| 1 | //$$ example.cpp                             Example of use of matrix package | 
|---|
| 2 |  | 
|---|
| 3 | #define WANT_STREAM                  // include.h will get stream fns | 
|---|
| 4 | #define WANT_MATH                    // include.h will get math fns | 
|---|
| 5 |                                      // newmatap.h will get include.h | 
|---|
| 6 |  | 
|---|
| 7 | #include "newmatap.h"                // need matrix applications | 
|---|
| 8 |  | 
|---|
| 9 | #include "newmatio.h"                // need matrix output routines | 
|---|
| 10 |  | 
|---|
| 11 | #ifdef use_namespace | 
|---|
| 12 | using namespace NEWMAT;              // access NEWMAT namespace | 
|---|
| 13 | #endif | 
|---|
| 14 |  | 
|---|
| 15 |  | 
|---|
| 16 | // demonstration of matrix package on linear regression problem | 
|---|
| 17 |  | 
|---|
| 18 |  | 
|---|
| 19 | void test1(Real* y, Real* x1, Real* x2, int nobs, int npred) | 
|---|
| 20 | { | 
|---|
| 21 |    cout << "\n\nTest 1 - traditional, bad\n"; | 
|---|
| 22 |  | 
|---|
| 23 |    // traditional sum of squares and products method of calculation | 
|---|
| 24 |    // but not adjusting means; maybe subject to round-off error | 
|---|
| 25 |  | 
|---|
| 26 |    // make matrix of predictor values with 1s into col 1 of matrix | 
|---|
| 27 |    int npred1 = npred+1;        // number of cols including col of ones. | 
|---|
| 28 |    Matrix X(nobs,npred1); | 
|---|
| 29 |    X.Column(1) = 1.0; | 
|---|
| 30 |  | 
|---|
| 31 |    // load x1 and x2 into X | 
|---|
| 32 |    //    [use << rather than = when loading arrays] | 
|---|
| 33 |    X.Column(2) << x1;  X.Column(3) << x2; | 
|---|
| 34 |  | 
|---|
| 35 |    // vector of Y values | 
|---|
| 36 |    ColumnVector Y(nobs); Y << y; | 
|---|
| 37 |  | 
|---|
| 38 |    // form sum of squares and product matrix | 
|---|
| 39 |    //    [use << rather than = for copying Matrix into SymmetricMatrix] | 
|---|
| 40 |    SymmetricMatrix SSQ; SSQ << X.t() * X; | 
|---|
| 41 |  | 
|---|
| 42 |    // calculate estimate | 
|---|
| 43 |    //    [bracket last two terms to force this multiplication first] | 
|---|
| 44 |    //    [ .i() means inverse, but inverse is not explicity calculated] | 
|---|
| 45 |    ColumnVector A = SSQ.i() * (X.t() * Y); | 
|---|
| 46 |  | 
|---|
| 47 |    // Get variances of estimates from diagonal elements of inverse of SSQ | 
|---|
| 48 |    // get inverse of SSQ - we need it for finding D | 
|---|
| 49 |    DiagonalMatrix D; D << SSQ.i(); | 
|---|
| 50 |    ColumnVector V = D.AsColumn(); | 
|---|
| 51 |  | 
|---|
| 52 |    // Calculate fitted values and residuals | 
|---|
| 53 |    ColumnVector Fitted = X * A; | 
|---|
| 54 |    ColumnVector Residual = Y - Fitted; | 
|---|
| 55 |    Real ResVar = Residual.SumSquare() / (nobs-npred1); | 
|---|
| 56 |  | 
|---|
| 57 |    // Get diagonals of Hat matrix (an expensive way of doing this) | 
|---|
| 58 |    DiagonalMatrix Hat;  Hat << X * (X.t() * X).i() * X.t(); | 
|---|
| 59 |  | 
|---|
| 60 |    // print out answers | 
|---|
| 61 |    cout << "\nEstimates and their standard errors\n\n"; | 
|---|
| 62 |  | 
|---|
| 63 |    // make vector of standard errors | 
|---|
| 64 |    ColumnVector SE(npred1); | 
|---|
| 65 |    for (int i=1; i<=npred1; i++) SE(i) = sqrt(V(i)*ResVar); | 
|---|
| 66 |    // use concatenation function to form matrix and use matrix print | 
|---|
| 67 |    // to get two columns | 
|---|
| 68 |    cout << setw(11) << setprecision(5) << (A | SE) << endl; | 
|---|
| 69 |  | 
|---|
| 70 |    cout << "\nObservations, fitted value, residual value, hat value\n"; | 
