Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/current_cd/src/lib/collision_detection/obb_tree_node.cc @ 6922

Last change on this file since 6922 was 6922, checked in by patrick, 18 years ago

cd: changed the cd interface again

File size: 36.7 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13*/
14
15#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION_DETECTION
16
17#include "obb_tree_node.h"
18#include "obb_tree.h"
19#include "obb.h"
20
21#include "matrix.h"
22#include "model.h"
23#include "world_entity.h"
24#include "plane.h"
25
26#include "color.h"
27#include "glincl.h"
28
29#include <list>
30#include <vector>
31#include "debug.h"
32
33
34
35using namespace std;
36
37
38GLUquadricObj* OBBTreeNode_sphereObj = NULL;
39
40
41/**
42 *  standard constructor
43 * @param tree: reference to the obb tree
44 * @param depth: the depth of the obb tree to generate
45 */
46OBBTreeNode::OBBTreeNode (const OBBTree& tree, OBBTreeNode* prev, int depth)
47    : BVTreeNode()
48{
49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
50
51  this->obbTree = &tree;
52  this->nodePrev = prev;
53  this->depth = depth;
54  this->nextID = 0;
55
56  this->nodeLeft = NULL;
57  this->nodeRight = NULL;
58  this->bvElement = NULL;
59
60  this->triangleIndexList1 = NULL;
61  this->triangleIndexList2 = NULL;
62
63  this->modelInf = NULL;
64  this->triangleIndexes = NULL;
65
66  if( OBBTreeNode_sphereObj == NULL)
67    OBBTreeNode_sphereObj = gluNewQuadric();
68
69  /* debug ids */
70  if( this->nodePrev)
71    this->treeIndex = 100 * this->depth + this->nodePrev->getID();
72  else
73    this->treeIndex = 0;
74}
75
76
77/**
78 *  standard deconstructor
79 */
80OBBTreeNode::~OBBTreeNode ()
81{
82  if( this->nodeLeft)
83    delete this->nodeLeft;
84  if( this->nodeRight)
85    delete this->nodeRight;
86
87  if( this->bvElement)
88    delete this->bvElement;
89
90//   if( this->triangleIndexList1 != NULL)
91//     delete [] this->triangleIndexList1;
92//   if( this->triangleIndexList2 != NULL)
93//     delete [] this->triangleIndexList2;
94}
95
96
97/**
98 *  creates a new BVTree or BVTree partition
99 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
100 * @param modInfo: model informations from the abstrac model
101 *
102 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
103 * on the triangle informations (triangle soup not polygon soup)
104 */
105void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, int length)
106{
107  PRINTF(3)("\n==============================Creating OBB Tree Node==================\n");
108  PRINT(3)(" OBB Tree Infos: \n");
109  PRINT(3)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, this->treeIndex, length);
110  this->depth = depth;
111
112  this->bvElement = new OBB();
113  this->bvElement->modelInf = &modelInf;
114  this->bvElement->triangleIndexes = triangleIndexes;
115  this->bvElement->triangleIndexesLength = length;
116
117  /* create the bounding boxes in three steps */
118  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
119  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
120  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
121
122  /* do we need to descent further in the obb tree?*/
123  if( likely( this->depth > 0))
124  {
125    this->forkBox(*this->bvElement);
126
127    if( this->triangleIndexLength1 >= 3)
128    {
129      this->nodeLeft = new OBBTreeNode(*this->obbTree, this, depth - 1);
130      this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1);
131    }
132    if( this->triangleIndexLength2 >= 3)
133    {
134      this->nodeRight = new OBBTreeNode(*this->obbTree, this, depth - 1);
135      this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2);
136    }
137  }
138}
139
140
141
142/**
143 *  calculate the box covariance matrix
144 * @param box: reference to the box
145 * @param modelInf: the model info structure of the model
146 * @param tirangleIndexes: an array with the indexes of the triangles inside this
147 * @param length: the length of the indexes array
148 */
149void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
150{
151  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
152  float     face = 0.0f;                             //!< surface area of the entire convex hull
153  Vector    centroid[length];                        //!< centroid of the i'th convex hull
154  Vector    center;                                  //!< the center of the entire hull
155  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
156  Vector    t1, t2;                                  //!< temporary values
157  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
158  sVec3D*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
159
160
