| 1 | /* |
|---|
| 2 | orxonox - the future of 3D-vertical-scrollers |
|---|
| 3 | |
|---|
| 4 | Copyright (C) 2004 orx |
|---|
| 5 | |
|---|
| 6 | This program is free software; you can redistribute it and/or modify |
|---|
| 7 | it under the terms of the GNU General Public License as published by |
|---|
| 8 | the Free Software Foundation; either version 2, or (at your option) |
|---|
| 9 | any later version. |
|---|
| 10 | |
|---|
| 11 | ### File Specific: |
|---|
| 12 | main-programmer: Christian Meyer |
|---|
| 13 | co-programmer: Patrick Boenzli : Vector::scale() |
|---|
| 14 | Vector::abs() |
|---|
| 15 | |
|---|
| 16 | Quaternion code borrowed from an Gamasutra article by Nick Bobick and Ken Shoemake |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #define DEBUG_SPECIAL_MODULE DEBUG_MODULE_MATH |
|---|
| 20 | |
|---|
| 21 | #include "vector.h" |
|---|
| 22 | #include "debug.h" |
|---|
| 23 | |
|---|
| 24 | using namespace std; |
|---|
| 25 | |
|---|
| 26 | ///////////// |
|---|
| 27 | /* VECTORS */ |
|---|
| 28 | ///////////// |
|---|
| 29 | /** |
|---|
| 30 | * returns the this-vector normalized to length 1.0 |
|---|
| 31 | */ |
|---|
| 32 | Vector Vector::getNormalized() const |
|---|
| 33 | { |
|---|
| 34 | float l = len(); |
|---|
| 35 | if(unlikely(l != 1.0)) |
|---|
| 36 | { |
|---|
| 37 | return *this; |
|---|
| 38 | } |
|---|
| 39 | else if(unlikely(l == 0.0)) |
|---|
| 40 | { |
|---|
| 41 | return *this; |
|---|
| 42 | } |
|---|
| 43 | |
|---|
| 44 | return *this / l; |
|---|
| 45 | } |
|---|
| 46 | |
|---|
| 47 | /** |
|---|
| 48 | * Vector is looking in the positive direction on all axes after this |
|---|
| 49 | */ |
|---|
| 50 | Vector Vector::abs() |
|---|
| 51 | { |
|---|
| 52 | Vector v(fabs(x), fabs(y), fabs(z)); |
|---|
| 53 | return v; |
|---|
| 54 | } |
|---|
| 55 | |
|---|
| 56 | |
|---|
| 57 | |
|---|
| 58 | /** |
|---|
| 59 | * Outputs the values of the Vector |
|---|
| 60 | */ |
|---|
| 61 | void Vector::debug() const |
|---|
| 62 | { |
|---|
| 63 | PRINT(0)("Vector Debug information\n"); |
|---|
| 64 | PRINT(0)("x: %f; y: %f; z: %f", x, y, z); |
|---|
| 65 | PRINT(3)(" lenght: %f", len()); |
|---|
| 66 | PRINT(0)("\n"); |
|---|
| 67 | } |
|---|
| 68 | |
|---|
| 69 | ///////////////// |
|---|
| 70 | /* QUATERNIONS */ |
|---|
| 71 | ///////////////// |
|---|
| 72 | /** |
|---|
| 73 | * calculates a lookAt rotation |
|---|
| 74 | * @param dir: the direction you want to look |
|---|
| 75 | * @param up: specify what direction up should be |
|---|
| 76 | |
|---|
| 77 | Mathematically this determines the rotation a (0,0,1)-Vector has to undergo to point |
|---|
| 78 | the same way as dir. If you want to use this with cameras, you'll have to reverse the |
|---|
| 79 | dir Vector (Vector(0,0,0) - your viewing direction) or you'll point the wrong way. You |
|---|
| 80 | can use this for meshes as well (then you do not have to reverse the vector), but keep |
|---|
| 81 | in mind that if you do that, the model's front has to point in +z direction, and left |
|---|
| 82 | and right should be -x or +x respectively or the mesh wont rotate correctly. |
|---|
| 83 | */ |
|---|
| 84 | Quaternion::Quaternion (const Vector& dir, const Vector& up) |
|---|
| 85 | { |
|---|
| 86 | Vector z = dir; |
|---|
