| 1 | /* | 
|---|
| 2 | orxonox - the future of 3D-vertical-scrollers | 
|---|
| 3 |  | 
|---|
| 4 | Copyright (C) 2004 orx | 
|---|
| 5 |  | 
|---|
| 6 | This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | it under the terms of the GNU General Public License as published by | 
|---|
| 8 | the Free Software Foundation; either version 2, or (at your option) | 
|---|
| 9 | any later version. | 
|---|
| 10 |  | 
|---|
| 11 | ### File Specific: | 
|---|
| 12 | main-programmer: Benjamin Grauer | 
|---|
| 13 | co-programmer: Patrick Boenzli | 
|---|
| 14 | */ | 
|---|
| 15 | #include "matrix.h" | 
|---|
| 16 | #include <math.h> | 
|---|
| 17 |  | 
|---|
| 18 | #ifdef DEBUG | 
|---|
| 19 | #include "debug.h" | 
|---|
| 20 | #else | 
|---|
| 21 | #include <stdio.h> | 
|---|
| 22 | #define PRINT(x) printf | 
|---|
| 23 | #endif | 
|---|
| 24 |  | 
|---|
| 25 | /** | 
|---|
| 26 | * constructs a Matrix from all Parameters in a Row | 
|---|
| 27 | * @param m11 [0][0] | 
|---|
| 28 | * @param m12 [0][1] | 
|---|
| 29 | * @param m13 [0][2] | 
|---|
| 30 | * @param m21 [1][0] | 
|---|
| 31 | * @param m22 [1][1] | 
|---|
| 32 | * @param m23 [1][2] | 
|---|
| 33 | * @param m31 [2][0] | 
|---|
| 34 | * @param m32 [2][1] | 
|---|
| 35 | * @param m33 [2][2] | 
|---|
| 36 | */ | 
|---|
| 37 | Matrix::Matrix ( float m11, float m12, float m13, | 
|---|
| 38 | float m21, float m22, float m23, | 
|---|
| 39 | float m31, float m32, float m33 ) | 
|---|
| 40 | { | 
|---|
| 41 | this->m11 = m11; this->m12 = m12; this->m13 = m13; | 
|---|
| 42 | this->m21 = m21; this->m22 = m22; this->m23 = m23; | 
|---|
| 43 | this->m31 = m31; this->m32 = m32; this->m33 = m33; | 
|---|
| 44 | }; | 
|---|
| 45 |  | 
|---|
| 46 | /** | 
|---|
| 47 | * creates a Matrix out of an Array of floats with size [3][3] | 
|---|
| 48 | * @param m the Matrix stored in an Array | 
|---|
| 49 | */ | 
|---|
| 50 | Matrix::Matrix(const float m[3][3]) | 
|---|
| 51 | { | 
|---|
| 52 | this->m11 = m[0][0]; this->m12 = m[0][1]; this->m13 = m[0][2]; | 
|---|
| 53 | this->m21 = m[1][0]; this->m22 = m[1][1]; this->m23 = m[1][2]; | 
|---|
| 54 | this->m31 = m[2][0]; this->m32 = m[2][1]; this->m33 = m[2][2]; | 
|---|
| 55 | }; | 
|---|
| 56 |  | 
|---|
| 57 |  | 
|---|
| 58 | /** | 
|---|
| 59 | * adds a Matrix to this one returning the result | 
|---|
| 60 | * @param m the Matrix to add to this one | 
|---|
| 61 | * @returns a copy of this Matrix added m | 
|---|
| 62 | */ | 
|---|
| 63 | Matrix Matrix::operator+ (const Matrix& m) const | 
|---|
| 64 | { | 
|---|
| 65 | return Matrix (this->m11 + m.m11, this->m12 + m.m12, this->m13 + m.m13, | 
|---|
| 66 | this->m21 + m.m21, this->m22 + m.m22, this->m23 + m.m23, | 
|---|
| 67 | this->m31 + m.m31, this->m32 + m.m32, this->m33 + m.m33); | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | /** | 
|---|
| 71 | * sustracts a Matrix from this one returning the result | 
|---|
| 72 | * @param m the Matrix to substract from this one | 
|---|
| 73 | * @returns a copy of this Matrix substracted m | 
