Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/collision_detection/src/lib/collision_detection/obb_tree_node.cc @ 5718

Last change on this file since 5718 was 5718, checked in by patrick, 18 years ago

collision_detection: and again a heavy cleanup in the function arguments

File size: 36.7 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION_DETECTION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "matrix.h"
23#include "abstract_model.h"
24#include "world_entity.h"
25
26#include "color.h"
27
28#include "debug.h"
29#include "glincl.h"
30
31
32
33using namespace std;
34
35float**  OBBTreeNode::coMat = NULL;
36float**  OBBTreeNode::eigvMat = NULL;
37float*   OBBTreeNode::eigvlMat = NULL;
38int*     OBBTreeNode::rotCount = NULL;
39GLUquadricObj* OBBTreeNode_sphereObj = NULL;
40
41/**
42 *  standard constructor
43 */
44OBBTreeNode::OBBTreeNode (const OBBTree& tree, unsigned int depth)
45  : BVTreeNode()
46{
47  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
48
49  this->obbTree = &tree;
50  this->depth = depth;
51
52  this->nodeLeft = NULL;
53  this->nodeRight = NULL;
54  this->bvElement = NULL;
55
56  this->tmpVert1 = NULL;
57  this->tmpVert2 = NULL;
58
59  if( OBBTreeNode::coMat == NULL)
60  {
61    OBBTreeNode::coMat = new float*[4];
62    for(int i = 0; i < 4; i++)
63      OBBTreeNode::coMat[i] = new float[4];
64  }
65  if( OBBTreeNode::eigvMat == NULL)
66  {
67    OBBTreeNode::eigvMat = new float*[4];
68    for( int i = 0; i < 4; i++)
69      OBBTreeNode::eigvMat[i] = new float[4];
70  }
71  if( OBBTreeNode::eigvlMat == NULL)
72  {
73    OBBTreeNode::eigvlMat = new float[4];
74  }
75  if( OBBTreeNode::rotCount == NULL)
76    OBBTreeNode::rotCount = new int;
77
78  if( OBBTreeNode_sphereObj == NULL)
79    OBBTreeNode_sphereObj = gluNewQuadric();
80}
81
82
83/**
84 *  standard deconstructor
85 */
86OBBTreeNode::~OBBTreeNode ()
87{
88  if( this->nodeLeft)
89  {
90    delete this->nodeLeft;
91    this->nodeLeft = NULL;
92  }
93  if( this->nodeRight)
94  {
95    delete this->nodeRight;
96    this->nodeRight = NULL;
97  }
98  if( this->bvElement)
99    delete this->bvElement;
100  this->bvElement = NULL;
101
102  if (this->tmpVert1 != NULL)
103    delete this->tmpVert1;
104  if (this->tmpVert2 != NULL)
105    delete this->tmpVert2;
106}
107
108
109/**
110 *  creates a new BVTree or BVTree partition
111 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
112 * @param modInfo: model informations from the abstrac model
113 *
114 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
115 * on the triangle informations (triangle soup not polygon soup)
116 */
117void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, unsigned int length)
118{
119  sVec3D* verticesList;
120
121  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
122  printf("OBBTreeNode::spawnBVTree()\n");
123  this->depth = depth;
124
125  this->bvElement = new OBB();
126  this->bvElement->modelInf = &modelInf;
127  this->bvElement->triangleIndexes = triangleIndexes;
128  this->bvElement->numTriangles = length;
129
130  /* create the boxes in three steps */
131  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
132  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
133  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
134
135  /* do we need to descent further in the obb tree?*/
136  if( likely( this->depth > 0))
137  {
138    //this->forkBox(*this->bvElement);
139
140
141//     if(this->tmpLen1 > 2)
142//     {
143//       OBBTreeNode* node1 = new OBBTreeNode();
144//       this->nodeLeft = node1;
145//       this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
146//     }
147//     else
148//     {
149//       PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
150//     }
151//
152//     if( this->tmpLen2 > 2)
153//     {
154//       OBBTreeNode* node2 = new OBBTreeNode();
155//       this->nodeRight = node2;
156//       this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
157//     }
158//     else
159//     {
160//       PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
161//     }
162
163  }
164}
165
166
167/**
168 *  creates a new BVTree or BVTree partition
169 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
170 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
171 *
172 * this function creates an Bounding Volume tree from a vertices soup (no triangle data)
173 */
174void OBBTreeNode::spawnBVTree(const sVec3D *verticesList, unsigned int length)
175{
176//   PRINTF(3)("\n");
177//   PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
178//   this->depth = depth;
179//
180//
181//   this->bvElement = new OBB();
182//   this->bvElement->vertices = verticesList;
183//   this->bvElement->numOfVertices = length;
184//   PRINTF(3)("Created OBBox\n");
185//   this->calculateBoxCovariance(this->bvElement, verticesList, length);