| 87 | z.normalize(); |
|---|
| 88 | Vector x = up.cross(z); |
|---|
| 89 | x.normalize(); |
|---|
| 90 | Vector y = z.cross(x); |
|---|
| 91 | |
|---|
| 92 | float m[4][4]; |
|---|
| 93 | m[0][0] = x.x; |
|---|
| 94 | m[0][1] = x.y; |
|---|
| 95 | m[0][2] = x.z; |
|---|
| 96 | m[0][3] = 0; |
|---|
| 97 | m[1][0] = y.x; |
|---|
| 98 | m[1][1] = y.y; |
|---|
| 99 | m[1][2] = y.z; |
|---|
| 100 | m[1][3] = 0; |
|---|
| 101 | m[2][0] = z.x; |
|---|
| 102 | m[2][1] = z.y; |
|---|
| 103 | m[2][2] = z.z; |
|---|
| 104 | m[2][3] = 0; |
|---|
| 105 | m[3][0] = 0; |
|---|
| 106 | m[3][1] = 0; |
|---|
| 107 | m[3][2] = 0; |
|---|
| 108 | m[3][3] = 1; |
|---|
| 109 | |
|---|
| 110 | *this = Quaternion (m); |
|---|
| 111 | } |
|---|
| 112 | |
|---|
| 113 | /** |
|---|
| 114 | * calculates a rotation from euler angles |
|---|
| 115 | * @param roll: the roll in radians |
|---|
| 116 | * @param pitch: the pitch in radians |
|---|
| 117 | * @param yaw: the yaw in radians |
|---|
| 118 | */ |
|---|
| 119 | Quaternion::Quaternion (float roll, float pitch, float yaw) |
|---|
| 120 | { |
|---|
| 121 | float cr, cp, cy, sr, sp, sy, cpcy, spsy; |
|---|
| 122 | |
|---|
| 123 | // calculate trig identities |
|---|
| 124 | cr = cos(roll/2); |
|---|
| 125 | cp = cos(pitch/2); |
|---|
| 126 | cy = cos(yaw/2); |
|---|
| 127 | |
|---|
| 128 | sr = sin(roll/2); |
|---|
| 129 | sp = sin(pitch/2); |
|---|
| 130 | sy = sin(yaw/2); |
|---|
| 131 | |
|---|
| 132 | cpcy = cp * cy; |
|---|
| 133 | spsy = sp * sy; |
|---|
| 134 | |
|---|
| 135 | w = cr * cpcy + sr * spsy; |
|---|
| 136 | v.x = sr * cpcy - cr * spsy; |
|---|
| 137 | v.y = cr * sp * cy + sr * cp * sy; |
|---|
| 138 | v.z = cr * cp * sy - sr * sp * cy; |
|---|
| 139 | } |
|---|
| 140 | |
|---|
| 141 | /** |
|---|
| 142 | * rotates one Quaternion by another |
|---|
| 143 | * @param q: another Quaternion to rotate this by |
|---|
| 144 | * @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) |
|---|
| 145 | */ |
|---|
| 146 | Quaternion Quaternion::operator*(const Quaternion& q) const |
|---|
| 147 | { |
|---|
| 148 | float A, B, C, D, E, F, G, H; |
|---|
| 149 | |
|---|
| 150 | A = (w + v.x)*(q.w + q.v.x); |
|---|
| 151 | B = (v.z - v.y)*(q.v.y - q.v.z); |
|---|
| 152 | C = (w - v.x)*(q.v.y + q.v.z); |
|---|
| 153 | D = (v.y + v.z)*(q.w - q.v.x); |
|---|
| 154 | E = (v.x + v.z)*(q.v.x + q.v.y); |
|---|
| 155 | F = (v.x - v.z)*(q.v.x - q.v.y); |
|---|
| 156 | G = (w + v.y)*(q.w - q.v.z); |
|---|
| 157 | H = (w - v.y)*(q.w + q.v.z); |
|---|
| 158 | |
|---|
| 159 | Quaternion r; |
|---|
| 160 | r.v.x = A - (E + F + G + H)/2; |
|---|
| 161 | r.v.y = C + (E - F + G - H)/2; |
|---|
| 162 | r.v.z = D + (E - F - G + H)/2; |
|---|
| 163 | r.w = B + (-E - F + G + H)/2; |
|---|
| 164 | |
|---|
| 165 | return r; |
|---|
| 166 | } |
|---|
| 167 | |
|---|
| 168 | /** |
|---|
| 169 | * rotate a Vector by a Quaternion |
|---|
| 170 | * @param v: the Vector |
|---|
| 171 | * @return a new Vector representing v rotated by the Quaternion |
|---|
| 172 | */ |
|---|
| 173 | |
|---|
| 174 | Vector Quaternion::apply (const Vector& v) const |
|---|
| 175 | { |
|---|
| 176 | Quaternion q; |
|---|
| 177 | q.v = v; |
|---|
| 178 | q.w = 0; |
|---|
| 179 | q = *this * q * conjugate(); |
|---|
| 180 | return q.v; |
|---|
