| 1 | /* | 
|---|
| 2 | orxonox - the future of 3D-vertical-scrollers | 
|---|
| 3 |  | 
|---|
| 4 | Copyright (C) 2004 orx | 
|---|
| 5 |  | 
|---|
| 6 | This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | it under the terms of the GNU General Public License as published by | 
|---|
| 8 | the Free Software Foundation; either version 2, or (at your option) | 
|---|
| 9 | any later version. | 
|---|
| 10 |  | 
|---|
| 11 | ### File Specific: | 
|---|
| 12 | main-programmer: Christian Meyer | 
|---|
| 13 | co-programmer: Patrick Boenzli : Vector::scale() | 
|---|
| 14 | Vector::abs() | 
|---|
| 15 |  | 
|---|
| 16 | Quaternion code borrowed from an Gamasutra article by Nick Bobick and Ken Shoemake | 
|---|
| 17 |  | 
|---|
| 18 | 2005-06-02: Benjamin Grauer: speed up, and new Functionality to Vector (mostly inline now) | 
|---|
| 19 | */ | 
|---|
| 20 |  | 
|---|
| 21 | #define DEBUG_SPECIAL_MODULE DEBUG_MODULE_MATH | 
|---|
| 22 |  | 
|---|
| 23 | #include "quaternion.h" | 
|---|
| 24 | #ifdef DEBUG | 
|---|
| 25 | #include "debug.h" | 
|---|
| 26 | #else | 
|---|
| 27 | #include <stdio.h> | 
|---|
| 28 | #define PRINT(x) printf | 
|---|
| 29 | #endif | 
|---|
| 30 |  | 
|---|
| 31 | using namespace std; | 
|---|
| 32 |  | 
|---|
| 33 | ///////////////// | 
|---|
| 34 | /* QUATERNIONS */ | 
|---|
| 35 | ///////////////// | 
|---|
| 36 | /** | 
|---|
| 37 | * @brief calculates a lookAt rotation | 
|---|
| 38 | * @param dir: the direction you want to look | 
|---|
| 39 | * @param up: specify what direction up should be | 
|---|
| 40 | * | 
|---|
| 41 | * Mathematically this determines the rotation a (0,0,1)-Vector has to undergo to point | 
|---|
| 42 | * the same way as dir. If you want to use this with cameras, you'll have to reverse the | 
|---|
| 43 | * dir Vector (Vector(0,0,0) - your viewing direction) or you'll point the wrong way. You | 
|---|
| 44 | * can use this for meshes as well (then you do not have to reverse the vector), but keep | 
|---|
| 45 | * in mind that if you do that, the model's front has to point in +z direction, and left | 
|---|
| 46 | * and right should be -x or +x respectively or the mesh wont rotate correctly. | 
|---|
| 47 | * | 
|---|
| 48 | * @TODO !!! OPTIMIZE THIS !!! | 
|---|
| 49 | */ | 
|---|
| 50 | Quaternion::Quaternion (const Vector& dir, const Vector& up) | 
|---|
| 51 | { | 
|---|
| 52 | Vector z = dir.getNormalized(); | 
|---|
| 53 | Vector x = up.cross(z).getNormalized(); | 
|---|
| 54 | Vector y = z.cross(x); | 
|---|
| 55 |  | 
|---|
| 56 | float m[4][4]; | 
|---|
| 57 | m[0][0] = x.x; | 
|---|
| 58 | m[0][1] = x.y; | 
|---|
| 59 | m[0][2] = x.z; | 
|---|
| 60 | m[0][3] = 0; | 
|---|
| 61 | m[1][0] = y.x; | 
|---|
| 62 | m[1][1] = y.y; | 
|---|
| 63 | m[1][2] = y.z; | 
|---|
| 64 | m[1][3] = 0; | 
|---|
| 65 | m[2][0] = z.x; | 
|---|
| 66 | m[2][1] = z.y; | 
|---|
| 67 | m[2][2] = z.z; | 
|---|
| 68 | m[2][3] = 0; | 
|---|
| 69 | m[3][0] = 0; | 
|---|
| 70 | m[3][1] = 0; | 
|---|
| 71 | m[3][2] = 0; | 
|---|
| 72 | m[3][3] = 1; | 
|---|
| 73 |  | 
