| 1 | /*  | 
|---|
| 2 |    orxonox - the future of 3D-vertical-scrollers | 
|---|
| 3 |  | 
|---|
| 4 |    Copyright (C) 2004 orx | 
|---|
| 5 |  | 
|---|
| 6 |    This program is free software; you can redistribute it and/or modify | 
|---|
| 7 |    it under the terms of the GNU General Public License as published by | 
|---|
| 8 |    the Free Software Foundation; either version 2, or (at your option) | 
|---|
| 9 |    any later version. | 
|---|
| 10 |  | 
|---|
| 11 |    ### File Specific: | 
|---|
| 12 |    main-programmer: Benjamin Grauer | 
|---|
| 13 |    co-programmer: Patrick Boenzli | 
|---|
| 14 |  | 
|---|
| 15 |    ADD: Patrick Boenzli           B-Spline  | 
|---|
| 16 |  | 
|---|
| 17 |  | 
|---|
| 18 |    TODO:  | 
|---|
| 19 |      local-Time implementation | 
|---|
| 20 |      NURBS | 
|---|
| 21 |       | 
|---|
| 22 | */ | 
|---|
| 23 |  | 
|---|
| 24 | #include "curve.h" | 
|---|
| 25 | #include "matrix.h" | 
|---|
| 26 | #include "debug.h" | 
|---|
| 27 |  | 
|---|
| 28 | #include <math.h> | 
|---|
| 29 | #include <stdio.h> | 
|---|
| 30 |  | 
|---|
| 31 | /** | 
|---|
| 32 |    \brief adds a new Node to the bezier Curve | 
|---|
| 33 |    \param newNode a Vector to the position of the new node | 
|---|
| 34 | */ | 
|---|
| 35 | void Curve::addNode(const Vector& newNode) | 
|---|
| 36 | { | 
|---|
| 37 |   if (nodeCount != 0 ) | 
|---|
| 38 |     { | 
|---|
| 39 |       currentNode = currentNode->next = new PathNode; | 
|---|
| 40 |     } | 
|---|
| 41 |   currentNode->position = newNode; | 
|---|
| 42 |   currentNode->next = 0; // not sure if this really points to NULL!! | 
|---|
| 43 |   currentNode->number = (++nodeCount); | 
|---|
| 44 |   this->rebuild(); | 
|---|
| 45 |   return; | 
|---|
| 46 | } | 
|---|
| 47 |  | 
|---|
| 48 | /** | 
|---|
| 49 |    \brief Finds a Node by its Number, and returns its Position | 
|---|
| 50 |    \param nodeToFind the n'th node in the List of nodes | 
|---|
| 51 |    \returns A Vector to the Position of the Node. | 
|---|
| 52 | */ | 
|---|
| 53 | Vector Curve::getNode(unsigned int nodeToFind) | 
|---|
| 54 | { | 
|---|
| 55 |   if (nodeToFind > this->nodeCount) | 
|---|
| 56 |     return Vector(0,0,0); | 
|---|
| 57 |   PathNode* tmpNode = this->firstNode; | 
|---|
| 58 |   for (int i = 1; i < nodeToFind; i++) | 
|---|
| 59 |     tmpNode = tmpNode->next; | 
|---|
| 60 |   return tmpNode->position; | 
|---|
| 61 | } | 
|---|
| 62 |  | 
|---|
| 63 | /////////////////////////////////// | 
|---|
| 64 | /// Bezier Curve ////////////////// | 
|---|
| 65 | /////////////////////////////////// | 
|---|
| 66 |  | 
|---|
| 67 | /** | 
|---|
| 68 |    \brief Creates a new BezierCurve | 
|---|
| 69 | */ | 
|---|
| 70 | BezierCurve::BezierCurve (void) | 
|---|
| 71 | { | 
|---|
| 72 |   this->derivation = 0; | 
|---|
| 73 |   dirCurve = new BezierCurve(1); | 
|---|
| 74 |   this->init(); | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | /** | 
|---|
| 78 |    \brief Creates a new BezierCurve-Derivation-Curve | 
|---|
| 79 | */ | 
|---|
| 80 | BezierCurve::BezierCurve (int derivation) | 
|---|
| 81 | { | 
|---|