161  /* fist compute all the convex hull face/facelets and centroids */
162  for( int i = 0; i < length ; ++i)
163  {
164    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
165    p = *tmpVec;
166    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
167    q = *tmpVec;
168    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
169    r = *tmpVec;
170
171    /* finding the facelet surface via cross-product */
172    t1 = p - q;
173    t2 = p - r;
174    facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
175    /* update the entire convex hull surface */
176    face += facelet[i];
177
178    /* calculate the cetroid of the hull triangles */
179    centroid[i] = (p + q + r) / 3.0f;
180    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
181    center += centroid[i] * facelet[i];
182    /* the arithmetical center */
183  }
184  /* take the average of the centroid sum */
185  center /= face;
186
187
188  /* now calculate the covariance matrix - if not written in three for-loops,
189     it would compute faster: minor */
190  for( int j = 0; j < 3; ++j)
191  {
192    for( int k = 0; k < 3; ++k)
193    {
194      for( int i = 0; i < length; ++i)
195      {
196        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
197        p = *tmpVec;
198        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
199        q = *tmpVec;
200        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
201        r = *tmpVec;
202
203        covariance[j][k] = facelet[i] * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
204                           q[j] * q[k] + r[j] * r[k]);
205      }
206      covariance[j][k] = covariance[j][k] / (12.0f * face) - center[j] * center[k];
207    }
208  }
209  for( int i = 0; i < 3; ++i)
210  {
211    box.covarianceMatrix[i][0] = covariance[i][0];
212    box.covarianceMatrix[i][1] = covariance[i][1];
213    box.covarianceMatrix[i][2] = covariance[i][2];
214  }
215  box.center = center;
216
217
218  std::vector<int>           vertIndexVector;                           //!< vertex indexes list
219  int                        vertIndex;                                 //!< index to vertex
220  bool                       vertexFound;                               //!< vertex found flag
221  Vector                     arithCenter;                               //!< aritmetical center
222
223  /* calculate the arithmetical center of the box */
224
225  /* go thourgh all vertices, add only the used vertices indexes */
226//   for( int i = 0; i < length; ++i)
227//   {
228//     for(int j = 0; j < 3; ++j)
229//     {
230//       vertIndex = modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j];
231//
232//       vertexFound = false;
233//       for( int i = 0; i < vertIndexVector.size(); i++)
234//       {
235//         if( vertIndexVector[i] == vertIndex)
236//           vertexFound = true;
237//       }
238//       if( !vertexFound)
239//         vertIndexVector.push_back(vertIndex);
240//     }
241//   }
242//   /* now realy calculate the center */
243//   for( int i = 0; i < vertIndexVector.size(); ++i)
244//   {
245//     tmpVec = (sVec3D*)(&modelInf.pVertices[vertIndexVector[i]]);
246//     arithCenter += *tmpVec;
247//   }
248//   box.arithCenter = arithCenter / vertIndexVector.size();
249
250
251
252  /* debug output section*/
253  PRINTF(3)("\nOBB Covariance Matrix:\n");
254  for(int j = 0; j < 3; ++j)
255  {
256    PRINT(3)("\t\t");
257    for(int k = 0; k < 3; ++k)
258    {
259      PRINT(3)("%11.4f\t", covariance[j][k]);
260    }
261    PRINT(3)("\n");
262  }
263  PRINTF(3)("\nWeighteed OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", center.x, center.y, center.z);
264//   PRINTF(3)("\nArithmetical OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", box.arithCenter.x, box.arithCenter.y, box.arithCenter.z);
265
266  /* write back the covariance matrix data to the object oriented bouning box */
267}
268
269
270
271/**
272 *  calculate the eigenvectors for the object oriented box
273 * @param box: reference to the box
274 * @param modelInf: the model info structure of the model
275 * @param tirangleIndexes: an array with the indexes of the triangles inside this
276 * @param length: the length of the indexes array
277 */
278void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modelInf,
279    const int* triangleIndexes, int length)
280{
281
282  Vector         axis[3];                            //!< the references to the obb axis
283  Matrix         covMat(  box.covarianceMatrix  );   //!< covariance matrix (in the matrix dataform)
284
285  /*
286  now getting spanning vectors of the sub-space:
287  the eigenvectors of a symmertric matrix, such as the
288  covarience matrix are mutually orthogonal.
