| 1 | /******************************************************* | 
|---|
| 2 |  A simple program that demonstrates NewMat10 library. | 
|---|
| 3 |  The program defines a random symmetric matrix | 
|---|
| 4 |  and computes its eigendecomposition. | 
|---|
| 5 |  For further details read the NewMat10 Reference Manual | 
|---|
| 6 | ********************************************************/ | 
|---|
| 7 |  | 
|---|
| 8 |  | 
|---|
| 9 | #define WANT_STREAM | 
|---|
| 10 | #define WANT_MATH | 
|---|
| 11 | #define WANT_FSTREAM | 
|---|
| 12 |  | 
|---|
| 13 |  | 
|---|
| 14 |  | 
|---|
| 15 | #include <stdlib.h> | 
|---|
| 16 | #include <time.h> | 
|---|
| 17 | #include <string.h> | 
|---|
| 18 |  | 
|---|
| 19 | // the following two are needed for printing | 
|---|
| 20 | #include <iostream.h> | 
|---|
| 21 | #include <iomanip.h> | 
|---|
| 22 | /************************************** | 
|---|
| 23 |  The NewMat10 include files         */ | 
|---|
| 24 | #include "include.h" | 
|---|
| 25 | #include "newmat.h" | 
|---|
| 26 | #include "newmatap.h" | 
|---|
| 27 | #include "newmatio.h" | 
|---|
| 28 | /***************************************/ | 
|---|
| 29 |  | 
|---|
| 30 |  | 
|---|
| 31 | #ifdef use_namespace | 
|---|
| 32 | using namespace RBD_LIBRARIES; | 
|---|
| 33 | #endif | 
|---|
| 34 |  | 
|---|
| 35 | int main(int argc, char **argv) { | 
|---|
| 36 |  | 
|---|
| 37 |   | 
|---|
| 38 |   SymmetricMatrix C(3); | 
|---|
| 39 |  | 
|---|
| 40 |   C(1,1) = 1; | 
|---|
| 41 |   C(1,2) = 4; | 
|---|
| 42 |   C(1,3) = 4; | 
|---|
| 43 |   C(2,1) = 4;   | 
|---|
| 44 |   C(2,2) = 2; | 
|---|
| 45 |   C(2,3) = 4; | 
|---|
| 46 |   C(3,1) = 4; | 
|---|
| 47 |   C(3,2) = 4; | 
|---|
| 48 |   C(3,3) = 3; | 
|---|
| 49 |    | 
|---|
| 50 |   cout << "The symmetrix matrix C" << endl; | 
|---|
| 51 |   cout << setw(5) << setprecision(0) << C << endl; | 
|---|
| 52 |  | 
|---|
| 53 |   Matrix                V(3,3); // for eigenvectors | 
|---|
| 54 |   DiagonalMatrix        D(3);   // for eigenvalues | 
|---|
| 55 |    | 
|---|
| 56 |   // the decomposition | 
|---|
| 57 |   Jacobi(C, D, V); | 
|---|
| 58 |  | 
|---|
| 59 |  | 
|---|
| 60 |   // Print the result | 
|---|
| 61 |   cout << "The eigenvalues matrix:" << endl; | 
|---|
| 62 |   cout << setw(10) << setprecision(5) << D << endl; | 
|---|
| 63 |   cout << "The eigenvectors matrix:" << endl; | 
|---|
| 64 |   cout << setw(10) << setprecision(5) << V << endl; | 
|---|
| 65 |  | 
|---|
| 66 |   return 0; | 
|---|
| 67 |   /* | 
|---|
| 68 |   int M = 3, N = 5; | 
|---|
| 69 |   Matrix X(M,N); // Define an M x N general matrix | 
|---|
| 70 |  | 
|---|
| 71 |   // Fill X by random numbers between 0 and 9 | 
|---|
| 72 |   // Note that indexing into matrices in NewMat is 1-based! | 
|---|
| 73 |   srand(time(NULL)); | 
|---|
| 74 |   for (int i = 1; i <= M; ++i) { | 
|---|
| 75 |     for (int j = 1; j <= N; ++j) { | 
|---|
