| 1 | /*! |
|---|
| 2 | * @file lin_alg.h |
|---|
| 3 | * Definition of some important linear algebra formulas |
|---|
| 4 | |
|---|
| 5 | compute the eigenpairs (eigenvalues and eigenvectors) of a real symmetric matrix "A" by the Jacobi method |
|---|
| 6 | */ |
|---|
| 7 | |
|---|
| 8 | |
|---|
| 9 | /** |
|---|
| 10 | * function that calculates the eigenvectors from a given symmertical 3x3 Matrix |
|---|
| 11 | * @arg A: Matrix |
|---|
| 12 | * @arg D: Eigenvectors |
|---|
| 13 | */ |
|---|
| 14 | void eigenVectors(float** matrix, float **vectors) |
|---|
| 15 | { |
|---|
| 16 | /* map variables to other names, so they can be processed more easely */ |
|---|
| 17 | float a = matrix[0][0]; |
|---|
| 18 | float b = matrix[0][1]; |
|---|
| 19 | float c = matrix[0][2]; |
|---|
| 20 | float d = matrix[1][1]; |
|---|
| 21 | float e = matrix[1][2]; |
|---|
| 22 | float f = matrix[2][2]; |
|---|
| 23 | |
|---|
| 24 | /* first eigenvector */ |
|---|
| 25 | vectors[0][0] = -1/c * (f - /*Root*/ (c*c*d - 2*b*c + a*e*e + b*b*f - a*d*f - |
|---|
| 26 | b*b - c*c + a*d - e*e + a*f )); |
|---|
| 27 | } |
|---|
| 28 | |
|---|
| 29 | |
|---|
| 30 | |
|---|
| 31 | /************************************************************ |
|---|
| 32 | * This subroutine computes all eigenvalues and eigenvectors * |
|---|
| 33 | * of a real symmetric square matrix A(N,N). On output, ele- * |
|---|
| 34 | * ments of A above the diagonal are destroyed. D(N) returns * |
|---|
| 35 | * the eigenvalues of matrix A. V(N,N) contains, on output, * |
|---|
| 36 | * the eigenvectors of A by columns. THe normalization to * |
|---|
| 37 | * unity is made by main program before printing results. * |
|---|
| 38 | * NROT returns the number of Jacobi matrix rotations which * |
|---|
| 39 | * were required. * |
|---|
| 40 | * --------------------------------------------------------- * |
|---|
| 41 | * Ref.:"NUMERICAL RECIPES IN FORTRAN, Cambridge University * |
|---|
| 42 | * Press, 1986, chap. 11, pages 346-348". * |
|---|
| 43 | * * |
|---|
| 44 | * C++ version by J-P Moreau, Paris. * |
|---|
| 45 | ************************************************************/ |
|---|
| 46 | void JacobI(float **A, float *D, float **V, int *NROT) { |
|---|
| 47 | |
|---|
| 48 | int N = 3; |
|---|
| 49 | |
|---|
| 50 | float *B, *Z; |
|---|
| 51 | double c=0.0f, g=0.0f, h=0.0f, s=0.0f, sm=0.0f, t=0.0f, tau=0.0f, theta=0.0f, tresh=0.0f; |
|---|
| 52 | int i = 0, j = 0, ip = 0, iq = 0; |
|---|
| 53 | |
|---|
| 54 | //allocate vectors B, Z |
|---|
| 55 | B = new float[N]; |
|---|
| 56 | Z = new float[N]; |
|---|
| 57 | |
|---|
| 58 | // initialize V to identity matrix |
|---|
| 59 | for( ip = 0; ip < N; ip++) { |
|---|
| 60 | for( iq = 0; iq < N; iq++) |
|---|
| 61 | V[ip][iq] = 0.0f; |
|---|
| 62 | V[ip][ip] = 1.0f; |
|---|
| 63 | } |
|---|