|---|
| 74 | */ | 
|---|
| 75 | Matrix Matrix::operator- (const Matrix& m) const | 
|---|
| 76 | { | 
|---|
| 77 | return Matrix (this->m11 - m.m11, this->m12 - m.m12, this->m13 - m.m13, | 
|---|
| 78 | this->m21 - m.m21, this->m22 - m.m22, this->m23 - m.m23, | 
|---|
| 79 | this->m31 - m.m31, this->m32 - m.m32, this->m33 - m.m33); | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | /** | 
|---|
| 83 | * multiplies each value of a copu of this Matrix by k | 
|---|
| 84 | * @param k the multiplication factor | 
|---|
| 85 | * @returns a copy of this Matrix multiplied by k | 
|---|
| 86 | */ | 
|---|
| 87 | Matrix Matrix::operator* (float k) const | 
|---|
| 88 | { | 
|---|
| 89 | return Matrix(this->m11 * k, this->m12 * k, this->m13 * k, | 
|---|
| 90 | this->m21 * k, this->m22 * k, this->m23 * k, | 
|---|
| 91 | this->m31 * k, this->m32 * k, this->m33 * k); | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 | /** | 
|---|
| 95 | * multiplies the Matrix by a Vector returning a Vector of the result | 
|---|
| 96 | * @param v the Vector the matrix will be multiplied with | 
|---|
| 97 | * @returns the result of the Multiplication | 
|---|
| 98 | */ | 
|---|
| 99 | Vector Matrix::operator* (const Vector& v) const | 
|---|
| 100 | { | 
|---|
| 101 | return Vector (this->m11*v.x + this->m12*v.y + this->m13*v.z, | 
|---|
| 102 | this->m21*v.x + this->m22*v.y + this->m23*v.z, | 
|---|
| 103 | this->m31*v.x + this->m32*v.y + this->m33*v.z ); | 
|---|
| 104 | } | 
|---|
| 105 |  | 
|---|
| 106 | /** | 
|---|
| 107 | * @returns a Transposed copy of this Matrix | 
|---|
| 108 | */ | 
|---|
| 109 | Matrix Matrix::getTransposed() const | 
|---|
| 110 | { | 
|---|
| 111 | return Matrix( this->m11, this->m21, this->m31, | 
|---|
| 112 | this->m12, this->m22, this->m32, | 
|---|
| 113 | this->m13, this->m23, this->m33); | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | /** | 
|---|
| 117 | * converts the Matrix into 3 Vector, and returns them in m1, m2 and m3 | 
|---|
| 118 | * @param m1 the first Column of the Matrix as a Vector | 
|---|
| 119 | * @param m2 the second Column of the Matrix as a Vector | 
|---|
| 120 | * @param m3 the third Column of the Matrix as a Vector | 
|---|
| 121 | */ | 
|---|
| 122 | void Matrix::toVectors(Vector& m1, Vector& m2, Vector& m3) const | 
|---|
| 123 | { | 
|---|
| 124 | m1 = Vector(this->m11, this->m21, this->m31); | 
|---|
| 125 | m2 = Vector(this->m12, this->m22, this->m32); | 
|---|
| 126 | m3 = Vector(this->m13, this->m23, this->m33); | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | /** | 
|---|
| 130 | * @returns the Determinant of this Matrix | 
|---|
| 131 | */ | 
|---|
| 132 | float Matrix::getDeterminant() const | 
|---|
| 133 | { | 
|---|
| 134 | return this->m11*(this->m22*this->m33 - this->m23*this->m32) - | 
|---|
| 135 | this->m12*(this->m21*this->m33 - this->m23*this->m31) + | 
|---|
| 136 | this->m13*(this->m21*this->m32 - this->m22*this->m31); | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | /** | 