| 181 | } |
|---|
| 182 | |
|---|
| 183 | |
|---|
| 184 | /** |
|---|
| 185 | * multiply a Quaternion with a real value |
|---|
| 186 | * @param f: a real value |
|---|
| 187 | * @return a new Quaternion containing the product |
|---|
| 188 | */ |
|---|
| 189 | Quaternion Quaternion::operator*(const float& f) const |
|---|
| 190 | { |
|---|
| 191 | Quaternion r(*this); |
|---|
| 192 | r.w = r.w*f; |
|---|
| 193 | r.v = r.v*f; |
|---|
| 194 | return r; |
|---|
| 195 | } |
|---|
| 196 | |
|---|
| 197 | /** |
|---|
| 198 | * divide a Quaternion by a real value |
|---|
| 199 | * @param f: a real value |
|---|
| 200 | * @return a new Quaternion containing the quotient |
|---|
| 201 | */ |
|---|
| 202 | Quaternion Quaternion::operator/(const float& f) const |
|---|
| 203 | { |
|---|
| 204 | if( f == 0) return Quaternion(); |
|---|
| 205 | Quaternion r(*this); |
|---|
| 206 | r.w = r.w/f; |
|---|
| 207 | r.v = r.v/f; |
|---|
| 208 | return r; |
|---|
| 209 | } |
|---|
| 210 | |
|---|
| 211 | /** |
|---|
| 212 | * calculate the conjugate value of the Quaternion |
|---|
| 213 | * @return the conjugate Quaternion |
|---|
| 214 | */ |
|---|
| 215 | /* |
|---|
| 216 | Quaternion Quaternion::conjugate() const |
|---|
| 217 | { |
|---|
| 218 | Quaternion r(*this); |
|---|
| 219 | r.v = Vector() - r.v; |
|---|
| 220 | return r; |
|---|
| 221 | } |
|---|
| 222 | */ |
|---|
| 223 | |
|---|
| 224 | /** |
|---|
| 225 | * calculate the norm of the Quaternion |
|---|
| 226 | * @return the norm of The Quaternion |
|---|
| 227 | */ |
|---|
| 228 | float Quaternion::norm() const |
|---|
| 229 | { |
|---|
| 230 | return w*w + v.x*v.x + v.y*v.y + v.z*v.z; |
|---|
| 231 | } |
|---|
| 232 | |
|---|
| 233 | /** |
|---|
| 234 | * calculate the inverse value of the Quaternion |
|---|
| 235 | * @return the inverse Quaternion |
|---|
| 236 | |
|---|
| 237 | Note that this is equal to conjugate() if the Quaternion's norm is 1 |
|---|
| 238 | */ |
|---|
| 239 | Quaternion Quaternion::inverse() const |
|---|
| 240 | { |
|---|
| 241 | float n = norm(); |
|---|
| 242 | if (n != 0) |
|---|
| 243 | { |
|---|
| 244 | return conjugate() / norm(); |
|---|
| 245 | } |
|---|
| 246 | else return Quaternion(); |
|---|
| 247 | } |
|---|
| 248 | |
|---|
| 249 | /** |
|---|
| 250 | * convert the Quaternion to a 4x4 rotational glMatrix |
|---|
| 251 | * @param m: a buffer to store the Matrix in |
|---|
| 252 | */ |
|---|
| 253 | void Quaternion::matrix (float m[4][4]) const |
|---|
| 254 | { |
|---|
| 255 | float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; |
|---|
| 256 | |
|---|
| 257 | // calculate coefficients |
|---|
| 258 | x2 = v.x + v.x; |
|---|
| 259 | y2 = v.y + v.y; |
|---|
| 260 | z2 = v.z + v.z; |
|---|
| 261 | xx = v.x * x2; xy = v.x * y2; xz = v.x * z2; |
|---|
| 262 | yy = v.y * y2; yz = v.y * z2; zz = v.z * z2; |
|---|
| 263 | wx = w * x2; wy = w * y2; wz = w * z2; |
|---|
| 264 | |
|---|
| 265 | m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz; |
|---|
| 266 | m[2][0] = xz + wy; m[3][0] = 0.0; |
|---|
| 267 | |
|---|
| 268 | m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz); |
|---|
| 269 | m[2][1] = yz - wx; m[3][1] = 0.0; |
|---|
| 270 | |
|---|
| 271 | m[0][2] = xz - wy; m[1][2] = yz + wx; |
|---|
| 272 | m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0; |