| 64 | // initialize B,D to the diagonal of A |
|---|
| 65 | for( ip = 0; ip < N; ip++) { |
|---|
| 66 | B[ip] = A[ip][ip]; |
|---|
| 67 | D[ip] = B[ip]; |
|---|
| 68 | Z[ip] = 0.0f; |
|---|
| 69 | } |
|---|
| 70 | |
|---|
| 71 | *NROT = 0; |
|---|
| 72 | // make maximaly 50 iterations |
|---|
| 73 | for( i = 1; i <= 50; i++) { |
|---|
| 74 | sm = 0.0f; |
|---|
| 75 | |
|---|
| 76 | // sum off-diagonal elements |
|---|
| 77 | for( ip = 0; ip < N - 1; ip++) |
|---|
| 78 | for( iq = ip + 1; iq < N; iq++) |
|---|
| 79 | sm += fabs(A[ip][iq]); |
|---|
| 80 | |
|---|
| 81 | // is it already a diagonal matrix? |
|---|
| 82 | if( sm == 0) |
|---|
| 83 | { |
|---|
| 84 | delete[] B; |
|---|
| 85 | delete[] Z; |
|---|
| 86 | return; |
|---|
| 87 | } |
|---|
| 88 | // just adjust this on the first 3 sweeps |
|---|
| 89 | if( i < 4) |
|---|
| 90 | tresh = 0.2 * sm / (N * N) ; |
|---|
| 91 | else |
|---|
| 92 | tresh = 0.0f; |
|---|
| 93 | |
|---|
| 94 | for( ip = 0; ip < (N-1); ip++) { |
|---|
| 95 | for( iq = ip + 1; iq < N; iq++) { |
|---|
| 96 | |
|---|
| 97 | g = 100.0f * fabs(A[ip][iq]); |
|---|
| 98 | // after 4 sweeps, skip the rotation if the off-diagonal element is small |
|---|
| 99 | if( (i > 4) && ( fabs(D[ip]) + g == fabs(D[ip]) ) && ( fabs(D[iq]) + g == fabs(D[iq]) ) ) |
|---|
| 100 | A[ip][iq] = 0.0f; |
|---|
| 101 | else if( fabs(A[ip][iq]) > tresh) { |
|---|
| 102 | h = D[iq] - D[ip]; |
|---|
| 103 | if (fabs(h) + g == fabs(h)) |
|---|
| 104 | t = A[ip][iq] / h; |
|---|
| 105 | else { |
|---|
| 106 | theta = 0.5f * h / A[ip][iq]; |
|---|
| 107 | t = 1.0f / (fabs(theta) + sqrt(1.0f + theta * theta)); |
|---|
| 108 | if( theta < 0.0f) |
|---|
| 109 | t = -t; |
|---|
| 110 | } |
|---|
| 111 | c = 1.0f / sqrt(1.0f + t * t); |
|---|
| 112 | s = t * c; |
|---|
| 113 | tau = s / (1.0f + c); |
|---|
| 114 | h = t * A[ip][iq]; |
|---|
| 115 | Z[ip] -= h; |
|---|
| 116 | Z[iq] += h; |
|---|
| 117 | D[ip] -= h; |
|---|
| 118 | D[iq] += h; |
|---|
| 119 | A[ip][iq] = 0.0f; |
|---|
| 120 | |
|---|
| 121 | for( j = 0; j < (ip - 1); j++) { |
|---|
| 122 | g = A[j][ip]; |
|---|
| 123 | h = A[j][iq]; |
|---|
| 124 | A[j][ip] = g - s * (h + g * tau); |
|---|
| 125 | A[j][iq] = h + s * (g - h * tau); |
|---|
| 126 | } |
|---|
| 127 | for( j = (ip + 1); j < (iq - 1); j++) { |
|---|
| 128 | g = A[ip][j]; |
|---|
| 129 | h = A[j][iq]; |
|---|
| 130 | A[ip][j] = g - s * (h + g * tau); |
|---|
| 131 | A[j][iq] = h + s * (g - h * tau); |
|---|
| 132 | } |
|---|
| 133 | for( j = (iq + 1); j < N; j++) { |
|---|
| 134 | g = A[ip][j]; |
|---|
| 135 | h = A[iq][j]; |
|---|
| 136 | A[ip][j] = g - s * (h + g * tau); |
|---|
| 137 | A[iq][j] = h + s * (g - h * tau); |
|---|
| 138 | } |
|---|
| 139 | for( j = 0; j < N; j++) { |
|---|
| 140 | g = V[j][ip]; |
|---|
| 141 | h = V[j][iq]; |
|---|
| 142 | V[j][ip] = g - s * (h + g * tau); |
|---|