|---|
| 74 | *this = Quaternion (m); | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | /** | 
|---|
| 78 | * @brief calculates a rotation from euler angles | 
|---|
| 79 | * @param roll: the roll in radians | 
|---|
| 80 | * @param pitch: the pitch in radians | 
|---|
| 81 | * @param yaw: the yaw in radians | 
|---|
| 82 | */ | 
|---|
| 83 | Quaternion::Quaternion (float roll, float pitch, float yaw) | 
|---|
| 84 | { | 
|---|
| 85 | float cr, cp, cy, sr, sp, sy, cpcy, spsy; | 
|---|
| 86 |  | 
|---|
| 87 | // calculate trig identities | 
|---|
| 88 | cr = cos(roll/2); | 
|---|
| 89 | cp = cos(pitch/2); | 
|---|
| 90 | cy = cos(yaw/2); | 
|---|
| 91 |  | 
|---|
| 92 | sr = sin(roll/2); | 
|---|
| 93 | sp = sin(pitch/2); | 
|---|
| 94 | sy = sin(yaw/2); | 
|---|
| 95 |  | 
|---|
| 96 | cpcy = cp * cy; | 
|---|
| 97 | spsy = sp * sy; | 
|---|
| 98 |  | 
|---|
| 99 | w = cr * cpcy + sr * spsy; | 
|---|
| 100 | v.x = sr * cpcy - cr * spsy; | 
|---|
| 101 | v.y = cr * sp * cy + sr * cp * sy; | 
|---|
| 102 | v.z = cr * cp * sy - sr * sp * cy; | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | /** | 
|---|
| 106 | * @brief convert the Quaternion to a 4x4 rotational glMatrix | 
|---|
| 107 | * @param m: a buffer to store the Matrix in | 
|---|
| 108 | */ | 
|---|
| 109 | void Quaternion::matrix (float m[4][4]) const | 
|---|
| 110 | { | 
|---|
| 111 | float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; | 
|---|
| 112 |  | 
|---|
| 113 | // calculate coefficients | 
|---|
| 114 | x2 = v.x + v.x; | 
|---|
| 115 | y2 = v.y + v.y; | 
|---|
| 116 | z2 = v.z + v.z; | 
|---|
| 117 | xx = v.x * x2; xy = v.x * y2; xz = v.x * z2; | 
|---|
| 118 | yy = v.y * y2; yz = v.y * z2; zz = v.z * z2; | 
|---|
| 119 | wx = w * x2; wy = w * y2; wz = w * z2; | 
|---|
| 120 |  | 
|---|
| 121 | m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz; | 
|---|
| 122 | m[2][0] = xz + wy; m[3][0] = 0.0; | 
|---|
| 123 |  | 
|---|
| 124 | m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz); | 
|---|
| 125 | m[2][1] = yz - wx; m[3][1] = 0.0; | 
|---|
| 126 |  | 
|---|
| 127 | m[0][2] = xz - wy; m[1][2] = yz + wx; | 
|---|
| 128 | m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0; | 
|---|
| 129 |  | 
|---|
| 130 | m[0][3] = 0; m[1][3] = 0; | 
|---|
| 131 | m[2][3] = 0; m[3][3] = 1; | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 |  | 
|---|
| 135 | /** | 
|---|
| 136 | * @brief Slerps this QUaternion performs a smooth move. | 
|---|
| 137 | * @param toQuat to this Quaternion | 
|---|
| 138 | * @param t \% inth the the direction[0..1] | 
|---|
| 139 | */ | 
|---|
| 140 | void Quaternion::slerpTo(const Quaternion& toQuat, float t) | 
|---|
| 141 | { | 
|---|
| 142 | float tol[4]; | 
|---|
| 143 | double omega, cosom, sinom, scale0, scale1; | 
|---|
| 144 | //  float DELTA = 0.2; | 
|---|
| 145 |  | 
|---|
| 146 | cosom = this->v.x * toQuat.v.x + this->v.y * toQuat.v.y + this->v.z * toQuat.v.z + this->w * toQuat.w; | 
|---|
| 147 |  | 
|---|
| 148 | if( cosom < 0.0 ) | 
|---|
| 149 | { | 
|---|