186//   PRINTF(3)("Calculated attributes1\n");
187//   this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
188//   PRINTF(3)("Calculated attributes2\n");
189//   this->calculateBoxAxis(this->bvElement, verticesList, length);
190//   PRINTF(3)("Calculated attributes3\n");
191//
192//
193//
194//   if( likely( this->depth > 0))
195//   {
196//     this->forkBox(this->bvElement);
197//
198//
199//     if(this->tmpLen1 > 2)
200//     {
201//       OBBTreeNode* node1 = new OBBTreeNode(this->obbTree);
202//       this->nodeLeft = node1;
203//       this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
204//     }
205//     else
206//     {
207//       PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
208//     }
209//
210//     if( this->tmpLen2 > 2)
211//     {
212//       OBBTreeNode* node2 = new OBBTreeNode(this->obbTree);
213//       this->nodeRight = node2;
214//       this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
215//     }
216//     else
217//     {
218//       PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
219//     }
220//   }
221}
222
223
224void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf,
225                                         const int* triangleIndexes, unsigned int length)
226{
227  const sVec3D* verticesList;
228
229  PRINTF(3)("Created OBBox\n");
230
231  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
232  float     face = 0.0f;                             //!< surface area of the entire convex hull
233  Vector    centroid[length];                        //!< centroid of the i'th convex hull
234  Vector    center;                                  //!< the center of the entire hull
235  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
236  Vector    t1, t2;                                  //!< temporary values
237  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
238  sVec3D*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
239
240
241
242  /* fist compute all the convex hull face/facelets and centroids */
243  for( int i = 0; i < length ; ++i)
244  {
245    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
246    p = *tmpVec;
247    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
248    q = *tmpVec;
249    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
250    r = *tmpVec;
251
252    /* finding the facelet surface via cross-product */
253    t1 = p - q; t2 = p - r;
254    facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
255    /* update the entire convex hull surface */
256    face += facelet[i];
257
258    /* calculate the cetroid of the hull triangles */
259    centroid[i] = (p + q + r) * 1/3;
260    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
261    center += centroid[i] * facelet[i];
262  }
263  /* take the average of the centroid sum */
264  center /= face;
265  PRINTF(3)("-- Calculated Center\n");
266
267
268  /* now calculate the covariance matrix - if not written in three for-loops,
269     it would compute faster: minor */
270  for( int j = 0; j < 3; ++j)
271  {
272    for( int k = 0; k < 3; ++k)
273    {
274      for( int i = 0; i + 3 < length; i+=3)
275      {
276        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
277        p = *tmpVec;
278        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
279        q = *tmpVec;
280        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
281        r = *tmpVec;
282
283        covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
284            q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
285      }
286    }
287  }
288  PRINTF(3)("-- Calculated Covariance\n");
289
290
291  PRINTF(3)("\nVertex Data:\n");
292  for(int i = 0; i < length; i++)
293    PRINTF(3)(" Vertex[%i]: %f, %f, %f\n", i, box.vertices[i][0], box.vertices[i][1], box.vertices[i][2]);
294  PRINTF(3)("\nOBB Covariance Matrix:\n");
295  for(int j = 0; j < 3; ++j) { PRINTF(3)(" |"); for(int k = 0; k < 3; ++k) { PRINTF(3)(" \b%f ", covariance[j][k]); } PRINTF(3)(" |\n"); }
296  PRINTF(3)("OBB Center: %f, %f, %f\n", center.x, center.y, center.z);
297
298
299  for(int i = 0; i < 3; ++i)
300  {
301    box.covarianceMatrix[i][0] = covariance[i][0];
302    box.covarianceMatrix[i][1] = covariance[i][1];
303    box.covarianceMatrix[i][2] = covariance[i][2];
304  }
305  box.center = center;
306
307  PRINTF(3)("-- Written Result to OBB\n");
308}
309
310
311void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modInfo,
312                                           const int* triangleIndexes, unsigned int length)
313{}
314
315void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const sVec3D* verticesList, unsigned int length)
316{
317  PRINTF(3)("Calculated attributes1\n");
318  /* now getting spanning vectors of the sub-space:
319  the eigenvectors of a symmertric matrix, such as the
320  covarience matrix are mutually orthogonal.