| 143 | V[j][iq] = h + s * (g - h * tau); |
|---|
| 144 | } |
|---|
| 145 | *NROT += 1; |
|---|
| 146 | } //end ((i.gt.4)...else if |
|---|
| 147 | } // main iq loop |
|---|
| 148 | } // main ip loop |
|---|
| 149 | for( ip = 0; ip < N; ip++) { |
|---|
| 150 | B[ip] += Z[ip]; |
|---|
| 151 | D[ip] = B[ip]; |
|---|
| 152 | Z[ip] = 0.0f; |
|---|
| 153 | } |
|---|
| 154 | } //end of main i loop |
|---|
| 155 | delete[] B; |
|---|
| 156 | delete[] Z; |
|---|
| 157 | return; //too many iterations |
|---|
| 158 | } |
|---|
| 159 | |
|---|
| 160 | |
|---|
| 161 | |
|---|
| 162 | |
|---|
| 163 | |
|---|
| 164 | #include "abstract_model.h" |
|---|
| 165 | |
|---|
| 166 | #include <stdio.h> |
|---|
| 167 | #include <math.h> |
|---|
| 168 | |
|---|
| 169 | #define NDIM 3 |
|---|
| 170 | |
|---|
| 171 | |
|---|
| 172 | typedef float MatrixX[3][3]; |
|---|
| 173 | |
|---|
| 174 | // |
|---|
| 175 | // class "EVJacobi" for computing the eigenpairs |
|---|
| 176 | // (members) |
|---|
| 177 | // ndim int ... dimension |
|---|
| 178 | // "ndim" must satisfy 1 < ndim < NDIM |
|---|
| 179 | // ("NDIM" is given above). |
|---|
| 180 | // a double [NDIM][NDIM] ... matrix A |
|---|
| 181 | // aa double ... the square root of |
|---|
| 182 | // (1/2) x (the sum of the off-diagonal elements squared) |
|---|
| 183 | // ev double [NDIM] ... eigenvalues |
|---|
| 184 | // evec double [NDIM][NDIM] ... eigenvectors |
|---|
| 185 | // evec[i][k], i=1,2,...,ndim are the elements of the eigenvector |
|---|
| 186 | // corresponding to the k-th eigenvalue ev[k] |
|---|
| 187 | // vec double [NDIM][NDIM] ... the 2-dimensional array where the matrix elements are stored |
|---|
| 188 | // lSort int ... |
|---|
| 189 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
|---|
| 190 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
|---|
| 191 | // if lSort = 0, in the ascending order, i.e., |
|---|
| 192 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
|---|
| 193 | // lMatSize int ... If 1 < ndim < NDIM, lMatSize = 1 |
|---|
| 194 | // otherwise, lMatSize = 0 |
|---|
| 195 | // p int [NDIM] ... index vector for sorting the eigenvalues |
|---|
| 196 | // (public member functions) |
|---|
| 197 | // setMatrix void ... give the matrix A |
|---|
| 198 | // getEigenValue void ... get the eigenvalues |
|---|
| 199 | // getEigenVector void ... get the eigenvectors |
|---|
| 200 | // sortEigenpair void ... sort the eigenpairs |
|---|
| 201 | // (private member functions) |
|---|
| 202 | // ComputeEigenpair void ... compute the eigenpairs |
|---|
| 203 | // matrixUpdate void ... each step of the Jacobi method, i.e., |
|---|
| 204 | // update of the matrix A by Givens' transform. |
|---|
| 205 | // getP void ... get the index vector p, i.e., sort the eigenvalues. |
|---|
| 206 | // printMatrix void ... print the elements of the matrix A. |