| 150 | cosom = -cosom; | 
|---|
| 151 | tol[0] = -toQuat.v.x; | 
|---|
| 152 | tol[1] = -toQuat.v.y; | 
|---|
| 153 | tol[2] = -toQuat.v.z; | 
|---|
| 154 | tol[3] = -toQuat.w; | 
|---|
| 155 | } | 
|---|
| 156 | else | 
|---|
| 157 | { | 
|---|
| 158 | tol[0] = toQuat.v.x; | 
|---|
| 159 | tol[1] = toQuat.v.y; | 
|---|
| 160 | tol[2] = toQuat.v.z; | 
|---|
| 161 | tol[3] = toQuat.w; | 
|---|
| 162 | } | 
|---|
| 163 |  | 
|---|
| 164 | omega = acos(cosom); | 
|---|
| 165 | sinom = sin(omega); | 
|---|
| 166 | scale0 = sin((1.0 - t) * omega) / sinom; | 
|---|
| 167 | scale1 = sin(t * omega) / sinom; | 
|---|
| 168 | this->v = Vector(scale0 * this->v.x + scale1 * tol[0], | 
|---|
| 169 | scale0 * this->v.y + scale1 * tol[1], | 
|---|
| 170 | scale0 * this->v.z + scale1 * tol[2]); | 
|---|
| 171 | this->w = scale0 * this->w + scale1 * tol[3]; | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 |  | 
|---|
| 175 | /** | 
|---|
| 176 | * @brief performs a smooth move. | 
|---|
| 177 | * @param from  where | 
|---|
| 178 | * @param to where | 
|---|
| 179 | * @param t the time this transformation should take value [0..1] | 
|---|
| 180 | * @returns the Result of the smooth move | 
|---|
| 181 | */ | 
|---|
| 182 | Quaternion Quaternion::quatSlerp(const Quaternion& from, const Quaternion& to, float t) | 
|---|
| 183 | { | 
|---|
| 184 | float tol[4]; | 
|---|
| 185 | double omega, cosom, sinom, scale0, scale1; | 
|---|
| 186 | //  float DELTA = 0.2; | 
|---|
| 187 |  | 
|---|
| 188 | cosom = from.v.x * to.v.x + from.v.y * to.v.y + from.v.z * to.v.z + from.w * to.w; | 
|---|
| 189 |  | 
|---|
| 190 | if( cosom < 0.0 ) | 
|---|
| 191 | { | 
|---|
| 192 | cosom = -cosom; | 
|---|
| 193 | tol[0] = -to.v.x; | 
|---|
| 194 | tol[1] = -to.v.y; | 
|---|
| 195 | tol[2] = -to.v.z; | 
|---|
| 196 | tol[3] = -to.w; | 
|---|
| 197 | } | 
|---|
| 198 | else | 
|---|
| 199 | { | 
|---|
| 200 | tol[0] = to.v.x; | 
|---|
| 201 | tol[1] = to.v.y; | 
|---|
| 202 | tol[2] = to.v.z; | 
|---|
| 203 | tol[3] = to.w; | 
|---|
| 204 | } | 
|---|
| 205 |  | 
|---|
| 206 | omega = acos(cosom); | 
|---|
| 207 | sinom = sin(omega); | 
|---|
| 208 | scale0 = sin((1.0 - t) * omega) / sinom; | 
|---|
| 209 | scale1 = sin(t * omega) / sinom; | 
|---|
| 210 | return Quaternion(Vector(scale0 * from.v.x + scale1 * tol[0], | 
|---|
| 211 | scale0 * from.v.y + scale1 * tol[1], | 
|---|
| 212 | scale0 * from.v.z + scale1 * tol[2]), | 
|---|
| 213 | scale0 * from.w + scale1 * tol[3]); | 
|---|
| 214 | } | 
|---|
| 215 |  | 
|---|
| 216 | /** | 
|---|
| 217 | * @returns the heading | 
|---|
| 218 | */ | 
|---|
| 219 | float Quaternion::getHeading() const | 
|---|
| 220 | { | 
|---|
| 221 | float pole = this->v.x*this->v.y + this->v.z*this->w; | 
|---|
| 222 | if (fabsf(pole) != 0.5) | 
|---|
| 223 | return atan2(2.0* (v.y*w - v.x*v.z), 1 - 2.0*(v.y*v.y - v.z*v.z)); | 
|---|
| 224 | else if (pole == .5) // North Pole | 
|---|
| 225 | return 2.0 * atan2(v.x, w); | 
|---|
| 226 | else // South Pole | 
|---|