289  after normalizing them, they can be used as a the basis
290  vectors
291  */
292
293  /* calculate the axis */
294  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
295  box.axis[0] = axis[0];
296  box.axis[1] = axis[1];
297  box.axis[2] = axis[2];
298
299  PRINTF(3)("Eigenvectors:\n");
300  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
301  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
302  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
303}
304
305
306
307
308/**
309 *  calculate the eigenvectors for the object oriented box
310 * @param box: reference to the box
311 * @param modelInf: the model info structure of the model
312 * @param tirangleIndexes: an array with the indexes of the triangles inside this
313 * @param length: the length of the indexes array
314 */
315void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
316{
317
318  PRINTF(3)("Calculate Box Axis\n");
319  /* now get the axis length */
320  Line                ax[3];                                 //!< the axis
321  float               halfLength[3];                         //!< half length of the axis
322  float               tmpLength;                             //!< tmp save point for the length
323  Plane               p0(box.axis[0], box.center);           //!< the axis planes
324  Plane               p1(box.axis[1], box.center);           //!< the axis planes
325  Plane               p2(box.axis[2], box.center);           //!< the axis planes
326  float               maxLength[3];                          //!< maximal lenth of the axis
327  float               minLength[3];                          //!< minimal length of the axis
328  const sVec3D*       tmpVec;                                //!< variable taking tmp vectors
329
330
331  /* get the maximal dimensions of the body in all directions */
332  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
333  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
334  maxLength[0] = p0.distancePoint(*tmpVec);
335  minLength[0] = p0.distancePoint(*tmpVec);
336  for( int j = 0; j < length; ++j)
337  {
338    for( int i = 0; i < 3; ++i)
339    {
340      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
341      tmpLength = p0.distancePoint(*tmpVec);
342      if( tmpLength > maxLength[0])
343        maxLength[0] = tmpLength;
344      else if( tmpLength < minLength[0])
345        minLength[0] = tmpLength;
346    }
347  }
348
349  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
350  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
351  maxLength[1] = p1.distancePoint(*tmpVec);
352  minLength[1] = p1.distancePoint(*tmpVec);
353  for( int j = 0; j < length; ++j)
354  {
355    for( int i = 0; i < 3; ++i)
356    {
357      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
358      tmpLength = p1.distancePoint(*tmpVec);
359      if( tmpLength > maxLength[1])
360        maxLength[1] = tmpLength;
361      else if( tmpLength < minLength[1])
362        minLength[1] = tmpLength;
363    }
364  }
365
366  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
367  tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
368  maxLength[2] = p2.distancePoint(*tmpVec);
369  minLength[2] = p2.distancePoint(*tmpVec);
370  for( int j = 0; j < length; ++j)
371  {
372    for( int i = 0; i < 3; ++i)
373    {
374      tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
375      tmpLength = p2.distancePoint(*tmpVec);
376      if( tmpLength > maxLength[2])
377        maxLength[2] = tmpLength;
378      else if( tmpLength < minLength[2])
379        minLength[2] = tmpLength;
380    }
381  }
382
383
384  /* calculate the real centre of the body by using the axis length */
385  float               centerOffset[3];
386
387  for( int i = 0; i < 3; ++i)
388  {
389    centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
390    box.halfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
391  }
392  box.center.x += centerOffset[0];
393  box.center.y += centerOffset[1];
394  box.center.z += centerOffset[2];
395
396  PRINTF(3)("\n");
397  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[0], maxLength[0], minLength[0]);
398  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[1], maxLength[1], minLength[1]);
399  PRINT(3)("\tAxis Length x: %f (max: %11.2f, \tmin: %11.2f)\n", halfLength[2], maxLength[2], minLength[2]);
400
401
402//   box.halfLength[0] = halfLength[0];
403//   box.halfLength[1] = halfLength[1];
404//   box.halfLength[2] = halfLength[2];
405}
406
407
408
409/**
410 *  this separates an ob-box in the middle
411 * @param box: the box to separate
412 *
413 * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
414 */
415void OBBTreeNode::forkBox(OBB& box)
416{
417
418  PRINTF(3)("Fork Box\n");
419  PRINTF(4)("Calculating the longest Axis\n");
420  /* get the longest axis of the box */
421  float               longestAxis = -1.0f;                 //!< the length of the longest axis
422  int                 longestAxisIndex = 0;                //!< this is the nr of the longest axis
423
424
425  /* now get the longest axis of the three exiting */
426  for( int i = 0; i < 3; ++i)
427  {
428    if( longestAxis < box.halfLength[i])
429    {
430      longestAxis = box.halfLength[i];
431      longestAxisIndex = i;
432    }
433  }
434  PRINTF(3)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis);
435
436
437  PRINTF(4)("Separating along the longest axis\n");
438  /* get the closest vertex near the center */
439  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
440  float               tmpDist;                             //!< variable to save diverse distances temporarily
441  int                 vertexIndex;                         //!< index of the vertex near the center
442  Plane               middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane
443  const sVec3D*       tmpVec;                              //!< temp simple 3D vector
444
445
446  /* now definin the separation plane through this specified nearest point and partition
447  the points depending on which side they are located
448  */
449  std::list<int>           partition1;                           //!< the vertex partition 1
450  std::list<int>           partition2;                           //!< the vertex partition 2
451  float*                   triangleCenter = new float[3];        //!< the center of the triangle