|---|
| 273 | |
|---|
| 274 | m[0][3] = 0; m[1][3] = 0; |
|---|
| 275 | m[2][3] = 0; m[3][3] = 1; |
|---|
| 276 | } |
|---|
| 277 | |
|---|
| 278 | /** |
|---|
| 279 | * performs a smooth move. |
|---|
| 280 | * @param from where |
|---|
| 281 | * @param to where |
|---|
| 282 | * @param t the time this transformation should take value [0..1] |
|---|
| 283 | |
|---|
| 284 | * @returns the Result of the smooth move |
|---|
| 285 | */ |
|---|
| 286 | Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t) |
|---|
| 287 | { |
|---|
| 288 | float tol[4]; |
|---|
| 289 | double omega, cosom, sinom, scale0, scale1; |
|---|
| 290 | // float DELTA = 0.2; |
|---|
| 291 | |
|---|
| 292 | cosom = from.v.x * to.v.x + from.v.y * to.v.y + from.v.z * to.v.z + from.w * to.w; |
|---|
| 293 | |
|---|
| 294 | if( cosom < 0.0 ) |
|---|
| 295 | { |
|---|
| 296 | cosom = -cosom; |
|---|
| 297 | tol[0] = -to.v.x; |
|---|
| 298 | tol[1] = -to.v.y; |
|---|
| 299 | tol[2] = -to.v.z; |
|---|
| 300 | tol[3] = -to.w; |
|---|
| 301 | } |
|---|
| 302 | else |
|---|
| 303 | { |
|---|
| 304 | tol[0] = to.v.x; |
|---|
| 305 | tol[1] = to.v.y; |
|---|
| 306 | tol[2] = to.v.z; |
|---|
| 307 | tol[3] = to.w; |
|---|
| 308 | } |
|---|
| 309 | |
|---|
| 310 | //if( (1.0 - cosom) > DELTA ) |
|---|
| 311 | //{ |
|---|
| 312 | omega = acos(cosom); |
|---|
| 313 | sinom = sin(omega); |
|---|
| 314 | scale0 = sin((1.0 - t) * omega) / sinom; |
|---|
| 315 | scale1 = sin(t * omega) / sinom; |
|---|
| 316 | //} |
|---|
| 317 | /* |
|---|
| 318 | else |
|---|
| 319 | { |
|---|
| 320 | scale0 = 1.0 - t; |
|---|
| 321 | scale1 = t; |
|---|
| 322 | } |
|---|
| 323 | */ |
|---|
| 324 | |
|---|
| 325 | |
|---|
| 326 | /* |
|---|
| 327 | Quaternion res; |
|---|
| 328 | res.v.x = scale0 * from.v.x + scale1 * tol[0]; |
|---|
| 329 | res.v.y = scale0 * from.v.y + scale1 * tol[1]; |
|---|
| 330 | res.v.z = scale0 * from.v.z + scale1 * tol[2]; |
|---|
| 331 | res.w = scale0 * from.w + scale1 * tol[3]; |
|---|
| 332 | */ |
|---|
| 333 | return Quaternion(Vector(scale0 * from.v.x + scale1 * tol[0], |
|---|
| 334 | scale0 * from.v.y + scale1 * tol[1], |
|---|
| 335 | scale0 * from.v.z + scale1 * tol[2]), |
|---|
| 336 | scale0 * from.w + scale1 * tol[3]); |
|---|
| 337 | } |
|---|
| 338 | |
|---|
| 339 | |
|---|
| 340 | /** |
|---|
| 341 | * convert a rotational 4x4 glMatrix into a Quaternion |
|---|
| 342 | * @param m: a 4x4 matrix in glMatrix order |
|---|
| 343 | */ |
|---|
| 344 | Quaternion::Quaternion (float m[4][4]) |
|---|
| 345 | { |
|---|
| 346 | |
|---|
| 347 | float tr, s, q[4]; |
|---|
| 348 | int i, j, k; |
|---|
| 349 | |
|---|
| 350 | int nxt[3] = {1, 2, 0}; |
|---|
| 351 | |
|---|
| 352 | tr = m[0][0] + m[1][1] + m[2][2]; |
|---|
| 353 | |
|---|
| 354 | // check the diagonal |
|---|
| 355 | if (tr > 0.0) |
|---|
| 356 | { |
|---|
| 357 | s = sqrt (tr + 1.0); |
|---|
| 358 | w = s / 2.0; |
|---|
| 359 | s = 0.5 / s; |
|---|
| 360 | v.x = (m[1][2] - m[2][1]) * s; |
|---|
| 361 | v.y = (m[2][0] - m[0][2]) * s; |
|---|
| 362 | v.z = (m[0][1] - m[1][0]) * s; |
|---|
| 363 | } |
|---|
| 364 | else |
|---|
| 365 | { |
|---|
| 366 | // diagonal is negative |
|---|
| 367 | i = 0; |
|---|
| 368 | if (m[1][1] > m[0][0]) i = 1; |
|---|