| 82 |   this->derivation = derivation; | 
|---|
| 83 |   dirCurve=NULL; | 
|---|
| 84 |   this->init(); | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | /** | 
|---|
| 88 |    \brief Deletes a BezierCurve. | 
|---|
| 89 |  | 
|---|
| 90 |    It does this by freeing all the space taken over from the nodes | 
|---|
| 91 | */ | 
|---|
| 92 | BezierCurve::~BezierCurve(void) | 
|---|
| 93 | { | 
|---|
| 94 |   PathNode* tmpNode; | 
|---|
| 95 |   currentNode = firstNode; | 
|---|
| 96 |   while (tmpNode != 0) | 
|---|
| 97 |     { | 
|---|
| 98 |       tmpNode = currentNode; | 
|---|
| 99 |       currentNode = currentNode->next; | 
|---|
| 100 |       delete tmpNode; | 
|---|
| 101 |     } | 
|---|
| 102 |   if (dirCurve) | 
|---|
| 103 |     delete dirCurve; | 
|---|
| 104 | } | 
|---|
| 105 |  | 
|---|
| 106 | /** | 
|---|
| 107 |    \brief Initializes a BezierCurve | 
|---|
| 108 | */ | 
|---|
| 109 | void BezierCurve::init(void) | 
|---|
| 110 | { | 
|---|
| 111 |   nodeCount = 0; | 
|---|
| 112 |   firstNode = new PathNode; | 
|---|
| 113 |   currentNode = firstNode; | 
|---|
| 114 |  | 
|---|
| 115 |   firstNode->position = Vector (.0, .0, .0); | 
|---|
| 116 |   firstNode->number = 0; | 
|---|
| 117 |   firstNode->next = 0; // not sure if this really points to NULL!! | 
|---|
| 118 |  | 
|---|
| 119 |   return; | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | /** | 
|---|
| 123 |    \brief Rebuilds a Curve | 
|---|
| 124 | */ | 
|---|
| 125 | void BezierCurve::rebuild(void) | 
|---|
| 126 | { | 
|---|
| 127 |   PathNode* tmpNode = firstNode; | 
|---|
| 128 |  | 
|---|
| 129 |   // rebuilding the Curve itself | 
|---|
| 130 |   float k=0; | 
|---|
| 131 |   float n = nodeCount -1; | 
|---|
| 132 |   float binCoef = 1; | 
|---|
| 133 |   while(tmpNode) | 
|---|
| 134 |     { | 
|---|
| 135 |       tmpNode->factor = binCoef; | 
|---|
| 136 |       if (tmpNode =tmpNode->next) | 
|---|
| 137 |         { | 
|---|
| 138 |           binCoef *=(n-k)/(k+1); | 
|---|
| 139 |           ++k; | 
|---|
| 140 |         } | 
|---|
| 141 |     } | 
|---|
| 142 |  | 
|---|
| 143 |   // rebuilding the Derivation curve | 
|---|
| 144 |   if(this->derivation == 0) | 
|---|
| 145 |     { | 
|---|
| 146 |       tmpNode = firstNode; | 
|---|
| 147 |       delete dirCurve; | 
|---|
| 148 |       dirCurve = new BezierCurve(1); | 
|---|
| 149 |       while(tmpNode->next) | 
|---|
| 150 |         { | 
|---|
| 151 |           Vector tmpVector = (tmpNode->next->position)- (tmpNode->position); | 
|---|
| 152 |           tmpVector.x*=(float)nodeCount; | 
|---|
| 153 |           tmpVector.y*=(float)nodeCount; | 
|---|
| 154 |           tmpVector.z*=(float)nodeCount; | 
|---|
| 155 |           tmpVector.normalize(); | 
|---|
| 156 |           this->dirCurve->addNode(tmpVector); | 
|---|
| 157 |           tmpNode = tmpNode->next; | 
|---|
| 158 |         } | 
|---|
| 159 |     } | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | /** | 
|---|
| 163 |    \brief calculates the Position on the curve | 
|---|
| 164 |    \param t The position on the Curve (0<=t<=1) | 
|---|
| 165 |    \return the Position on the Path | 