|---|
| 207 | // |
|---|
| 208 | |
|---|
| 209 | class EVJacobi |
|---|
| 210 | { |
|---|
| 211 | public: |
|---|
| 212 | void setMatrix(int, double [][NDIM], int, int); |
|---|
| 213 | void getEigenValue(double []); |
|---|
| 214 | void getEigenVector(double [][NDIM]); |
|---|
| 215 | void sortEigenpair(int); |
|---|
| 216 | |
|---|
| 217 | private: |
|---|
| 218 | void ComputeEigenpair(int); |
|---|
| 219 | void matrixUpdate(); |
|---|
| 220 | void getP(); |
|---|
| 221 | void printMatrix(); |
|---|
| 222 | |
|---|
| 223 | private: |
|---|
| 224 | double a[NDIM][NDIM], aa, ev[NDIM], evec[NDIM][NDIM], vec[NDIM][NDIM]; |
|---|
| 225 | int ndim, lSort, p[NDIM], lMatSize; |
|---|
| 226 | }; |
|---|
| 227 | |
|---|
| 228 | //------------public member function of the class "EVJacobi"------------------------------ |
|---|
| 229 | // |
|---|
| 230 | // give the dimension "ndim" and the matrix "A" and compute the eigenpairs |
|---|
| 231 | // (input) |
|---|
| 232 | // ndim0 int ... dimension |
|---|
| 233 | // a0 double[][NDIM] matrix A |
|---|
| 234 | // lSort0 int ... lSort |
|---|
| 235 | // If lSort = 1, sort the eigenvalues d(i) in the descending order, i.e., |
|---|
| 236 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
|---|
| 237 | // if lSort = 0, in the ascending order, i.e., |
|---|
| 238 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
|---|
| 239 | // l_print int ... |
|---|
| 240 | // If l_print = 1, print the matrices during the iterations. |
|---|
| 241 | // |
|---|
| 242 | void EVJacobi::setMatrix(int ndim0, double a0[][NDIM], int lSort0, int l_print) |
|---|
| 243 | { |
|---|
| 244 | ndim = ndim0; |
|---|
| 245 | if (ndim < NDIM && ndim > 1) |
|---|
| 246 | { |
|---|
| 247 | lMatSize = 1; |
|---|
| 248 | lSort = lSort0; |
|---|
| 249 | for (int i=1; i<=ndim; ++i) |
|---|
| 250 | for (int j=1; j<=ndim; ++j) |
|---|
| 251 | a[i][j] = a0[i][j]; |
|---|
| 252 | // |
|---|
| 253 | aa = 0.0; |
|---|
| 254 | for (int i=1; i<=ndim; ++i) |
|---|
| 255 | for (int j=1; j<=i-1; ++j) |
|---|
| 256 | aa += a[i][j]*a[i][j]; |
|---|
| 257 | aa = sqrt(aa); |
|---|
| 258 | // |
|---|
| 259 | ComputeEigenpair(l_print); |
|---|
| 260 | getP(); |
|---|
| 261 | } |
|---|
| 262 | else |
|---|
| 263 | { |
|---|
| 264 | lMatSize = 0; |
|---|
| 265 | printf("ndim = %d\n", ndim); |
|---|
| 266 | printf("ndim must satisfy 1 < ndim < NDIM=%d\n", NDIM); |
|---|
| 267 | } |
|---|
| 268 | } |
|---|
| 269 | // |
|---|
| 270 | // get the eigenvalues |
|---|
| 271 | // (input) |
|---|
| 272 | // ev0[NDIM] double ... the array where the eigenvalues are written |
|---|
| 273 | void EVJacobi::getEigenValue(double ev0[]) |
|---|
| 274 | { |
|---|
| 275 | for (int k=1; k<=ndim; ++k) ev0[k] = ev[p[k]]; |
|---|
| 276 | } |
|---|
| 277 | // |
|---|
| 278 | // get the eigenvectors |
|---|
| 279 | // (input) |
|---|
