|---|
| 245 | cout << "\nObservations, fitted value, residual value, hat value\n"; |
|---|
| 246 | cout << setw(9) << setprecision(3) << |
|---|
| 247 | (X.Columns(2,3) | Y | Fitted | Y1 | Hat.AsColumn()); |
|---|
| 248 | cout << "\n\n"; |
|---|
| 249 | } |
|---|
| 250 | |
|---|
| 251 | void test5(Real* y, Real* x1, Real* x2, int nobs, int npred) |
|---|
| 252 | { |
|---|
| 253 | cout << "\n\nTest 5 - singular value\n"; |
|---|
| 254 | |
|---|
| 255 | // Singular value decomposition method |
|---|
| 256 | |
|---|
| 257 | // load data - 1s into col 1 of matrix |
|---|
| 258 | int npred1 = npred+1; |
|---|
| 259 | Matrix X(nobs,npred1); ColumnVector Y(nobs); |
|---|
| 260 | X.Column(1) = 1.0; X.Column(2) << x1; X.Column(3) << x2; Y << y; |
|---|
| 261 | |
|---|
| 262 | // do SVD |
|---|
| 263 | Matrix U, V; DiagonalMatrix D; |
|---|
| 264 | SVD(X,D,U,V); // X = U * D * V.t() |
|---|
| 265 | ColumnVector Fitted = U.t() * Y; |
|---|
| 266 | ColumnVector A = V * ( D.i() * Fitted ); |
|---|
| 267 | Fitted = U * Fitted; |
|---|
| 268 | ColumnVector Residual = Y - Fitted; |
|---|
| 269 | Real ResVar = Residual.SumSquare() / (nobs-npred1); |
|---|
| 270 | |
|---|
| 271 | // get variances of estimates |
|---|
| 272 | D << V * (D * D).i() * V.t(); |
|---|
| 273 | |
|---|
| 274 | // Get diagonals of Hat matrix |
|---|
| 275 | DiagonalMatrix Hat; Hat << U * U.t(); |
|---|
| 276 | |
|---|
| 277 | // print out answers |
|---|
| 278 | cout << "\nEstimates and their standard errors\n\n"; |
|---|
| 279 | ColumnVector SE(npred1); |
|---|
| 280 | for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar); |
|---|
| 281 | cout << setw(11) << setprecision(5) << (A | SE) << endl; |
|---|
| 282 | cout << "\nObservations, fitted value, residual value, hat value\n"; |
|---|
| 283 | cout << setw(9) << setprecision(3) << |
|---|
| 284 | (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn()); |
|---|
| 285 | cout << "\n\n"; |
|---|
| 286 | } |
|---|
| 287 | |
|---|
| 288 | int main() |
|---|
| 289 | { |
|---|
| 290 | cout << "\nDemonstration of Matrix package\n"; |
|---|
| 291 | cout << "\nPrint a real number (may help lost memory test): " << 3.14159265 << "\n"; |
|---|
| 292 | |
|---|
| 293 | // Test for any memory not deallocated after running this program |
|---|
| 294 | Real* s1; { ColumnVector A(8000); s1 = A.Store(); } |
|---|
| 295 | |
|---|
| 296 | { |
|---|
| 297 | // the data |
|---|
| 298 | |
|---|
| 299 | #ifndef ATandT |
|---|
| 300 | Real y[] = { 8.3, 5.5, 8.0, 8.5, 5.7, 4.4, 6.3, 7.9, 9.1 }; |
|---|
| 301 | Real x1[] = { 2.4, 1.8, 2.4, 3.0, 2.0, 1.2, 2.0, 2.7, 3.6 }; |
|---|
| 302 | Real x2[] = { 1.7, 0.9, 1.6, 1.9, 0.5, 0.6, 1.1, 1.0, 0.5 }; |
|---|
| 303 | #else // for compilers that do not understand aggregrates |
|---|
| 304 | Real y[9], x1[9], x2[9]; |
|---|
| 305 | y[0]=8.3; y[1]=5.5; y[2]=8.0; y[3]=8.5; y[4]=5.7; |
|---|
| 306 | y[5]=4.4; y[6]=6.3; y[7]=7.9; y[8]=9.1; |
|---|
| 307 | x1[0]=2.4; x1[1]=1.8; x1[2]=2.4; x1[3]=3.0; x1[4]=2.0; |
|---|
| 308 | x1[5]=1.2; x1[6]=2.0; x1[7]=2.7; x1[8]=3.6; |
|---|
| 309 | x2[0]=1.7; x2[1]=0.9; x2[2]=1.6; x2[3]=1.9; x2[4]=0.5; |
|---|
| 310 | x2[5]=0.6; x2[6]=1.1; x2[7]=1.0; x2[8]=0.5; |
|---|
| 311 | #endif |
|---|
| 312 | |
|---|
| 313 | int nobs = 9; // number of observations |
|---|
| 314 | int npred = 2; // number of predictor values |
|---|
| 315 | |
|---|
| 316 | // we want to find the values of a,a1,a2 to give the best |
|---|
| 317 | // fit of y[i] with a0 + a1*x1[i] + a2*x2[i] |
|---|
| 318 | // Also print diagonal elements of hat matrix, X*(X.t()*X).i()*X.t() |
|---|
| 319 | |
|---|
| 320 | // this example demonstrates five methods of calculation |
|---|
| 321 | |
|---|
| 322 | Try |
|---|
| 323 | { |
|---|
| 324 | test1(y, x1, x2, nobs, npred); |
|---|
| 325 | test2(y, x1, x2, nobs, npred); |
|---|
| 326 | test3(y, x1, x2, nobs, npred); |
|---|
| 327 | test4(y, x1, x2, nobs, npred); |
|---|
| 328 | test5(y, x1, x2, nobs, npred); |
|---|
| 329 | } |
|---|
| 330 | CatchAll { cout << Exception::what(); } |
|---|
| 331 | } |
|---|
| 332 | |
|---|
| 333 | #ifdef DO_FREE_CHECK |
|---|
| 334 | FreeCheck::Status(); |
|---|
| 335 | #endif |
|---|
| 336 | Real* s2; { ColumnVector A(8000); s2 = A.Store(); } |
|---|
| 337 | cout << "\n\nThe following test does not work with all compilers - see documentation\n"; |
|---|
| 338 | cout << "Checking for lost memory: " |
|---|
| 339 | << (unsigned long)s1 << " " << (unsigned long)s2 << " "; |
|---|
| 340 | if (s1 != s2) cout << " - error\n"; else cout << " - ok\n"; |
|---|
| 341 | |
|---|
| 342 | return 0; |
|---|
| 343 | |
|---|
| 344 | } |
|---|
| 345 | |
|---|