321  after normalizing them, they can be used as a the basis
322  vectors
323  */
324  Vector axis[3];                //!< the references to the obb axis
325
326  Matrix covMat(  box.covarianceMatrix  );
327  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
328
329
330  /* new jacobi tests */
331//  JacobI(OBBTreeNode::coMat, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
332//  PRINTF(3)("-- Done Jacobi Decomposition\n");
333
334
335//   PRINTF(0)("Jacobi\n");
336//   for(int j = 0; j < 3; ++j)
337//   {
338//     printf(" |");
339//     for(int k = 0; k < 3; ++k)
340//     {
341//       printf(" \t%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
342//     }
343//     printf(" |\n");
344//   }
345
346/*  axis[0].x = OBBTreeNode::eigvMat[0][0]; axis[0].y = OBBTreeNode::eigvMat[1][0]; axis[0].z = OBBTreeNode::eigvMat[2][0];
347  axis[1].x = OBBTreeNode::eigvMat[0][1]; axis[1].y = OBBTreeNode::eigvMat[1][1]; axis[1].z = OBBTreeNode::eigvMat[2][1];
348  axis[2].x = OBBTreeNode::eigvMat[0][2]; axis[2].y = OBBTreeNode::eigvMat[1][2]; axis[2].z = OBBTreeNode::eigvMat[2][2];
349  axis[0].normalize();
350  axis[1].normalize();
351  axis[2].normalize();*/
352  box.axis[0] = axis[0];
353  box.axis[1] = axis[1];
354  box.axis[2] = axis[2];
355
356//   PRINTF(0)("-- Got Axis\n");
357//
358//   PRINTF(0)("eigenvector: %f, %f, %f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
359//   PRINTF(0)("eigenvector: %f, %f, %f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
360//   PRINTF(0)("eigenvector: %f, %f, %f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
361}
362
363
364void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modInfo, const int* triangleIndexes, unsigned int length)
365{
366  //this->calculateBoxAxis(box, (const sVec3D*)modInfo.pVertices, modInfo.numVertices);
367}
368
369
370
371void OBBTreeNode::calculateBoxAxis(OBB& box, const sVec3D* verticesList, unsigned int length)
372{
373  PRINTF(3)("Calculated attributes3\n");
374  /* now get the axis length */
375  Line                ax[3];                                 //!< the axis
376  float               halfLength[3];                         //!< half length of the axis
377  float               tmpLength;                             //!< tmp save point for the length
378  Plane               p0(box.axis[0], box.center);        //!< the axis planes
379  Plane               p1(box.axis[1], box.center);
380  Plane               p2(box.axis[2], box.center);
381  float               maxLength[3];
382  float               minLength[3];
383
384
385  /* get a bad bounding box */
386  halfLength[0] = -1.0f;
387  for(int j = 0; j < length; ++j)
388    {
389      tmpLength = fabs(p0.distancePoint(vertices[j]));
390      if( tmpLength > halfLength[0])
391        halfLength[0] = tmpLength;
392    }
393
394  halfLength[1] = -1.0f;
395  for(int j = 0; j < length; ++j)
396    {
397      tmpLength = fabs(p1.distancePoint(vertices[j]));
398      if( tmpLength > halfLength[1])
399        halfLength[1] = tmpLength;
400    }
401
402  halfLength[2] = -1.0f;
403  for(int j = 0; j < length; ++j)
404    {
405      tmpLength = fabs(p2.distancePoint(vertices[j]));
406      if( tmpLength > halfLength[2])
407        halfLength[2] = tmpLength;
408    }
409
410
411
412  /* get the maximal dimensions of the body in all directions */
413    maxLength[0] = p0.distancePoint(vertices[0]);
414    minLength[0] = p0.distancePoint(vertices[0]);
415   for(int j = 0; j < length; ++j)
416   {
417     tmpLength = p0.distancePoint(vertices[j]);
418     if( tmpLength > maxLength[0])
419       maxLength[0] = tmpLength;
420     else if( tmpLength < minLength[0])
421       minLength[0] = tmpLength;
422   }
423
424   maxLength[1] = p1.distancePoint(vertices[0]);
425   minLength[1] = p1.distancePoint(vertices[0]);
426   for(int j = 0; j < length; ++j)
427   {
428     tmpLength = p1.distancePoint(vertices[j]);
429     if( tmpLength > maxLength[1])
430       maxLength[1] = tmpLength;
431     else if( tmpLength < minLength[1])
432       minLength[1] = tmpLength;
433   }
434
435   maxLength[2] = p2.distancePoint(vertices[0]);