|---|
| 71 |  | 
|---|
| 72 |    // use concatenation again; select only columns 2 to 3 of X | 
|---|
| 73 |    cout << setw(9) << setprecision(3) << | 
|---|
| 74 |      (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn()); | 
|---|
| 75 |    cout << "\n\n"; | 
|---|
| 76 | } | 
|---|
| 77 |  | 
|---|
| 78 | void test2(Real* y, Real* x1, Real* x2, int nobs, int npred) | 
|---|
| 79 | { | 
|---|
| 80 |    cout << "\n\nTest 2 - traditional, OK\n"; | 
|---|
| 81 |  | 
|---|
| 82 |    // traditional sum of squares and products method of calculation | 
|---|
| 83 |    // with subtraction of means - less subject to round-off error | 
|---|
| 84 |    // than test1 | 
|---|
| 85 |  | 
|---|
| 86 |    // make matrix of predictor values | 
|---|
| 87 |    Matrix X(nobs,npred); | 
|---|
| 88 |  | 
|---|
| 89 |    // load x1 and x2 into X | 
|---|
| 90 |    //    [use << rather than = when loading arrays] | 
|---|
| 91 |    X.Column(1) << x1;  X.Column(2) << x2; | 
|---|
| 92 |  | 
|---|
| 93 |    // vector of Y values | 
|---|
| 94 |    ColumnVector Y(nobs); Y << y; | 
|---|
| 95 |  | 
|---|
| 96 |    // make vector of 1s | 
|---|
| 97 |    ColumnVector Ones(nobs); Ones = 1.0; | 
|---|
| 98 |  | 
|---|
| 99 |    // calculate means (averages) of x1 and x2 [ .t() takes transpose] | 
|---|
| 100 |    RowVector M = Ones.t() * X / nobs; | 
|---|
| 101 |  | 
|---|
| 102 |    // and subtract means from x1 and x1 | 
|---|
| 103 |    Matrix XC(nobs,npred); | 
|---|
| 104 |    XC = X - Ones * M; | 
|---|
| 105 |  | 
|---|
| 106 |    // do the same to Y [use Sum to get sum of elements] | 
|---|
| 107 |    ColumnVector YC(nobs); | 
|---|
| 108 |    Real m = Sum(Y) / nobs;  YC = Y - Ones * m; | 
|---|
| 109 |  | 
|---|
| 110 |    // form sum of squares and product matrix | 
|---|
| 111 |    //    [use << rather than = for copying Matrix into SymmetricMatrix] | 
|---|
| 112 |    SymmetricMatrix SSQ; SSQ << XC.t() * XC; | 
|---|
| 113 |  | 
|---|
| 114 |    // calculate estimate | 
|---|
| 115 |    //    [bracket last two terms to force this multiplication first] | 
|---|
| 116 |    //    [ .i() means inverse, but inverse is not explicity calculated] | 
|---|
| 117 |    ColumnVector A = SSQ.i() * (XC.t() * YC); | 
|---|
| 118 |  | 
|---|
| 119 |    // calculate estimate of constant term | 
|---|
| 120 |    //    [AsScalar converts 1x1 matrix to Real] | 
|---|
| 121 |    Real a = m - (M * A).AsScalar(); | 
|---|
| 122 |  | 
|---|
| 123 |    // Get variances of estimates from diagonal elements of inverse of SSQ | 
|---|
| 124 |    //    [ we are taking inverse of SSQ - we need it for finding D ] | 
|---|
| 125 |    Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ; | 
|---|
| 126 |    ColumnVector V = D.AsColumn(); | 
|---|
| 127 |    Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar(); | 
|---|
| 128 |                                             // for calc variance of const | 
|---|
| 129 |  | 
|---|
| 130 |    // Calculate fitted values and residuals | 
|---|
| 131 |    int npred1 = npred+1; | 
|---|
| 132 |    ColumnVector Fitted = X * A + a; | 
|---|
| 133 |    ColumnVector Residual = Y - Fitted; | 
|---|
| 134 |    Real ResVar = Residual.SumSquare() / (nobs-npred1); | 
|---|
| 135 |  | 
|---|
| 136 |    // Get diagonals of Hat matrix (an expensive way of doing this) | 
|---|
| 137 |    Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X; | 
|---|
| 138 |    DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t(); | 
|---|
| 139 |  | 
|---|
| 140 |    // print out answers | 