452  const float*             a;                                    //!< triangle  edge a
453  const float*             b;                                    //!< triangle  edge b
454  const float*             c;                                    //!< triangle  edge c
455
456
457  /* find the center of the box */
458  this->separationPlane = Plane(box.axis[longestAxisIndex], box.center);
459  this->sepPlaneCenter[0] = box.center.x;
460  this->sepPlaneCenter[1] = box.center.y;
461  this->sepPlaneCenter[2] = box.center.z;
462  this->longestAxisIndex = longestAxisIndex;
463
464  for( int i = 0; i < box.triangleIndexesLength; ++i)
465  {
466    /* first calculate the middle of the triangle */
467    a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]];
468    b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]];
469    c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]];
470
471    triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f;
472    triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f;
473    triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f;
474    tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter));
475
476    if( tmpDist > 0.0f)
477      partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */
478    else if( tmpDist < 0.0f)
479      partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */
480    else {
481      partition1.push_back(box.triangleIndexes[i]); /* 0.0f? unprobable... */
482      partition2.push_back(box.triangleIndexes[i]);
483    }
484  }
485  PRINTF(3)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size());
486
487
488  /* now comes the separation into two different sVec3D arrays */
489  int                index;                                //!< index storage place
490  int*               triangleIndexList1;                   //!< the vertex list 1
491  int*               triangleIndexList2;                   //!< the vertex list 2
492  std::list<int>::iterator element;                        //!< the list iterator
493
494  triangleIndexList1 = new int[partition1.size()];
495  triangleIndexList2 = new int[partition2.size()];
496
497  for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++)
498    triangleIndexList1[index] = (*element);
499
500  for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++)
501    triangleIndexList2[index] = (*element);
502
503  if( this->triangleIndexList1!= NULL)
504    delete[] this->triangleIndexList1;
505  this->triangleIndexList1 = triangleIndexList1;
506  this->triangleIndexLength1 = partition1.size();
507
508  if( this->triangleIndexList2 != NULL)
509    delete[] this->triangleIndexList2;
510  this->triangleIndexList2 = triangleIndexList2;
511  this->triangleIndexLength2 = partition2.size();
512}
513
514
515
516
517void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
518{
519  if( unlikely(treeNode == NULL))
520    return;
521
522  PRINTF(3)("collideWith\n");
523  /* if the obb overlap, make subtests: check which node is realy overlaping  */
524  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
525  //   if( unlikely(treeNode == NULL)) return;
526
527
528  if( this->overlapTest(*this->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
529  {
530    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
531
532    /* check if left node overlaps */
533    if( likely( this->nodeLeft != NULL))
534    {
535      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
536      if( this->overlapTest(*this->nodeLeft->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
537      {
538        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
539        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
540      }
541    }
542    /* check if right node overlaps */
543    if( likely( this->nodeRight != NULL))
544    {
545      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
546      if(this->overlapTest(*this->nodeRight->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
547      {
548        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
549        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
550      }
551    }
552
553    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
554    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
555    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
556    {
557      nodeA->collidesWith(nodeB, (((const OBBTreeNode*)&treeNode)->bvElement->center));
558
559      nodeB->collidesWith(nodeA, this->bvElement->center);
560    }
561
562  }
563}
564
565
566
567bool OBBTreeNode::overlapTest(const OBB& boxA, const OBB& boxB, WorldEntity* nodeA, WorldEntity* nodeB)
568{
569  //   if( boxB == NULL || boxA == NULL)
570  //     return false;
571
572  /* first check all axis */
573  Vector t;
574  float rA = 0.0f;
575  float rB = 0.0f;
576  Vector l;
577  Vector rotAxisA[3];
578  Vector rotAxisB[3];
579
580  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA.axis[0]);
581  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA.axis[1]);
582  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA.axis[2]);
583
584  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB.axis[0]);
585  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB.axis[1]);
586  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB.axis[2]);
587
588
589  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA.center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB.center));
590
591  //   printf("\n");
592  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
593  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
594  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
595  //
596  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
597  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
598  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
599
600
601  /* All 3 axis of the object A */
602  for( int j = 0; j < 3; ++j)
603  {
604    rA = 0.0f;
605    rB = 0.0f;
606    l = rotAxisA[j];
607
608    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
609    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
610    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
611
612    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
613    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
614    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
615
616    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
617