|---|
| 140 | * calculates an returns the EingenValues of this Matrix. | 
|---|
| 141 | * @param eigneValues the Values calculated in a Vector | 
|---|
| 142 | * @returns the Count of found eigenValues | 
|---|
| 143 | * | 
|---|
| 144 | * This Function calculates the EigenValues of a 3x3-Matrix explicitly. | 
|---|
| 145 | * the Returned value eigenValues has the Values stored in Vector form | 
|---|
| 146 | * The Vector will be filled upside down, meaning if the count of found | 
|---|
| 147 | * eingenValues is 1 the only value will be located in eigneValues.x | 
|---|
| 148 | */ | 
|---|
| 149 | int Matrix::getEigenValues(Vector& eigenValues) const | 
|---|
| 150 | { | 
|---|
| 151 | int retVal = -1; | 
|---|
| 152 | float a = 0; | 
|---|
| 153 | float b = 0; | 
|---|
| 154 |  | 
|---|
| 155 | float c[3]; | 
|---|
| 156 |  | 
|---|
| 157 | // c[0] is the determinante of mat | 
|---|
| 158 | c[0] = this->m11 * this->m22 * this->m33 + | 
|---|
| 159 | 2* this->m12 * this->m13 * this->m23 - | 
|---|
| 160 | this->m11 * this->m23 * this->m23 - | 
|---|
| 161 | this->m22 * this->m13 * this->m13 - | 
|---|
| 162 | this->m33 * this->m12 * this->m12; | 
|---|
| 163 |  | 
|---|
| 164 | // c[1] is the trace of a | 
|---|
| 165 | c[1] = this->m11 * this->m22 - | 
|---|
| 166 | this->m12 * this->m12 + | 
|---|
| 167 | this->m11 * this->m33 - | 
|---|
| 168 | this->m13 * this->m13 + | 
|---|
| 169 | this->m22 * this->m33 - | 
|---|
| 170 | this->m23 * this->m23; | 
|---|
| 171 |  | 
|---|
| 172 | // c[2] is the sum of the diagonal elements | 
|---|
| 173 | c[2] = this->m11 + | 
|---|
| 174 | this->m22 + | 
|---|
| 175 | this->m33; | 
|---|
| 176 |  | 
|---|
| 177 |  | 
|---|
| 178 | // Computing the roots: | 
|---|
| 179 | a = (3.0*c[1] - c[2]*c[2]) / 3.0; | 
|---|
| 180 | b = (-2.0*c[2]*c[2]*c[2] + 9.0*c[1]*c[2] - 27.0*c[0]) / 27.0; | 
|---|
| 181 |  | 
|---|
| 182 | float Q = b*b/4.0 + a*a*a/27.0; | 
|---|
| 183 |  | 
|---|
| 184 | // 3 distinct Roots | 
|---|
| 185 | if (Q < 0) | 
|---|
| 186 | { | 
|---|
| 187 | float psi = atan2(sqrt(-Q), -b/2.0); | 
|---|
| 188 | float p = sqrt((b/2.0)*(b/2.0) - Q); | 
|---|
| 189 |  | 
|---|
| 190 | eigenValues.x = c[2]/3.0 + 2 * pow(p, 1/3.0) * cos(psi/3.0); | 
|---|
| 191 | eigenValues.y = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) | 
|---|
| 192 | + sqrt(3.0) * sin(psi/3.0)); | 
|---|
| 193 | eigenValues.z = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) | 
|---|
| 194 | - sqrt(3.0) * sin(psi/3.0)); | 
|---|
| 195 | retVal = 3; | 
|---|
| 196 | } | 
|---|
| 197 | // 2 Distinct Roots | 
|---|
| 198 | else if (Q == 0) | 
|---|
| 199 | { | 
|---|
| 200 | eigenValues.x = eigenValues.y = c[2]/3.0 + pow(b/2.0, 1.0/3.0); | 
|---|
| 201 | eigenValues.z = c[2]/3.0 + 2* pow(b/2.0, 1.0/3.0); | 
|---|
| 202 | retVal = 2; | 
|---|
| 203 | } | 
|---|
| 204 | // 1 Root (not calculating anything.) | 
|---|
| 205 | else if (Q > 0) | 
|---|
| 206 | { | 
|---|
| 207 | eigenValues.x = eigenValues.y = eigenValues.z = 1; | 