|---|
| 141 |    cout << "\nEstimates and their standard errors\n\n"; | 
|---|
| 142 |    cout.setf(ios::fixed, ios::floatfield); | 
|---|
| 143 |    cout << setw(11) << setprecision(5)  << a << " "; | 
|---|
| 144 |    cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl; | 
|---|
| 145 |    // make vector of standard errors | 
|---|
| 146 |    ColumnVector SE(npred); | 
|---|
| 147 |    for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar); | 
|---|
| 148 |    // use concatenation function to form matrix and use matrix print | 
|---|
| 149 |    // to get two columns | 
|---|
| 150 |    cout << setw(11) << setprecision(5) << (A | SE) << endl; | 
|---|
| 151 |    cout << "\nObservations, fitted value, residual value, hat value\n"; | 
|---|
| 152 |    cout << setw(9) << setprecision(3) << | 
|---|
| 153 |      (X | Y | Fitted | Residual | Hat.AsColumn()); | 
|---|
| 154 |    cout << "\n\n"; | 
|---|
| 155 | } | 
|---|
| 156 |  | 
|---|
| 157 | void test3(Real* y, Real* x1, Real* x2, int nobs, int npred) | 
|---|
| 158 | { | 
|---|
| 159 |    cout << "\n\nTest 3 - Cholesky\n"; | 
|---|
| 160 |  | 
|---|
| 161 |    // traditional sum of squares and products method of calculation | 
|---|
| 162 |    // with subtraction of means - using Cholesky decomposition | 
|---|
| 163 |  | 
|---|
| 164 |    Matrix X(nobs,npred); | 
|---|
| 165 |    X.Column(1) << x1;  X.Column(2) << x2; | 
|---|
| 166 |    ColumnVector Y(nobs); Y << y; | 
|---|
| 167 |    ColumnVector Ones(nobs); Ones = 1.0; | 
|---|
| 168 |    RowVector M = Ones.t() * X / nobs; | 
|---|
| 169 |    Matrix XC(nobs,npred); | 
|---|
| 170 |    XC = X - Ones * M; | 
|---|
| 171 |    ColumnVector YC(nobs); | 
|---|
| 172 |    Real m = Sum(Y) / nobs;  YC = Y - Ones * m; | 
|---|
| 173 |    SymmetricMatrix SSQ; SSQ << XC.t() * XC; | 
|---|
| 174 |  | 
|---|
| 175 |    // Cholesky decomposition of SSQ | 
|---|
| 176 |    LowerTriangularMatrix L = Cholesky(SSQ); | 
|---|
| 177 |  | 
|---|
| 178 |    // calculate estimate | 
|---|
| 179 |    ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC)); | 
|---|
| 180 |  | 
|---|
| 181 |    // calculate estimate of constant term | 
|---|
| 182 |    Real a = m - (M * A).AsScalar(); | 
|---|
| 183 |  | 
|---|
| 184 |    // Get variances of estimates from diagonal elements of invoice of SSQ | 
|---|
| 185 |    DiagonalMatrix D; D << L.t().i() * L.i(); | 
|---|
| 186 |    ColumnVector V = D.AsColumn(); | 
|---|
| 187 |    Real v = 1.0/nobs + (L.i() * M.t()).SumSquare(); | 
|---|
| 188 |  | 
|---|
| 189 |    // Calculate fitted values and residuals | 
|---|
| 190 |    int npred1 = npred+1; | 
|---|
| 191 |    ColumnVector Fitted = X * A + a; | 
|---|
| 192 |    ColumnVector Residual = Y - Fitted; | 
|---|
| 193 |    Real ResVar = Residual.SumSquare() / (nobs-npred1); | 
|---|
| 194 |  | 
|---|
| 195 |    // Get diagonals of Hat matrix (an expensive way of doing this) | 
|---|
| 196 |    Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X; | 
|---|
| 197 |    DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t(); | 
|---|
| 198 |  | 
|---|
| 199 |    // print out answers | 
|---|
| 200 |    cout << "\nEstimates and their standard errors\n\n"; | 
|---|
| 201 |    cout.setf(ios::fixed, ios::floatfield); | 
|---|
| 202 |    cout << setw(11) << setprecision(5)  << a << " "; | 
|---|
| 203 |    cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl; | 
|---|
| 204 |    ColumnVector SE(npred); | 
|---|
| 205 |    for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar); | 
|---|