| 76 |       X(i,j) = rand() % 10; | 
|---|
| 77 |     } | 
|---|
| 78 |   } | 
|---|
| 79 |  | 
|---|
| 80 |   SymmetricMatrix C; | 
|---|
| 81 |   C << X * X.t(); // fill in C by X * X^t.  | 
|---|
| 82 |   // Works because we *know* that the result is symmetric | 
|---|
| 83 |  | 
|---|
| 84 |   cout << "The symmetrix matrix C" << endl; | 
|---|
| 85 |   cout << setw(5) << setprecision(0) << C << endl; | 
|---|
| 86 |          | 
|---|
| 87 |  | 
|---|
| 88 |   // compute eigendecomposition of C | 
|---|
| 89 |   Matrix                        V(3,3); // for eigenvectors | 
|---|
| 90 |   DiagonalMatrix        D(3);   // for eigenvalues | 
|---|
| 91 |  | 
|---|
| 92 |   // the decomposition | 
|---|
| 93 |   Jacobi(C, D, V); | 
|---|
| 94 |          | 
|---|
| 95 |   // Print the result | 
|---|
| 96 |   cout << "The eigenvalues matrix:" << endl; | 
|---|
| 97 |   cout << setw(10) << setprecision(5) << D << endl; | 
|---|
| 98 |   cout << "The eigenvectors matrix:" << endl; | 
|---|
| 99 |   cout << setw(10) << setprecision(5) << V << endl; | 
|---|
| 100 |  | 
|---|
| 101 |   // Check that the first eigenvector indeed has the eigenvector property | 
|---|
| 102 |   ColumnVector v1(3); | 
|---|
| 103 |   v1(1) = V(1,1); | 
|---|
| 104 |   v1(2) = V(2,1); | 
|---|
| 105 |   v1(3) = V(3,1); | 
|---|
| 106 |  | 
|---|
| 107 |   ColumnVector Cv1 = C * v1; | 
|---|
| 108 |   ColumnVector lambda1_v1 = D(1) * v1; | 
|---|
| 109 |  | 
|---|
| 110 |   cout << "The max-norm of the difference between C*v1 and lambda1*v1 is " << | 
|---|
| 111 |     NormInfinity(Cv1 - lambda1_v1) << endl << endl; | 
|---|
| 112 |  | 
|---|
| 113 |   // Build the inverse and check the result | 
|---|
| 114 |   Matrix Ci = C.i(); | 
|---|
| 115 |   Matrix I  = Ci * C; | 
|---|
| 116 |  | 
|---|
| 117 |   cout << "The inverse of C is" << endl; | 
|---|
| 118 |   cout << setw(10) << setprecision(5) << Ci << endl; | 
|---|
| 119 |   cout << "And the inverse times C is identity" << endl; | 
|---|
| 120 |   cout << setw(10) << setprecision(5) << I << endl; | 
|---|
| 121 |  | 
|---|
| 122 |   // Example for multiple solves (see NewMat documentation) | 
|---|
| 123 |   ColumnVector r1(3), r2(3); | 
|---|
| 124 |   for (int i = 1; i <= 3; ++i) { | 
|---|
| 125 |     r1(i) = rand() % 10; | 
|---|
| 126 |     r2(i) = rand() % 10; | 
|---|
| 127 |   } | 
|---|
| 128 |   LinearEquationSolver CLU = C; // decomposes C | 
|---|
| 129 |   ColumnVector s1 = CLU.i() * r1; | 
|---|
| 130 |   ColumnVector s2 = CLU.i() * r2; | 
|---|
| 131 |  | 
|---|
| 132 |   cout << "solution for right hand side r1" << endl; | 
|---|
| 133 |   cout << setw(10) << setprecision(5) << s1 << endl; | 
|---|
| 134 |   cout << "solution for right hand side r2" << endl; | 
|---|
| 135 |   cout << setw(10) << setprecision(5) << s2 << endl; | 
|---|
| 136 |   */ | 
|---|
| 137 |  | 
|---|
| 138 |   return 0; | 
|---|
| 139 | } | 
|---|