| 369 | if (m[2][2] > m[i][i]) i = 2; |
|---|
| 370 | j = nxt[i]; |
|---|
| 371 | k = nxt[j]; |
|---|
| 372 | |
|---|
| 373 | s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0); |
|---|
| 374 | |
|---|
| 375 | q[i] = s * 0.5; |
|---|
| 376 | |
|---|
| 377 | if (s != 0.0) s = 0.5 / s; |
|---|
| 378 | |
|---|
| 379 | q[3] = (m[j][k] - m[k][j]) * s; |
|---|
| 380 | q[j] = (m[i][j] + m[j][i]) * s; |
|---|
| 381 | q[k] = (m[i][k] + m[k][i]) * s; |
|---|
| 382 | |
|---|
| 383 | v.x = q[0]; |
|---|
| 384 | v.y = q[1]; |
|---|
| 385 | v.z = q[2]; |
|---|
| 386 | w = q[3]; |
|---|
| 387 | } |
|---|
| 388 | } |
|---|
| 389 | |
|---|
| 390 | /** |
|---|
| 391 | * outputs some nice formated debug information about this quaternion |
|---|
| 392 | */ |
|---|
| 393 | void Quaternion::debug() |
|---|
| 394 | { |
|---|
| 395 | PRINT(0)("Quaternion Debug Information\n"); |
|---|
| 396 | PRINT(0)("real a=%f; imag: x=%f y=%f z=%f\n", w, v.x, v.y, v.z); |
|---|
| 397 | } |
|---|
| 398 | |
|---|
| 399 | /** |
|---|
| 400 | * create a rotation from a vector |
|---|
| 401 | * @param v: a vector |
|---|
| 402 | */ |
|---|
| 403 | Rotation::Rotation (const Vector& v) |
|---|
| 404 | { |
|---|
| 405 | Vector x = Vector( 1, 0, 0); |
|---|
| 406 | Vector axis = x.cross( v); |
|---|
| 407 | axis.normalize(); |
|---|
| 408 | float angle = angleRad( x, v); |
|---|
| 409 | float ca = cos(angle); |
|---|
| 410 | float sa = sin(angle); |
|---|
| 411 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
|---|
| 412 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
|---|
| 413 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
|---|
| 414 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
|---|
| 415 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
|---|
| 416 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
|---|
| 417 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
|---|
| 418 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
|---|
| 419 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
|---|
| 420 | } |
|---|
| 421 | |
|---|
| 422 | /** |
|---|
| 423 | * creates a rotation from an axis and an angle (radians!) |
|---|
| 424 | * @param axis: the rotational axis |
|---|
| 425 | * @param angle: the angle in radians |
|---|
| 426 | */ |
|---|
| 427 | Rotation::Rotation (const Vector& axis, float angle) |
|---|
| 428 | { |
|---|
| 429 | float ca, sa; |
|---|
| 430 | ca = cos(angle); |
|---|
| 431 | sa = sin(angle); |
|---|
| 432 | m[0] = 1.0f+(1.0f-ca)*(axis.x*axis.x-1.0f); |
|---|
| 433 | m[1] = -axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
|---|
| 434 | m[2] = axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
|---|
| 435 | m[3] = axis.z*sa+(1.0f-ca)*axis.x*axis.y; |
|---|
| 436 | m[4] = 1.0f+(1.0f-ca)*(axis.y*axis.y-1.0f); |
|---|
| 437 | m[5] = -axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
|---|
| 438 | m[6] = -axis.y*sa+(1.0f-ca)*axis.x*axis.z; |
|---|
| 439 | m[7] = axis.x*sa+(1.0f-ca)*axis.y*axis.z; |
|---|
| 440 | m[8] = 1.0f+(1.0f-ca)*(axis.z*axis.z-1.0f); |
|---|
| 441 | } |
|---|
| 442 | |
|---|
| 443 | /** |
|---|
| 444 | * creates a rotation from euler angles (pitch/yaw/roll) |
|---|
| 445 | * @param pitch: rotation around z (in radians) |
|---|
| 446 | * @param yaw: rotation around y (in radians) |