| 206 |    cout << setw(11) << setprecision(5) << (A | SE) << endl; | 
|---|
| 207 |    cout << "\nObservations, fitted value, residual value, hat value\n"; | 
|---|
| 208 |    cout << setw(9) << setprecision(3) << | 
|---|
| 209 |       (X | Y | Fitted | Residual | Hat.AsColumn()); | 
|---|
| 210 |    cout << "\n\n"; | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | void test4(Real* y, Real* x1, Real* x2, int nobs, int npred) | 
|---|
| 214 | { | 
|---|
| 215 |    cout << "\n\nTest 4 - QR triangularisation\n"; | 
|---|
| 216 |  | 
|---|
| 217 |    // QR triangularisation method | 
|---|
| 218 |   | 
|---|
| 219 |    // load data - 1s into col 1 of matrix | 
|---|
| 220 |    int npred1 = npred+1; | 
|---|
| 221 |    Matrix X(nobs,npred1); ColumnVector Y(nobs); | 
|---|
| 222 |    X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y; | 
|---|
| 223 |  | 
|---|
| 224 |    // do Householder triangularisation | 
|---|
| 225 |    // no need to deal with constant term separately | 
|---|
| 226 |    Matrix X1 = X;                 // Want copy of matrix | 
|---|
| 227 |    ColumnVector Y1 = Y; | 
|---|
| 228 |    UpperTriangularMatrix U; ColumnVector M; | 
|---|
| 229 |    QRZ(X1, U); QRZ(X1, Y1, M);    // Y1 now contains resids | 
|---|
| 230 |    ColumnVector A = U.i() * M; | 
|---|
| 231 |    ColumnVector Fitted = X * A; | 
|---|
| 232 |    Real ResVar = Y1.SumSquare() / (nobs-npred1); | 
|---|
| 233 |  | 
|---|
| 234 |    // get variances of estimates | 
|---|
| 235 |    U = U.i(); DiagonalMatrix D; D << U * U.t(); | 
|---|
| 236 |  | 
|---|
| 237 |    // Get diagonals of Hat matrix | 
|---|
| 238 |    DiagonalMatrix Hat;  Hat << X1 * X1.t(); | 
|---|
| 239 |  | 
|---|
| 240 |    // print out answers | 
|---|
| 241 |    cout << "\nEstimates and their standard errors\n\n"; | 
|---|
| 242 |    ColumnVector SE(npred1); | 
|---|
| 243 |    for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar); | 
|---|
| 244 |    cout << setw(11) << setprecision(5) << (A | SE) << endl; | 
|---|
| 245 |    cout << "\nObservations, fitted value, residual value, hat value\n"; | 
|---|
| 246 |    cout << setw(9) << setprecision(3) <<  | 
|---|
| 247 |       (X.Columns(2,3) | Y | Fitted | Y1 | Hat.AsColumn()); | 
|---|
| 248 |    cout << "\n\n"; | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | void test5(Real* y, Real* x1, Real* x2, int nobs, int npred) | 
|---|
| 252 | { | 
|---|
| 253 |    cout << "\n\nTest 5 - singular value\n"; | 
|---|
| 254 |  | 
|---|
| 255 |    // Singular value decomposition method | 
|---|
| 256 |   | 
|---|
| 257 |    // load data - 1s into col 1 of matrix | 
|---|
| 258 |    int npred1 = npred+1; | 
|---|
| 259 |    Matrix X(nobs,npred1); ColumnVector Y(nobs); | 
|---|
| 260 |    X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y; | 
|---|
| 261 |  | 
|---|
| 262 |    // do SVD | 
|---|
| 263 |    Matrix U, V; DiagonalMatrix D; | 
|---|
| 264 |    SVD(X,D,U,V);                              // X = U * D * V.t() | 
|---|
| 265 |    ColumnVector Fitted = U.t() * Y; | 
|---|
| 266 |    ColumnVector A = V * ( D.i() * Fitted ); | 
|---|
| 267 |    Fitted = U * Fitted; | 
|---|
| 268 |    ColumnVector Residual = Y - Fitted; | 
|---|
| 269 |    Real ResVar = Residual.SumSquare() / (nobs-npred1); | 
|---|
| 270 |  | 
|---|
| 271 |    // get variances of estimates | 
|---|
| 272 |    D << V * (D * D).i() * V.t(); | 
|---|
| 273 |  | 
|---|
| 274 |    // Get diagonals of Hat matrix | 
|---|
| 275 |    DiagonalMatrix Hat;  Hat << U * U.t(); | 
|---|
| 276 |  | 
|---|
| 277 |    // print out answers | 
|---|