|---|
| 166 | */ | 
|---|
| 167 | Vector BezierCurve::calcPos(float t)  | 
|---|
| 168 | { | 
|---|
| 169 |   Vector ret = Vector(0.0,0.0,0.0); | 
|---|
| 170 |   if (this->nodeCount >= 3) | 
|---|
| 171 |     { | 
|---|
| 172 |       PathNode* tmpNode = this->firstNode; | 
|---|
| 173 |       double factor = pow(1.0-t,nodeCount-1); | 
|---|
| 174 |       while(tmpNode) | 
|---|
| 175 |         { | 
|---|
| 176 |           ret.x += tmpNode->factor * factor * tmpNode->position.x; | 
|---|
| 177 |           ret.y += tmpNode->factor * factor * tmpNode->position.y; | 
|---|
| 178 |           ret.z += tmpNode->factor * factor * tmpNode->position.z; | 
|---|
| 179 |           factor *= t/(1.0-t); // same as pow but much faster. | 
|---|
| 180 |            | 
|---|
| 181 |           tmpNode = tmpNode->next; | 
|---|
| 182 |         } | 
|---|
| 183 |     } | 
|---|
| 184 |   else if (nodeCount == 2) | 
|---|
| 185 |     { | 
|---|
| 186 |       ret = this->firstNode->position *(1.0-t); | 
|---|
| 187 |       ret = ret + this->firstNode->next->position * t; | 
|---|
| 188 |     } | 
|---|
| 189 |   else if (nodeCount == 1) | 
|---|
| 190 |     ret = this->firstNode->position; | 
|---|
| 191 |   return ret; | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | /** | 
|---|
| 195 |    \brief Calulates the direction of the Curve at time t. | 
|---|
| 196 |    \param The time at which to evaluate the curve. | 
|---|
| 197 |    \returns The vvaluated Vector. | 
|---|
| 198 | */ | 
|---|
| 199 | Vector BezierCurve::calcDir (float t) | 
|---|
| 200 | { | 
|---|
| 201 |   return dirCurve->calcPos(t); | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | /** | 
|---|
| 205 |    \brief Calculates the Quaternion needed for our rotations | 
|---|
| 206 |    \param t The time at which to evaluate the cuve. | 
|---|
| 207 |    \returns The evaluated Quaternion. | 
|---|
| 208 | */ | 
|---|
| 209 | Quaternion BezierCurve::calcQuat (float t) | 
|---|
| 210 | { | 
|---|
| 211 |   return Quaternion (calcDir(t), Vector(0,0,1)); | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 |  | 
|---|
| 215 | /** | 
|---|
| 216 |   \brief returns the Position of the point calculated on the Curve | 
|---|
| 217 |   \return a Vector to the calculated position | 
|---|
| 218 | */ | 
|---|
| 219 | Vector BezierCurve::getPos(void) const | 
|---|
| 220 | { | 
|---|
| 221 |   return curvePoint; | 
|---|
| 222 | } | 
|---|
| 223 |  | 
|---|
| 224 |  | 
|---|
| 225 |  | 
|---|
| 226 | /////////////////////////////////// | 
|---|
| 227 | //// Uniform Point curve  ///////// | 
|---|
| 228 | /////////////////////////////////// | 
|---|
| 229 | /** | 
|---|
| 230 |    \brief Creates a new UPointCurve | 
|---|
| 231 | */ | 
|---|
| 232 | UPointCurve::UPointCurve (void) | 
|---|
| 233 | { | 
|---|
| 234 |   this->derivation = 0; | 
|---|
| 235 |   this->init(); | 
|---|
| 236 | } | 
|---|
| 237 |  | 
|---|
| 238 | /** | 
|---|
| 239 |    \brief Creates a new UPointCurve-Derivation-Curve of deriavation'th degree | 
|---|
| 240 | */ | 
|---|
| 241 | UPointCurve::UPointCurve (int derivation) | 
|---|
| 242 | { | 
|---|