| 280 | // evec0[NDIM][NDIM] double ... the two-dimensional array |
|---|
| 281 | // where the eigenvectors are written in such a way that |
|---|
| 282 | // evec0[k][i], i=1,2,...,ndim are the elements of the eigenvector |
|---|
| 283 | // corresponding to the k-th eigenvalue ev0[k] |
|---|
| 284 | // |
|---|
| 285 | void EVJacobi::getEigenVector(double evec0[][NDIM]) |
|---|
| 286 | { |
|---|
| 287 | for (int k=1; k<=ndim; ++k) |
|---|
| 288 | for (int i=1; i<=ndim; ++i) |
|---|
| 289 | evec0[k][i] = evec[p[k]][i]; |
|---|
| 290 | } |
|---|
| 291 | // |
|---|
| 292 | // sort the eigenpairs |
|---|
| 293 | // (input) |
|---|
| 294 | // lSort0 int |
|---|
| 295 | // If lSort0 = 1, the eigenvalues are sorted in the descending order, i.e., |
|---|
| 296 | // ev0[1] >= ev0[2] >= ... >= ev0[ndim] |
|---|
| 297 | // and if lSort0 = 0, in the ascending order, i.e., |
|---|
| 298 | // ev0[1] <= ev0[2] <= ... <= ev0[ndim] |
|---|
| 299 | // |
|---|
| 300 | void EVJacobi::sortEigenpair(int lSort0) |
|---|
| 301 | { |
|---|
| 302 | lSort = lSort0; |
|---|
| 303 | getP(); |
|---|
| 304 | } |
|---|
| 305 | //-------private member function of the class "EVJacobi"----- |
|---|
| 306 | // |
|---|
| 307 | // compute the eigenpairs |
|---|
| 308 | // (input) |
|---|
| 309 | // l_print int |
|---|
| 310 | // If l_print = 1, print the matrices during the iterations. |
|---|
| 311 | // |
|---|
| 312 | void EVJacobi::ComputeEigenpair(int l_print) |
|---|
| 313 | { |
|---|
| 314 | if (lMatSize==1) |
|---|
| 315 | { |
|---|
| 316 | if (l_print==1) |
|---|
| 317 | { |
|---|
| 318 | printf("step %d\n", 0); |
|---|
| 319 | printMatrix(); |
|---|
| 320 | printf("\n"); |
|---|
| 321 | } |
|---|
| 322 | // |
|---|
| 323 | double eps = 1.0e-15, epsa = eps * aa; |
|---|
| 324 | int kend = 1000, l_conv = 0; |
|---|
| 325 | // |
|---|
| 326 | for (int i=1; i<=ndim; ++i) |
|---|
| 327 | for (int j=1; j<=ndim; ++j) |
|---|
| 328 | vec[i][j] = 0.0; |
|---|
| 329 | for (int i=1; i<=ndim; ++i) |
|---|
| 330 | vec[i][i] = 1.0; |
|---|
| 331 | // |
|---|
| 332 | for (int k=1; k<=kend; ++k) |
|---|
| 333 | { |
|---|
| 334 | matrixUpdate(); |
|---|
| 335 | double a1 = 0.0; |
|---|
| 336 | for (int i=1; i<=ndim; ++i) |
|---|
| 337 | for (int j=1; j<=i-1; ++j) |
|---|
| 338 | a1 += a[i][j] * a[i][j]; |
|---|
| 339 | a1 = sqrt(a1); |
|---|
| 340 | if (a1 < epsa) |
|---|
| 341 | { |
|---|
| 342 | if (l_print==1) |
|---|
| 343 | { |
|---|
| 344 | printf("converged at step %d\n", k); |
|---|
| 345 | printMatrix(); |
|---|
| 346 | printf("\n"); |
|---|
| 347 | } |
|---|
| 348 | l_conv = 1; |
|---|
| 349 | break; |
|---|
| 350 | } |
|---|
| 351 | if (l_print==1) |
|---|
| 352 | if (k%10==0) |
|---|
| 353 | { |
|---|
| 354 | printf("step %d\n", k); |
|---|
| 355 | printMatrix(); |
|---|
| 356 | printf("\n"); |
|---|
| 357 | } |
|---|
| 358 | } |
|---|