| 278 |    cout << "\nEstimates and their standard errors\n\n"; | 
|---|
| 279 |    ColumnVector SE(npred1); | 
|---|
| 280 |    for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar); | 
|---|
| 281 |    cout << setw(11) << setprecision(5) << (A | SE) << endl; | 
|---|
| 282 |    cout << "\nObservations, fitted value, residual value, hat value\n"; | 
|---|
| 283 |    cout << setw(9) << setprecision(3) <<  | 
|---|
| 284 |       (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn()); | 
|---|
| 285 |    cout << "\n\n"; | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | int main() | 
|---|
| 289 | { | 
|---|
| 290 |    cout << "\nDemonstration of Matrix package\n"; | 
|---|
| 291 |    cout << "\nPrint a real number (may help lost memory test): " << 3.14159265 << "\n"; | 
|---|
| 292 |  | 
|---|
| 293 |    // Test for any memory not deallocated after running this program | 
|---|
| 294 |    Real* s1; { ColumnVector A(8000); s1 = A.Store(); } | 
|---|
| 295 |  | 
|---|
| 296 |    { | 
|---|
| 297 |       // the data | 
|---|
| 298 |  | 
|---|
| 299 | #ifndef ATandT | 
|---|
| 300 |       Real y[]  = { 8.3, 5.5, 8.0, 8.5, 5.7, 4.4, 6.3, 7.9, 9.1 }; | 
|---|
| 301 |       Real x1[] = { 2.4, 1.8, 2.4, 3.0, 2.0, 1.2, 2.0, 2.7, 3.6 }; | 
|---|
| 302 |       Real x2[] = { 1.7, 0.9, 1.6, 1.9, 0.5, 0.6, 1.1, 1.0, 0.5 }; | 
|---|
| 303 | #else             // for compilers that do not understand aggregrates | 
|---|
| 304 |       Real y[9], x1[9], x2[9]; | 
|---|
| 305 |       y[0]=8.3; y[1]=5.5; y[2]=8.0; y[3]=8.5; y[4]=5.7; | 
|---|
| 306 |       y[5]=4.4; y[6]=6.3; y[7]=7.9; y[8]=9.1; | 
|---|
| 307 |       x1[0]=2.4; x1[1]=1.8; x1[2]=2.4; x1[3]=3.0; x1[4]=2.0; | 
|---|
| 308 |       x1[5]=1.2; x1[6]=2.0; x1[7]=2.7; x1[8]=3.6; | 
|---|
| 309 |       x2[0]=1.7; x2[1]=0.9; x2[2]=1.6; x2[3]=1.9; x2[4]=0.5; | 
|---|
| 310 |       x2[5]=0.6; x2[6]=1.1; x2[7]=1.0; x2[8]=0.5; | 
|---|
| 311 | #endif | 
|---|
| 312 |  | 
|---|
| 313 |       int nobs = 9;                           // number of observations | 
|---|
| 314 |       int npred = 2;                          // number of predictor values | 
|---|
| 315 |  | 
|---|
| 316 |       // we want to find the values of a,a1,a2 to give the best | 
|---|
| 317 |       // fit of y[i] with a0 + a1*x1[i] + a2*x2[i] | 
|---|
| 318 |       // Also print diagonal elements of hat matrix, X*(X.t()*X).i()*X.t() | 
|---|
| 319 |  | 
|---|
| 320 |       // this example demonstrates five methods of calculation | 
|---|
| 321 |  | 
|---|
| 322 |       Try | 
|---|
| 323 |       { | 
|---|
| 324 |          test1(y, x1, x2, nobs, npred); | 
|---|
| 325 |          test2(y, x1, x2, nobs, npred); | 
|---|
| 326 |          test3(y, x1, x2, nobs, npred); | 
|---|
| 327 |          test4(y, x1, x2, nobs, npred); | 
|---|
| 328 |          test5(y, x1, x2, nobs, npred); | 
|---|
| 329 |       } | 
|---|
| 330 |       CatchAll { cout << Exception::what(); } | 
|---|
| 331 |    } | 
|---|
| 332 |  | 
|---|
| 333 | #ifdef DO_FREE_CHECK | 
|---|
| 334 |    FreeCheck::Status(); | 
|---|
| 335 | #endif | 
|---|
| 336 |    Real* s2; { ColumnVector A(8000); s2 = A.Store(); } | 
|---|
| 337 |    cout << "\n\nThe following test does not work with all compilers - see documentation\n"; | 
|---|
| 338 |    cout << "Checking for lost memory: " | 
|---|
| 339 |       << (unsigned long)s1 << " " << (unsigned long)s2 << " "; | 
|---|
| 340 |    if (s1 != s2) cout << " - error\n"; else cout << " - ok\n"; | 
|---|
| 341 |  | 
|---|
| 342 |    return 0; | 
|---|
| 343 |  | 
|---|
| 344 | } | 
|---|
| 345 |  | 
|---|