|---|
| 447 | * @param roll: rotation around x (in radians) |
|---|
| 448 | */ |
|---|
| 449 | Rotation::Rotation ( float pitch, float yaw, float roll) |
|---|
| 450 | { |
|---|
| 451 | float cy, sy, cr, sr, cp, sp; |
|---|
| 452 | cy = cos(yaw); |
|---|
| 453 | sy = sin(yaw); |
|---|
| 454 | cr = cos(roll); |
|---|
| 455 | sr = sin(roll); |
|---|
| 456 | cp = cos(pitch); |
|---|
| 457 | sp = sin(pitch); |
|---|
| 458 | m[0] = cy*cr; |
|---|
| 459 | m[1] = -cy*sr; |
|---|
| 460 | m[2] = sy; |
|---|
| 461 | m[3] = cp*sr+sp*sy*cr; |
|---|
| 462 | m[4] = cp*cr-sp*sr*sy; |
|---|
| 463 | m[5] = -sp*cy; |
|---|
| 464 | m[6] = sp*sr-cp*sy*cr; |
|---|
| 465 | m[7] = sp*cr+cp*sy*sr; |
|---|
| 466 | m[8] = cp*cy; |
|---|
| 467 | } |
|---|
| 468 | |
|---|
| 469 | /** |
|---|
| 470 | * creates a nullrotation (an identity rotation) |
|---|
| 471 | */ |
|---|
| 472 | Rotation::Rotation () |
|---|
| 473 | { |
|---|
| 474 | m[0] = 1.0f; |
|---|
| 475 | m[1] = 0.0f; |
|---|
| 476 | m[2] = 0.0f; |
|---|
| 477 | m[3] = 0.0f; |
|---|
| 478 | m[4] = 1.0f; |
|---|
| 479 | m[5] = 0.0f; |
|---|
| 480 | m[6] = 0.0f; |
|---|
| 481 | m[7] = 0.0f; |
|---|
| 482 | m[8] = 1.0f; |
|---|
| 483 | } |
|---|
| 484 | |
|---|
| 485 | /** |
|---|
| 486 | * fills the specified buffer with a 4x4 glmatrix |
|---|
| 487 | * @param buffer: Pointer to an array of 16 floats |
|---|
| 488 | |
|---|
| 489 | Use this to get the rotation in a gl-compatible format |
|---|
| 490 | */ |
|---|
| 491 | void Rotation::glmatrix (float* buffer) |
|---|
| 492 | { |
|---|
| 493 | buffer[0] = m[0]; |
|---|
| 494 | buffer[1] = m[3]; |
|---|
| 495 | buffer[2] = m[6]; |
|---|
| 496 | buffer[3] = m[0]; |
|---|
| 497 | buffer[4] = m[1]; |
|---|
| 498 | buffer[5] = m[4]; |
|---|
| 499 | buffer[6] = m[7]; |
|---|
| 500 | buffer[7] = m[0]; |
|---|
| 501 | buffer[8] = m[2]; |
|---|
| 502 | buffer[9] = m[5]; |
|---|
| 503 | buffer[10] = m[8]; |
|---|
| 504 | buffer[11] = m[0]; |
|---|
| 505 | buffer[12] = m[0]; |
|---|
| 506 | buffer[13] = m[0]; |
|---|
| 507 | buffer[14] = m[0]; |
|---|
| 508 | buffer[15] = m[1]; |
|---|
| 509 | } |
|---|
| 510 | |
|---|
| 511 | /** |
|---|
| 512 | * multiplies two rotational matrices |
|---|
| 513 | * @param r: another Rotation |
|---|
| 514 | * @return the matrix product of the Rotations |
|---|
| 515 | |
|---|
| 516 | Use this to rotate one rotation by another |
|---|
| 517 | */ |
|---|
| 518 | Rotation Rotation::operator* (const Rotation& r) |
|---|
| 519 | { |
|---|
| 520 | Rotation p; |
|---|
| 521 | |
|---|
| 522 | p.m[0] = m[0]*r.m[0] + m[1]*r.m[3] + m[2]*r.m[6]; |
|---|
| 523 | p.m[1] = m[0]*r.m[1] + m[1]*r.m[4] + m[2]*r.m[7]; |
|---|
| 524 | p.m[2] = m[0]*r.m[2] + m[1]*r.m[5] + m[2]*r.m[8]; |
|---|
| 525 | |
|---|
| 526 | p.m[3] = m[3]*r.m[0] + m[4]*r.m[3] + m[5]*r.m[6]; |
|---|
| 527 | p.m[4] = m[3]*r.m[1] + m[4]*r.m[4] + m[5]*r.m[7]; |
|---|
| 528 | p.m[5] = m[3]*r.m[2] + m[4]*r.m[5] + m[5]*r.m[8]; |
|---|
| 529 | |
|---|
| 530 | p.m[6] = m[6]*r.m[0] + m[7]*r.m[3] + m[8]*r.m[6]; |
|---|
| 531 | p.m[7] = m[6]*r.m[1] + m[7]*r.m[4] + m[8]*r.m[7]; |
|---|
| 532 | p.m[8] = m[6]*r.m[2] + m[7]*r.m[5] + m[8]*r.m[8]; |
|---|
| 533 | |
|---|
| 534 | return p; |
|---|
| 535 | } |
|---|
| 536 | |
|---|
| 537 | |
|---|
| 538 | /** |
|---|