| 359 | // |
|---|
| 360 | if (l_conv == 0) printf("Jacobi method not converged.\n"); |
|---|
| 361 | for (int k=1; k<=ndim; ++k) |
|---|
| 362 | { |
|---|
| 363 | ev[k] = a[k][k]; |
|---|
| 364 | for (int i=1; i<=ndim; ++i) evec[k][i] = vec[i][k]; |
|---|
| 365 | } |
|---|
| 366 | } |
|---|
| 367 | } |
|---|
| 368 | // |
|---|
| 369 | void EVJacobi::printMatrix() |
|---|
| 370 | { |
|---|
| 371 | for (int i=1; i<=ndim; ++i) |
|---|
| 372 | { |
|---|
| 373 | for (int j=1; j<=ndim; ++j) printf("%8.1e ",a[i][j]); |
|---|
| 374 | printf("\n"); |
|---|
| 375 | } |
|---|
| 376 | } |
|---|
| 377 | // |
|---|
| 378 | void EVJacobi::matrixUpdate() |
|---|
| 379 | { |
|---|
| 380 | double a_new[NDIM][NDIM], vec_new[NDIM][NDIM]; |
|---|
| 381 | // |
|---|
| 382 | int p=2, q=1; |
|---|
| 383 | double amax = fabs(a[p][q]); |
|---|
| 384 | for (int i=3; i<=ndim; ++i) |
|---|
| 385 | for (int j=1; j<=i-1; ++j) |
|---|
| 386 | if (fabs(a[i][j]) > amax) |
|---|
| 387 | { |
|---|
| 388 | p = i; |
|---|
| 389 | q = j; |
|---|
| 390 | amax = fabs(a[i][j]); |
|---|
| 391 | } |
|---|
| 392 | // |
|---|
| 393 | // Givens' rotation by Rutishauser's rule |
|---|
| 394 | // |
|---|
| 395 | double z, t, c, s, u; |
|---|
| 396 | z = (a[q][q] - a[p][p]) / (2.0 * a[p][q]); |
|---|
| 397 | t = fabs(z) + sqrt(1.0 + z*z); |
|---|
| 398 | if (z < 0.0) t = - t; |
|---|
| 399 | t = 1.0 / t; |
|---|
| 400 | c = 1.0 / sqrt(1.0 + t*t); |
|---|
| 401 | s = c * t; |
|---|
| 402 | u = s / (1.0 + c); |
|---|
| 403 | // |
|---|
| 404 | for (int i=1; i<=ndim; ++i) |
|---|
| 405 | for (int j=1; j<=ndim; ++j) |
|---|
| 406 | a_new[i][j] = a[i][j]; |
|---|
| 407 | // |
|---|
| 408 | a_new[p][p] = a[p][p] - t * a[p][q]; |
|---|
| 409 | a_new[q][q] = a[q][q] + t * a[p][q]; |
|---|
| 410 | a_new[p][q] = 0.0; |
|---|
| 411 | a_new[q][p] = 0.0; |
|---|
| 412 | for (int j=1; j<=ndim; ++j) |
|---|
| 413 | if (j!=p && j!=q) |
|---|
| 414 | { |
|---|
| 415 | a_new[p][j] = a[p][j] - s * (a[q][j] + u * a[p][j]); |
|---|
| 416 | a_new[j][p] = a_new[p][j]; |
|---|
| 417 | a_new[q][j] = a[q][j] + s * (a[p][j] - u * a[q][j]); |
|---|
| 418 | a_new[j][q] = a_new[q][j]; |
|---|
| 419 | } |
|---|
| 420 | // |
|---|
| 421 | for (int i=1; i<=ndim; ++i) |
|---|
| 422 | { |
|---|
| 423 | vec_new[i][p] = vec[i][p] * c - vec[i][q] * s; |
|---|
| 424 | vec_new[i][q] = vec[i][p] * s + vec[i][q] * c; |
|---|
| 425 | for (int j=1; j<=ndim; ++j) |
|---|
| 426 | if (j!=p && j!=q) vec_new[i][j] = vec[i][j]; |
|---|
| 427 | } |
|---|
| 428 | // |
|---|
| 429 | for (int i=1; i<=ndim; ++i) |
|---|
| 430 | for (int j=1; j<=ndim; ++j) |
|---|
| 431 | { |
|---|
| 432 | a[i][j] = a_new[i][j]; |
|---|
| 433 | vec[i][j] = vec_new[i][j]; |
|---|
| 434 | } |
|---|
| 435 | } |
|---|
| 436 | // |
|---|
| 437 | // sort the eigenpairs |
|---|
| 438 | // If l_print=1, sort the eigenvalues in the descending order, i.e., |