| 227 | return -2.0 * atan2(v.x, w); | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | /** | 
|---|
| 231 | * @returns the Attitude | 
|---|
| 232 | */ | 
|---|
| 233 | float Quaternion::getAttitude() const | 
|---|
| 234 | { | 
|---|
| 235 | return asin(2.0 * (v.x*v.y + v.z*w)); | 
|---|
| 236 | } | 
|---|
| 237 |  | 
|---|
| 238 | /** | 
|---|
| 239 | * @returns the Bank | 
|---|
| 240 | */ | 
|---|
| 241 | float Quaternion::getBank() const | 
|---|
| 242 | { | 
|---|
| 243 | if (fabsf(this->v.x*this->v.y + this->v.z*this->w) != 0.5) | 
|---|
| 244 | return atan2(2.0*(v.x*w-v.y*v.z) , 1 - 2.0*(v.x*v.x - v.z*v.z)); | 
|---|
| 245 | else | 
|---|
| 246 | return 0.0f; | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 |  | 
|---|
| 250 | /** | 
|---|
| 251 | * @brief convert a rotational 4x4 glMatrix into a Quaternion | 
|---|
| 252 | * @param m: a 4x4 matrix in glMatrix order | 
|---|
| 253 | */ | 
|---|
| 254 | Quaternion::Quaternion (float m[4][4]) | 
|---|
| 255 | { | 
|---|
| 256 |  | 
|---|
| 257 | float  tr, s, q[4]; | 
|---|
| 258 | int    i, j, k; | 
|---|
| 259 |  | 
|---|
| 260 | int nxt[3] = {1, 2, 0}; | 
|---|
| 261 |  | 
|---|
| 262 | tr = m[0][0] + m[1][1] + m[2][2]; | 
|---|
| 263 |  | 
|---|
| 264 | // check the diagonal | 
|---|
| 265 | if (tr > 0.0) | 
|---|
| 266 | { | 
|---|
| 267 | s = sqrt (tr + 1.0); | 
|---|
| 268 | w = s / 2.0; | 
|---|
| 269 | s = 0.5 / s; | 
|---|
| 270 | v.x = (m[1][2] - m[2][1]) * s; | 
|---|
| 271 | v.y = (m[2][0] - m[0][2]) * s; | 
|---|
| 272 | v.z = (m[0][1] - m[1][0]) * s; | 
|---|
| 273 | } | 
|---|
| 274 | else | 
|---|
| 275 | { | 
|---|
| 276 | // diagonal is negative | 
|---|
| 277 | i = 0; | 
|---|
| 278 | if (m[1][1] > m[0][0]) i = 1; | 
|---|
| 279 | if (m[2][2] > m[i][i]) i = 2; | 
|---|
| 280 | j = nxt[i]; | 
|---|
| 281 | k = nxt[j]; | 
|---|
| 282 |  | 
|---|
| 283 | s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0); | 
|---|
| 284 |  | 
|---|
| 285 | q[i] = s * 0.5; | 
|---|
| 286 |  | 
|---|
| 287 | if (s != 0.0) s = 0.5 / s; | 
|---|
| 288 |  | 
|---|
| 289 | q[3] = (m[j][k] - m[k][j]) * s; | 
|---|
| 290 | q[j] = (m[i][j] + m[j][i]) * s; | 
|---|
| 291 | q[k] = (m[i][k] + m[k][i]) * s; | 
|---|
| 292 |  | 
|---|
| 293 | v.x = q[0]; | 
|---|
| 294 | v.y = q[1]; | 
|---|
| 295 | v.z = q[2]; | 
|---|
| 296 | w = q[3]; | 
|---|
| 297 | } | 
|---|
| 298 | } | 
|---|
| 299 |  | 
|---|
| 300 | /** | 
|---|
| 301 | * @brief outputs some nice formated debug information about this quaternion | 
|---|
| 302 | */ | 
|---|
| 303 | void Quaternion::debug() const | 
|---|
| 304 | { | 
|---|
| 305 | PRINT(0)("real a=%f; imag: x=%f y=%f z=%f\n", w, v.x, v.y, v.z); | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 | /** | 
|---|
| 309 | * @brief another better Quaternion Debug Function. | 
|---|
| 310 | */ | 
|---|
| 311 | void Quaternion::debug2() const | 
|---|
| 312 | { | 
|---|
| 313 | Vector axis = this->getSpacialAxis(); | 
|---|
| 314 | PRINT(0)("angle = %f, axis: ax=%f, ay=%f, az=%f\n", this->getSpacialAxisAngle(), axis.x, axis.y, axis.z ); | 
|---|
| 315 | } | 
|---|