| 539 | * rotates the vector by the given rotation |
|---|
| 540 | * @param v: a vector |
|---|
| 541 | * @param r: a rotation |
|---|
| 542 | * @return the rotated vector |
|---|
| 543 | */ |
|---|
| 544 | Vector rotateVector( const Vector& v, const Rotation& r) |
|---|
| 545 | { |
|---|
| 546 | Vector t; |
|---|
| 547 | |
|---|
| 548 | t.x = v.x * r.m[0] + v.y * r.m[1] + v.z * r.m[2]; |
|---|
| 549 | t.y = v.x * r.m[3] + v.y * r.m[4] + v.z * r.m[5]; |
|---|
| 550 | t.z = v.x * r.m[6] + v.y * r.m[7] + v.z * r.m[8]; |
|---|
| 551 | |
|---|
| 552 | return t; |
|---|
| 553 | } |
|---|
| 554 | |
|---|
| 555 | /** |
|---|
| 556 | * calculate the distance between two lines |
|---|
| 557 | * @param l: the other line |
|---|
| 558 | * @return the distance between the lines |
|---|
| 559 | */ |
|---|
| 560 | float Line::distance (const Line& l) const |
|---|
| 561 | { |
|---|
| 562 | float q, d; |
|---|
| 563 | Vector n = a.cross(l.a); |
|---|
| 564 | q = n.dot(r-l.r); |
|---|
| 565 | d = n.len(); |
|---|
| 566 | if( d == 0.0) return 0.0; |
|---|
| 567 | return q/d; |
|---|
| 568 | } |
|---|
| 569 | |
|---|
| 570 | /** |
|---|
| 571 | * calculate the distance between a line and a point |
|---|
| 572 | * @param v: the point |
|---|
| 573 | * @return the distance between the Line and the point |
|---|
| 574 | */ |
|---|
| 575 | float Line::distancePoint (const Vector& v) const |
|---|
| 576 | { |
|---|
| 577 | Vector d = v-r; |
|---|
| 578 | Vector u = a * d.dot( a); |
|---|
| 579 | return (d - u).len(); |
|---|
| 580 | } |
|---|
| 581 | |
|---|
| 582 | /** |
|---|
| 583 | * calculate the distance between a line and a point |
|---|
| 584 | * @param v: the point |
|---|
| 585 | * @return the distance between the Line and the point |
|---|
| 586 | */ |
|---|
| 587 | float Line::distancePoint (const sVec3D& v) const |
|---|
| 588 | { |
|---|
| 589 | Vector s(v[0], v[1], v[2]); |
|---|
| 590 | Vector d = s - r; |
|---|
| 591 | Vector u = a * d.dot( a); |
|---|
| 592 | return (d - u).len(); |
|---|
| 593 | } |
|---|
| 594 | |
|---|
| 595 | /** |
|---|
| 596 | * calculate the two points of minimal distance of two lines |
|---|
| 597 | * @param l: the other line |
|---|
| 598 | * @return a Vector[2] (!has to be deleted after use!) containing the two points of minimal distance |
|---|
| 599 | */ |
|---|
| 600 | Vector* Line::footpoints (const Line& l) const |
|---|
| 601 | { |
|---|
| 602 | Vector* fp = new Vector[2]; |
|---|
| 603 | Plane p = Plane (r + a.cross(l.a), r, r + a); |
|---|
| 604 | fp[1] = p.intersectLine (l); |
|---|
| 605 | p = Plane (fp[1], l.a); |
|---|
| 606 | fp[0] = p.intersectLine (*this); |
|---|
| 607 | return fp; |
|---|
| 608 | } |
|---|
| 609 | |
|---|
| 610 | /** |
|---|
| 611 | \brief calculate the length of a line |
|---|
| 612 | \return the lenght of the line |
|---|
| 613 | */ |
|---|
| 614 | float Line::len() const |
|---|
| 615 | { |
|---|
| 616 | return a.len(); |
|---|
| 617 | } |
|---|
| 618 | |
|---|
| 619 | /** |
|---|
| 620 | * rotate the line by given rotation |
|---|
| 621 | * @param rot: a rotation |
|---|
| 622 | */ |
|---|
| 623 | void Line::rotate (const Rotation& rot) |
|---|
| 624 | { |
|---|
| 625 | Vector t = a + r; |
|---|
| 626 | t = rotateVector( t, rot); |
|---|
| 627 | r = rotateVector( r, rot), |
|---|