436   minLength[2] = p2.distancePoint(vertices[0]);
437   for(int j = 0; j < length; ++j)
438   {
439     tmpLength = p2.distancePoint(vertices[j]);
440     if( tmpLength > maxLength[2])
441       maxLength[2] = tmpLength;
442     else if( tmpLength < minLength[2])
443       minLength[2] = tmpLength;
444   }
445
446
447   /* calculate the real centre of the body by using the axis length */
448   float centerOffset[3];
449   float newHalfLength[3];
450   for(int i = 0; i < 3; ++i)
451     {
452       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
453       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
454       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
455       box.center +=  (box.axis[i] * centerOffset[i]);            // update the new center vector
456       halfLength[i] = newHalfLength[i];
457     }
458
459
460
461  box.halfLength[0] = halfLength[0];
462  box.halfLength[1] = halfLength[1];
463  box.halfLength[2] = halfLength[2];
464  PRINTF(3)("-- Written Axis to obb\n");
465  PRINTF(3)("-- Finished Calculating Attributes\n");
466}
467
468
469
470/**
471  \brief this separates an ob-box in the middle
472* @param box: the box to separate
473
474  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
475 */
476void OBBTreeNode::forkBox(OBB& box)
477{
478  /* get the longest axis of the box */
479  float               aLength = -1.0f;                     //!< the length of the longest axis
480  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
481
482  for(int i = 0; i < 3; ++i)
483  {
484    if( aLength < box.halfLength[i])
485    {
486      aLength = box.halfLength[i];
487      axisIndex = i;
488    }
489  }
490
491   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
492
493
494  /* get the closest vertex near the center */
495  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
496  float               tmpDist;                             //!< temporary distance
497  int                 vertexIndex;
498  Plane               middlePlane(box.axis[axisIndex], box.center); //!< the middle plane
499
500  vertexIndex = 0;
501  for(int i = 0; i < box.numOfVertices; ++i)
502  {
503    tmpDist = fabs(middlePlane.distancePoint(box.vertices[i]));
504    if( tmpDist < dist)
505    {
506      dist = tmpDist;
507      vertexIndex = i;
508    }
509  }
510
511  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
512
513
514  /* now definin the separation plane through this specified nearest point and partition
515  the points depending on which side they are located
516  */
517  tList<const sVec3D>      partition1;                           //!< the vertex partition 1
518  tList<const sVec3D>      partition2;                           //!< the vertex partition 2
519
520
521  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box.numOfVertices);
522  this->separationPlane = Plane(box.axis[axisIndex], box.vertices[vertexIndex]);  //!< separation plane
523  this->sepPlaneCenter = &box.vertices[vertexIndex];
524  this->longestAxisIndex = axisIndex;
525
526  for(int i = 0; i < box.numOfVertices; ++i)
527  {
528    if( i == vertexIndex) continue;
529    tmpDist = this->separationPlane.distancePoint(box.vertices[i]);
530    if( tmpDist > 0.0)
531      partition1.add(&box.vertices[i]); /* positive numbers plus zero */
532    else
533      partition2.add(&box.vertices[i]); /* negatice numbers */
534  }
535  partition1.add(&box.vertices[vertexIndex]);
536  partition2.add(&box.vertices[vertexIndex]);
537
538  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
539
540
541  /* now comes the separation into two different sVec3D arrays */
542  tIterator<const sVec3D>* iterator;                       //!< the iterator to go through the lists
543  const sVec3D*      element;                              //!< the elements
544  int                index;                                //!< index storage place
545  sVec3D*            vertList1;                            //!< the vertex list 1
546  sVec3D*            vertList2;                            //!< the vertex list 2
547
548  vertList1 = new sVec3D[partition1.getSize()];