| 243 |   this->derivation = derivation; | 
|---|
| 244 |   dirCurve=NULL; | 
|---|
| 245 |   this->init(); | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 | /** | 
|---|
| 249 |    \brief Deletes a UPointCurve. | 
|---|
| 250 |  | 
|---|
| 251 |    It does this by freeing all the space taken over from the nodes | 
|---|
| 252 | */ | 
|---|
| 253 | UPointCurve::~UPointCurve(void) | 
|---|
| 254 | { | 
|---|
| 255 |   PathNode* tmpNode; | 
|---|
| 256 |   currentNode = firstNode; | 
|---|
| 257 |   while (tmpNode != 0) | 
|---|
| 258 |     { | 
|---|
| 259 |       tmpNode = currentNode; | 
|---|
| 260 |       currentNode = currentNode->next; | 
|---|
| 261 |       delete tmpNode; | 
|---|
| 262 |     } | 
|---|
| 263 |   if (dirCurve) | 
|---|
| 264 |     delete dirCurve; | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 | /** | 
|---|
| 268 |    \brief Initializes a UPointCurve | 
|---|
| 269 | */ | 
|---|
| 270 | void UPointCurve::init(void) | 
|---|
| 271 | { | 
|---|
| 272 |   nodeCount = 0; | 
|---|
| 273 |   firstNode = new PathNode; | 
|---|
| 274 |   currentNode = firstNode; | 
|---|
| 275 |  | 
|---|
| 276 |   firstNode->position = Vector (.0, .0, .0); | 
|---|
| 277 |   firstNode->number = 0; | 
|---|
| 278 |   firstNode->next = 0; // not sure if this really points to NULL!! | 
|---|
| 279 |  | 
|---|
| 280 |   return; | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 | /** | 
|---|
| 284 |    \brief Rebuilds a UPointCurve | 
|---|
| 285 |     | 
|---|
| 286 |    \todo very bad algorithm | 
|---|
| 287 | */ | 
|---|
| 288 | void UPointCurve::rebuild(void) | 
|---|
| 289 | { | 
|---|
| 290 |   // rebuilding the Curve itself | 
|---|
| 291 |   PathNode* tmpNode = this->firstNode; | 
|---|
| 292 |   int i=0; | 
|---|
| 293 |   Matrix xTmpMat = Matrix(this->nodeCount, this->nodeCount); | 
|---|
| 294 |   Matrix yTmpMat = Matrix(this->nodeCount, this->nodeCount); | 
|---|
| 295 |   Matrix zTmpMat = Matrix(this->nodeCount, this->nodeCount); | 
|---|
| 296 |   Matrix xValMat = Matrix(this->nodeCount, 3); | 
|---|
| 297 |   Matrix yValMat = Matrix(this->nodeCount, 3); | 
|---|
| 298 |   Matrix zValMat = Matrix(this->nodeCount, 3); | 
|---|
| 299 |   while(tmpNode) | 
|---|
| 300 |     { | 
|---|
| 301 |       Vector fac = Vector(1,1,1); | 
|---|
| 302 |       for (int j = 0; j < this->nodeCount; j++) | 
|---|
| 303 |         { | 
|---|
| 304 |           xTmpMat(i,j) = fac.x; fac.x *= (float)i/(float)this->nodeCount;//tmpNode->position.x; | 
|---|
| 305 |           yTmpMat(i,j) = fac.y; fac.y *= (float)i/(float)this->nodeCount;//tmpNode->position.y; | 
|---|
| 306 |           zTmpMat(i,j) = fac.z; fac.z *= (float)i/(float)this->nodeCount;//tmpNode->position.z; | 
|---|
| 307 |         } | 
|---|
| 308 |       xValMat(i,0) = tmpNode->position.x; | 
|---|
| 309 |       yValMat(i,0) = tmpNode->position.y; | 
|---|
| 310 |       zValMat(i,0) = tmpNode->position.z; | 
|---|
| 311 |       ++i; | 
|---|
| 312 |       tmpNode = tmpNode->next; | 
|---|
| 313 |     } | 
|---|
| 314 |   tmpNode = this->firstNode; | 
|---|
| 315 |   xValMat = xTmpMat.Inv() *= xValMat; | 