|---|
| 439 | // ev[1] >= ev[2] >= ... >= ev[ndim], and |
|---|
| 440 | // if l_print=0, in the ascending order, i.e., |
|---|
| 441 | // ev[1] <= ev[2] <= ... <= ev[ndim]. |
|---|
| 442 | // |
|---|
| 443 | void EVJacobi::getP() |
|---|
| 444 | { |
|---|
| 445 | for (int i=1; i<=ndim; ++i) p[i] = i; |
|---|
| 446 | // |
|---|
| 447 | if (lSort==1) |
|---|
| 448 | { |
|---|
| 449 | for (int k=1; k<=ndim; ++k) |
|---|
| 450 | { |
|---|
| 451 | double emax = ev[p[k]]; |
|---|
| 452 | for (int i=k+1; i<=ndim; ++i) |
|---|
| 453 | { |
|---|
| 454 | if (emax < ev[p[i]]) |
|---|
| 455 | { |
|---|
| 456 | emax = ev[p[i]]; |
|---|
| 457 | int pp = p[k]; |
|---|
| 458 | p[k] = p[i]; |
|---|
| 459 | p[i] = pp; |
|---|
| 460 | } |
|---|
| 461 | } |
|---|
| 462 | } |
|---|
| 463 | } |
|---|
| 464 | if (lSort==0) |
|---|
| 465 | { |
|---|
| 466 | for (int k=1; k<=ndim; ++k) |
|---|
| 467 | { |
|---|
| 468 | double emin = ev[p[k]]; |
|---|
| 469 | for (int i=k+1; i<=ndim; ++i) |
|---|
| 470 | { |
|---|
| 471 | if (emin > ev[p[i]]) |
|---|
| 472 | { |
|---|
| 473 | emin = ev[p[i]]; |
|---|
| 474 | int pp = p[k]; |
|---|
| 475 | p[k] = p[i]; |
|---|
| 476 | p[i] = pp; |
|---|
| 477 | } |
|---|
| 478 | } |
|---|
| 479 | } |
|---|
| 480 | } |
|---|
| 481 | } |
|---|
| 482 | |
|---|
| 483 | |
|---|
| 484 | |
|---|
| 485 | // void jacobi(float **A, float *D, float **V, int *nRot) { |
|---|
| 486 | // |
|---|
| 487 | // int n = 3; |
|---|
| 488 | // |
|---|
| 489 | // float *B, *Z; |
|---|
| 490 | // double c=0.0f, g=0.0f, h=0.0f, s=0.0f, sm=0.0f, t=0.0f, tau=0.0f, theta=0.0f, tresh=0.0f; |
|---|
| 491 | // int i = 0, j = 0, ip = 0, iq = 0; |
|---|
| 492 | // |
|---|
| 493 | // //void *vmblock1 = NULL; |
|---|
| 494 | // |
|---|
| 495 | // //allocate vectors B, Z |
|---|
| 496 | // //vmblock1 = vminit(); |
|---|
| 497 | // //B = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
|---|
| 498 | // //Z = (float *) vmalloc(vmblock1, VEKTOR, 100, 0); |
|---|
| 499 | // B = new float[n+1]; |
|---|
| 500 | // Z = new float[n+1]; |
|---|
| 501 | // |
|---|
| 502 | // //initialize V to identity matrix |
|---|
| 503 | // for(int i = 1; i <= n; i++) |
|---|
| 504 | // { |
|---|
| 505 | // for(int j = 1; j <= n; j++) |
|---|
| 506 | // V[i][j] = 0; |
|---|
| 507 | // V[i][i] = 1; |
|---|
| 508 | // } |
|---|
| 509 | // |
|---|
| 510 | // for(int i = 1; i <= n; i++) |
|---|
| 511 | // { |
|---|
| 512 | // B[i] = A[i][i]; |
|---|
| 513 | // D[i] = B[i]; |
|---|
| 514 | // Z[i] = 0; |
|---|
| 515 | // } |
|---|
| 516 | // |
|---|
| 517 | // *nRot = 0; |
|---|
| 518 | // for(int i = 1; i<=50; i++) |
|---|
| 519 | // { |
|---|
| 520 | // sm = 0; |
|---|
| 521 | // for(int k = 1; k < n; k++) //sum off-diagonal elements |
|---|
| 522 | // for (int l = k + 1; l <= n; k++) |
|---|
| 523 | // sm = sm + fabs(A[k][l]); |