|---|
| 208 | retVal = 1; | 
|---|
| 209 | } | 
|---|
| 210 | return retVal; | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | /** | 
|---|
| 214 | * calculates and returns the EigenVectors of this function as Vectors. | 
|---|
| 215 | * @param eigVc1 the first eigenVector will be stored here. | 
|---|
| 216 | * @param eigVc2 the second eigenVector will be stored here. | 
|---|
| 217 | * @param eigVc3 the third eigenVector will be stored here. | 
|---|
| 218 | */ | 
|---|
| 219 | void Matrix::getEigenVectors(Vector& eigVc1, Vector& eigVc2, Vector& eigVc3) const | 
|---|
| 220 | { | 
|---|
| 221 | Vector eigenValues; | 
|---|
| 222 | int eigenValuesCount = this->getEigenValues(eigenValues); | 
|---|
| 223 |  | 
|---|
| 224 | if (eigenValuesCount == 2 || eigenValuesCount == 3) | 
|---|
| 225 | { | 
|---|
| 226 | /* eigenvec creation */ | 
|---|
| 227 | eigVc1.x = -1/this->m13*(this->m33 - eigenValues.x) + | 
|---|
| 228 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.x)) / | 
|---|
| 229 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.x); | 
|---|
| 230 |  | 
|---|
| 231 | eigVc1.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.x) / | 
|---|
| 232 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.x); | 
|---|
| 233 |  | 
|---|
| 234 | eigVc1.z = 1.0f; | 
|---|
| 235 |  | 
|---|
| 236 | eigVc2.x = -1/this->m13*(this->m33 - eigenValues.y) + | 
|---|
| 237 | (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.y)) / | 
|---|
| 238 | this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.y); | 
|---|
| 239 |  | 
|---|
| 240 | eigVc2.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.y) / | 
|---|
| 241 | (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.y); | 
|---|
| 242 |  | 
|---|
| 243 | eigVc2.z = 1.0f; | 
|---|
| 244 |  | 
|---|
| 245 | eigVc3 = eigVc1.cross(eigVc2); | 
|---|
| 246 |  | 
|---|
| 247 | eigVc2 = eigVc3.cross(eigVc1); | 
|---|
| 248 | } | 
|---|
| 249 | else if (eigenValuesCount == 1) | 
|---|
| 250 | { | 
|---|
| 251 | eigVc1 = Vector(1,0,0); | 
|---|
| 252 | eigVc2 = Vector(0,1,0); | 
|---|
| 253 | eigVc3 = Vector(0,0,1); | 
|---|
| 254 | } | 
|---|
| 255 | eigVc1.normalize(); | 
|---|
| 256 | eigVc2.normalize(); | 
|---|
| 257 | eigVc3.normalize(); | 
|---|
| 258 |  | 
|---|
| 259 | if (!(eigVc1.cross(eigVc3) == eigVc2)) | 
|---|
| 260 | { | 
|---|
| 261 | eigVc3.cross(eigVc1); | 
|---|
| 262 | //     eigVc2.debug(); | 
|---|
| 263 | } | 
|---|
| 264 | /*  printf("ok\n")*/; | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 | /** | 
|---|
| 268 | * prints out some nice debug information | 
|---|
| 269 | */ | 
|---|
| 270 | void Matrix::debug() const | 
|---|
| 271 | { | 
|---|
| 272 | printf("| %f | %f | %f |\n", this->m11, this->m12, this->m13 ); | 
|---|
| 273 | printf("| %f | %f | %f |\n", this->m21, this->m22, this->m23 ); | 
|---|
| 274 | printf("| %f | %f | %f |\n", this->m31, this->m32, this->m33 ); | 
|---|
| 275 |  | 
|---|
| 276 | } | 
|---|
| 277 |  | 
|---|