618    if( (rA + rB) < fabs(t.dot(l)))
619    {
620      PRINTF(3)("no Collision\n");
621      return false;
622    }
623  }
624
625  /* All 3 axis of the object B */
626  for( int j = 0; j < 3; ++j)
627  {
628    rA = 0.0f;
629    rB = 0.0f;
630    l = rotAxisB[j];
631
632    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
633    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
634    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
635
636    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
637    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
638    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
639
640    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
641
642    if( (rA + rB) < fabs(t.dot(l)))
643    {
644      PRINTF(3)("no Collision\n");
645      return false;
646    }
647  }
648
649
650  /* Now check for all face cross products */
651
652  for( int j = 0; j < 3; ++j)
653  {
654    for(int k = 0; k < 3; ++k )
655    {
656      rA = 0.0f;
657      rB = 0.0f;
658      l = rotAxisA[j].cross(rotAxisB[k]);
659
660      rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
661      rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
662      rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
663
664      rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
665      rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
666      rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
667
668      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
669
670      if( (rA + rB) < fabs(t.dot(l)))
671      {
672        PRINTF(3)("keine Kollision\n");
673        return false;
674      }
675    }
676  }
677
678  /* FIXME: there is no collision mark set now */
679  //   boxA.bCollided = true; /* use this ONLY(!!!!) for drawing operations */
680  //   boxB.bCollided = true;
681
682
683  PRINTF(3)("Kollision!\n");
684  return true;
685}
686
687
688
689
690
691void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
692{
693
694
695  /* this function can be used to draw the triangles and/or the points only  */
696  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
697  {
698    if( !(drawMode & DRAW_SINGLE && depth != 0))
699    {
700      if( drawMode & DRAW_POINTS)
701      {
702        glBegin(GL_POINTS);
703        for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
704          glVertex3f(this->bvElement->modelInf->pVertices[i],
705                     this->bvElement->modelInf->pVertices[i+1],
706                     this->bvElement->modelInf->pVertices[i+2]);
707        glEnd();
708      }
709    }
710  }
711
712  if (top)
713  {
714    glPushAttrib(GL_ENABLE_BIT);
715    glDisable(GL_LIGHTING);
716    glDisable(GL_TEXTURE_2D);
717  }
718  glColor3f(color.x, color.y, color.z);
719
720
721  /* draw world axes */
722  if( drawMode & DRAW_BV_AXIS)
723  {
724    glBegin(GL_LINES);
725    glColor3f(1.0, 0.0, 0.0);
726    glVertex3f(0.0, 0.0, 0.0);
727    glVertex3f(3.0, 0.0, 0.0);
728
729    glColor3f(0.0, 1.0, 0.0);
730    glVertex3f(0.0, 0.0, 0.0);
731    glVertex3f(0.0, 3.0, 0.0);
732
733    glColor3f(0.0, 0.0, 1.0);
734    glVertex3f(0.0, 0.0, 0.0);
735    glVertex3f(0.0, 0.0, 3.0);
736    glEnd();
737  }
738
739
740  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
741  {
742    if( drawMode & DRAW_SINGLE && depth != 0)
743    {
744      /* draw the obb axes */
745      glBegin(GL_LINES);
746      glColor3f(1.0, 0.0, 0.0);
747      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
748      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
749                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
750                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
751
752      glColor3f(0.0, 1.0, 0.0);
753      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
754      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
755                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
756                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
757
758      glColor3f(0.0, 0.0, 1.0);
759      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
760      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
761                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
762                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
763      glEnd();
764    }
765  }
766
767
768  /* DRAW POLYGONS */
769  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
770  {
771    if (top)
772    {
773      glEnable(GL_BLEND);
774      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
775    }
776
777    if( this->nodeLeft == NULL && this->nodeRight == NULL)
778      depth = 0;
779
780    if( !(drawMode & DRAW_SINGLE && depth != 0))
781    {
782      PRINTF(0)("debug poly draw: depth: %i, mode: %i\n", depth, drawMode);
783
784      Vector cen = this->bvElement->center;
785      Vector* axis = this->bvElement->axis;
786      float* len = this->bvElement->halfLength;
787
788      if( this->bvElement->bCollided)
789      {
790        glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
791      }
792      else if( drawMode & DRAW_BV_BLENDED)
793      {
794        glColor4f(color.x, color.y, color.z, .5);
795      }
796
797      /* draw bounding box */
798      if( drawMode & DRAW_BV_BLENDED)
799        glBegin(GL_QUADS);
800      else
801        glBegin(GL_LINE_LOOP);
802      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
803                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
804                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
805      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
806                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
807                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
808      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
809                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
810                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
811      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
812                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
813                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
814      glEnd();
815
816      if( drawMode & DRAW_BV_BLENDED)
817        glBegin(GL_QUADS);
818      else
819        glBegin(GL_LINE_LOOP);
820      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