|---|
| 524 | // if ( sm == 0 ) |
|---|
| 525 | // { |
|---|
| 526 | // //vmfree(vmblock1); |
|---|
| 527 | // delete[] B; |
|---|
| 528 | // delete[] Z; |
|---|
| 529 | // return; //normal return |
|---|
| 530 | // } |
|---|
| 531 | // if (i < 4) |
|---|
| 532 | // tresh = 0.2 * sm * sm; |
|---|
| 533 | // else |
|---|
| 534 | // tresh = 0; |
|---|
| 535 | // for(int k = 1; k < n; k++) |
|---|
| 536 | // { |
|---|
| 537 | // for (iq=ip+1; iq<=n; iq++) { |
|---|
| 538 | // g=100*fabs(A[ip][iq]); |
|---|
| 539 | // // after 4 sweeps, skip the rotation if the off-diagonal element is small |
|---|
| 540 | // if ((i > 4) && (fabs(D[ip])+g == fabs(D[ip])) && (fabs(D[iq])+g == fabs(D[iq]))) |
|---|
| 541 | // A[ip][iq]=0; |
|---|
| 542 | // else if (fabs(A[ip][iq]) > tresh) { |
|---|
| 543 | // h=D[iq]-D[ip]; |
|---|
| 544 | // if (fabs(h)+g == fabs(h)) |
|---|
| 545 | // t=A[ip][iq]/h; |
|---|
| 546 | // else { |
|---|
| 547 | // theta=0.5*h/A[ip][iq]; |
|---|
| 548 | // t=1/(fabs(theta)+sqrt(1.0+theta*theta)); |
|---|
| 549 | // if (theta < 0) t=-t; |
|---|
| 550 | // } |
|---|
| 551 | // c=1.0/sqrt(1.0+t*t); |
|---|
| 552 | // s=t*c; |
|---|
| 553 | // tau=s/(1.0+c); |
|---|
| 554 | // h=t*A[ip][iq]; |
|---|
| 555 | // Z[ip] -= h; |
|---|
| 556 | // Z[iq] += h; |
|---|
| 557 | // D[ip] -= h; |
|---|
| 558 | // D[iq] += h; |
|---|
| 559 | // A[ip][iq]=0; |
|---|
| 560 | // for (j=1; j<ip; j++) { |
|---|
| 561 | // g=A[j][ip]; |
|---|
| 562 | // h=A[j][iq]; |
|---|
| 563 | // A[j][ip] = g-s*(h+g*tau); |
|---|
| 564 | // A[j][iq] = h+s*(g-h*tau); |
|---|
| 565 | // } |
|---|
| 566 | // for (j=ip+1; j<iq; j++) { |
|---|
| 567 | // g=A[ip][j]; |
|---|
| 568 | // h=A[j][iq]; |
|---|
| 569 | // A[ip][j] = g-s*(h+g*tau); |
|---|
| 570 | // A[j][iq] = h+s*(g-h*tau); |
|---|
| 571 | // } |
|---|
| 572 | // for (j=iq+1; j<=n; j++) { |
|---|
| 573 | // g=A[ip][j]; |
|---|
| 574 | // h=A[iq][j]; |
|---|
| 575 | // A[ip][j] = g-s*(h+g*tau); |
|---|
| 576 | // A[iq][j] = h+s*(g-h*tau); |
|---|
| 577 | // } |
|---|
| 578 | // for (j=1; j<=n; j++) { |
|---|
| 579 | // g=V[j][ip]; |
|---|
| 580 | // h=V[j][iq]; |
|---|
| 581 | // V[j][ip] = g-s*(h+g*tau); |
|---|
| 582 | // V[j][iq] = h+s*(g-h*tau); |
|---|
| 583 | // } |
|---|
| 584 | // *nRot=*nRot+1; |
|---|
| 585 | // } //end ((i.gt.4)...else if |
|---|
| 586 | // } // main iq loop |
|---|
| 587 | // } // main ip loop |
|---|
| 588 | // for (ip=1; ip<=n; ip++) { |
|---|
| 589 | // B[ip] += Z[ip]; |
|---|
| 590 | // D[ip]=B[ip]; |
|---|
| 591 | // Z[ip]=0; |
|---|
| 592 | // } |
|---|
| 593 | // } //end of main i loop |
|---|
| 594 | // printf("\n 50 iterations !\n"); |
|---|
| 595 | // //vmfree(vmblock1); |
|---|
| 596 | // delete[] Z; |
|---|
| 597 | // delete[] B; |
|---|
| 598 | // return; //too many iterations |
|---|
| 599 | // } |
|---|
| 600 | |
|---|