|---|
| 316 |   yValMat = yTmpMat.Inv() *= yValMat; | 
|---|
| 317 |   zValMat = zTmpMat.Inv() *= zValMat; | 
|---|
| 318 |   i = 0; | 
|---|
| 319 |   while(tmpNode) | 
|---|
| 320 |     { | 
|---|
| 321 |       tmpNode->vFactor.x = xValMat(i,0); | 
|---|
| 322 |       tmpNode->vFactor.y = yValMat(i,0); | 
|---|
| 323 |       tmpNode->vFactor.z = zValMat(i,0); | 
|---|
| 324 |  | 
|---|
| 325 |       i++; | 
|---|
| 326 |       tmpNode = tmpNode->next; | 
|---|
| 327 |     } | 
|---|
| 328 | } | 
|---|
| 329 |  | 
|---|
| 330 | /** | 
|---|
| 331 |    \brief calculates the Position on the curve | 
|---|
| 332 |    \param t The position on the Curve (0<=t<=1) | 
|---|
| 333 |    \return the Position on the Path | 
|---|
| 334 | */ | 
|---|
| 335 | Vector UPointCurve::calcPos(float t)  | 
|---|
| 336 | { | 
|---|
| 337 |   PathNode* tmpNode = firstNode; | 
|---|
| 338 |   Vector ret = Vector(0.0,0.0,0.0); | 
|---|
| 339 |   float factor = 1.0; | 
|---|
| 340 |   while(tmpNode) | 
|---|
| 341 |     { | 
|---|
| 342 |       ret.x += tmpNode->vFactor.x * factor; | 
|---|
| 343 |       ret.y += tmpNode->vFactor.y * factor; | 
|---|
| 344 |       ret.z += tmpNode->vFactor.z * factor; | 
|---|
| 345 |       factor *= t; | 
|---|
| 346 |  | 
|---|
| 347 |       tmpNode = tmpNode->next; | 
|---|
| 348 |     } | 
|---|
| 349 |   return ret; | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | /** | 
|---|
| 353 |    \brief Calulates the direction of the Curve at time t. | 
|---|
| 354 |    \param The time at which to evaluate the curve. | 
|---|
| 355 |    \returns The vvaluated Vector. | 
|---|
| 356 | */ | 
|---|
| 357 | Vector UPointCurve::calcDir (float t) | 
|---|
| 358 | { | 
|---|
| 359 |   PathNode* tmpNode = firstNode; | 
|---|
| 360 |   Vector ret = Vector(0.0,0.0,0.0); | 
|---|
| 361 |   float factor = 1.0/t; | 
|---|
| 362 |   int k=0; | 
|---|
| 363 |   while(tmpNode) | 
|---|
| 364 |     { | 
|---|
| 365 |       ret.x += tmpNode->vFactor.x * factor *k; | 
|---|
| 366 |       ret.y += tmpNode->vFactor.y * factor *k; | 
|---|
| 367 |       ret.z += tmpNode->vFactor.z * factor *k; | 
|---|
| 368 |       factor *= t; | 
|---|
| 369 |       k++; | 
|---|
| 370 |       tmpNode = tmpNode->next; | 
|---|
| 371 |     } | 
|---|
| 372 |   ret.normalize(); | 
|---|
| 373 |   return ret; | 
|---|
| 374 | } | 
|---|
| 375 |  | 
|---|
| 376 | /** | 
|---|
| 377 |    \brief Calculates the Quaternion needed for our rotations | 
|---|
| 378 |    \param t The time at which to evaluate the cuve. | 
|---|
| 379 |    \returns The evaluated Quaternion. | 
|---|
| 380 | */ | 
|---|
| 381 | Quaternion UPointCurve::calcQuat (float t) | 
|---|
| 382 | { | 
|---|
| 383 |   return Quaternion (calcDir(t), Vector(0,0,1)); | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 |  | 
|---|
| 387 | /** | 
|---|
| 388 |   \brief returns the Position of the point calculated on the Curve | 
|---|
| 389 |   \return a Vector to the calculated position | 
|---|
| 390 | */ | 
|---|
| 391 | Vector UPointCurve::getPos(void) const | 
|---|
| 392 | { | 
|---|
| 393 |   return curvePoint; | 
|---|
| 394 | } | 
|---|