821                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
822                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
823      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
824                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
825                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
826      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
827                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
828                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
829      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
830                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
831                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
832      glEnd();
833
834      if( drawMode & DRAW_BV_BLENDED)
835        glBegin(GL_QUADS);
836      else
837        glBegin(GL_LINE_LOOP);
838      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
839                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
840                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
841      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
842                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
843                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
844      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
845                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
846                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
847      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
848                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
849                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
850      glEnd();
851
852      if( drawMode & DRAW_BV_BLENDED)
853        glBegin(GL_QUADS);
854      else
855        glBegin(GL_LINE_LOOP);
856      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
857                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
858                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
859      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
860                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
861                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
862      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
863                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
864                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
865      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
866                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
867                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
868      glEnd();
869
870
871      if( drawMode & DRAW_BV_BLENDED)
872      {
873        glBegin(GL_QUADS);
874        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
875                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
876                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
877        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
878                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
879                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
880        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
881                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
882                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
883        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
884                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
885                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
886        glEnd();
887
888        glBegin(GL_QUADS);
889        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
890                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
891                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
892        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
893                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
894                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
895        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
896                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
897                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
898        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
899                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
900                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
901        glEnd();
902      }
903
904
905      if( drawMode & DRAW_BV_BLENDED)
906        glColor3f(color.x, color.y, color.z);
907    }
908
909  }
910
911  /* DRAW SEPARATING PLANE */
912  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
913  {
914    if( !(drawMode & DRAW_SINGLE && depth != 0))
915    {
916      if( drawMode & DRAW_BV_BLENDED)
917        glColor4f(color.x, color.y, color.z, .6);
918
919      /* now draw the separation plane */
920      Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
921      Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
922      Vector c = this->bvElement->center;
923      float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
924      float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
925      glBegin(GL_QUADS);
926      glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
927      glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
928      glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
929      glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
930      glEnd();
931
932      if( drawMode & DRAW_BV_BLENDED)
933        glColor4f(color.x, color.y, color.z, 1.0);
934
935    }
936  }
937
938
939
940  if (depth > 0)
941  {
942    if( this->nodeLeft != NULL)
943      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
944    if( this->nodeRight != NULL)
945      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
946  }
947  this->bvElement->bCollided = false;
948
949  if (top)
950    glPopAttrib();
951}
952
953
954
955void OBBTreeNode::debug() const
956{
957  PRINT(0)("========OBBTreeNode::debug()=====\n");
958  PRINT(0)(" Current depth: %i", this->depth);
959  PRINT(0)(" ");
960  PRINT(0)("=================================\n");
961}
Note: See TracBrowser for help on using the repository browser.