| 628 | a = t - r; |
|---|
| 629 | } |
|---|
| 630 | |
|---|
| 631 | /** |
|---|
| 632 | * create a plane from three points |
|---|
| 633 | * @param a: first point |
|---|
| 634 | * @param b: second point |
|---|
| 635 | * @param c: third point |
|---|
| 636 | */ |
|---|
| 637 | Plane::Plane (Vector a, Vector b, Vector c) |
|---|
| 638 | { |
|---|
| 639 | n = (a-b).cross(c-b); |
|---|
| 640 | k = -(n.x*b.x+n.y*b.y+n.z*b.z); |
|---|
| 641 | } |
|---|
| 642 | |
|---|
| 643 | /** |
|---|
| 644 | * create a plane from anchor point and normal |
|---|
| 645 | * @param norm: normal vector |
|---|
| 646 | * @param p: anchor point |
|---|
| 647 | */ |
|---|
| 648 | Plane::Plane (Vector norm, Vector p) |
|---|
| 649 | { |
|---|
| 650 | n = norm; |
|---|
| 651 | k = -(n.x*p.x+n.y*p.y+n.z*p.z); |
|---|
| 652 | } |
|---|
| 653 | |
|---|
| 654 | |
|---|
| 655 | /** |
|---|
| 656 | * create a plane from anchor point and normal |
|---|
| 657 | * @param norm: normal vector |
|---|
| 658 | * @param p: anchor point |
|---|
| 659 | */ |
|---|
| 660 | Plane::Plane (Vector norm, sVec3D g) |
|---|
| 661 | { |
|---|
| 662 | Vector p(g[0], g[1], g[2]); |
|---|
| 663 | n = norm; |
|---|
| 664 | k = -(n.x*p.x+n.y*p.y+n.z*p.z); |
|---|
| 665 | } |
|---|
| 666 | |
|---|
| 667 | |
|---|
| 668 | /** |
|---|
| 669 | * returns the intersection point between the plane and a line |
|---|
| 670 | * @param l: a line |
|---|
| 671 | */ |
|---|
| 672 | Vector Plane::intersectLine (const Line& l) const |
|---|
| 673 | { |
|---|
| 674 | if (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z == 0.0) return Vector(0,0,0); |
|---|
| 675 | float t = (n.x*l.r.x+n.y*l.r.y+n.z*l.r.z+k) / (n.x*l.a.x+n.y*l.a.y+n.z*l.a.z); |
|---|
| 676 | return l.r + (l.a * t); |
|---|
| 677 | } |
|---|
| 678 | |
|---|
| 679 | /** |
|---|
| 680 | * returns the distance between the plane and a point |
|---|
| 681 | * @param p: a Point |
|---|
| 682 | * @return the distance between the plane and the point (can be negative) |
|---|
| 683 | */ |
|---|
| 684 | float Plane::distancePoint (const Vector& p) const |
|---|
| 685 | { |
|---|
| 686 | float l = n.len(); |
|---|
| 687 | if( l == 0.0) return 0.0; |
|---|
| 688 | return (n.dot(p) + k) / n.len(); |
|---|
| 689 | } |
|---|
| 690 | |
|---|
| 691 | |
|---|
| 692 | /** |
|---|
| 693 | * returns the distance between the plane and a point |
|---|
| 694 | * @param p: a Point |
|---|
| 695 | * @return the distance between the plane and the point (can be negative) |
|---|
| 696 | */ |
|---|
| 697 | float Plane::distancePoint (const sVec3D& p) const |
|---|
| 698 | { |
|---|
| 699 | Vector s(p[0], p[1], p[2]); |
|---|
| 700 | float l = n.len(); |
|---|
| 701 | if( l == 0.0) return 0.0; |
|---|
| 702 | return (n.dot(s) + k) / n.len(); |
|---|
| 703 | } |
|---|
| 704 | |
|---|
| 705 | |
|---|
| 706 | /** |
|---|
| 707 | * returns the side a point is located relative to a Plane |
|---|
| 708 | * @param p: a Point |
|---|
| 709 | * @return 0 if the point is contained within the Plane, positive(negative) if the point is in the positive(negative) semi-space of the Plane |
|---|
| 710 | */ |
|---|
| 711 | float Plane::locatePoint (const Vector& p) const |
|---|
| 712 | { |
|---|
| 713 | return (n.dot(p) + k); |
|---|
| 714 | } |
|---|
| 715 | |
|---|