549  vertList2 = new sVec3D[partition2.getSize()];
550
551  iterator = partition1.getIterator();
552  element = iterator->firstElement();
553  index = 0;
554  while( element != NULL)
555  {
556    vertList1[index][0] = element[0][0];
557    vertList1[index][1] = element[0][1];
558    vertList1[index][2] = element[0][2];
559    ++index;
560    element = iterator->nextElement();
561  }
562  delete iterator;
563//   PRINTF(0)("\npartition 1:\n");
564//   for(int i = 0; i < partition1.getSize(); ++i)
565//   {
566//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
567//   }
568
569  iterator = partition2.getIterator();
570  element = iterator->firstElement();
571  index = 0;
572  while( element != NULL)
573  {
574    vertList2[index][0] = element[0][0];
575    vertList2[index][1] = element[0][1];
576    vertList2[index][2] = element[0][2];
577    ++index;
578    element = iterator->nextElement();
579  }
580
581  if (this->tmpVert1 != NULL)
582    delete[] this->tmpVert1;
583  this->tmpVert1 = vertList1;
584  if (this->tmpVert2 != NULL)
585    delete[] this->tmpVert2;
586  this->tmpVert2 = vertList2;
587  this->tmpLen1 = partition1.getSize();
588  this->tmpLen2 = partition2.getSize();
589
590  delete iterator;
591
592//   PRINTF(0)("\npartition 2:\n");
593//   for(int i = 0; i < partition2.getSize(); ++i)
594//   {
595//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
596//   }
597}
598
599
600
601
602void OBBTreeNode::collideWith(const BVTreeNode& treeNode, const WorldEntity& nodeA, const WorldEntity& nodeB) const
603{
604  PRINTF(3)("collideWith\n");
605  /* if the obb overlap, make subtests: check which node is realy overlaping  */
606  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode.getIndex());
607//   if( unlikely(treeNode == NULL)) return;
608
609
610  if( this->overlapTest(*this->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
611  {
612    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA.getClassName(), nodeB.getClassName(), this->nodeLeft, this->nodeRight);
613
614    /* check if left node overlaps */
615    if( likely( this->nodeLeft != NULL))
616    {
617      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode.getIndex());
618      if( this->overlapTest(*this->nodeLeft->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
619      {
620        this->nodeLeft->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeLeft), nodeA, nodeB);
621        this->nodeLeft->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeRight), nodeA, nodeB);
622      }
623    }
624    /* check if right node overlaps */
625    if( likely( this->nodeRight != NULL))
626    {
627      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode.getIndex());
628      if(this->overlapTest(*this->nodeRight->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
629      {
630        this->nodeRight->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeLeft), nodeA, nodeB);
631        this->nodeRight->collideWith(*(((const OBBTreeNode*)&treeNode)->nodeRight), nodeA, nodeB);
632      }
633    }
634
635    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
636    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
637    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
638    {
639      nodeA.collidesWith(nodeB, (((const OBBTreeNode*)&treeNode)->bvElement->center));
640
641      nodeB.collidesWith(nodeA, this->bvElement->center);
642    }
643
644  }
645}
646
647
648
649bool OBBTreeNode::overlapTest(const OBB& boxA, const OBB& boxB, const WorldEntity& nodeA, const WorldEntity& nodeB) const
650{
651//   if( boxB == NULL || boxA == NULL)
652//     return false;
653
654  /* first check all axis */
655  Vector t;
656  float rA = 0.0f;
657  float rB = 0.0f;
658  Vector l;
659  Vector rotAxisA[3];
660  Vector rotAxisB[3];
661
662  rotAxisA[0] =  nodeA.getAbsDir().apply(boxA.axis[0]);
663  rotAxisA[1] =  nodeA.getAbsDir().apply(boxA.axis[1]);
664  rotAxisA[2] =  nodeA.getAbsDir().apply(boxA.axis[2]);
665
666  rotAxisB[0] =  nodeB.getAbsDir().apply(boxB.axis[0]);
667  rotAxisB[1] =  nodeB.getAbsDir().apply(boxB.axis[1]);
668  rotAxisB[2] =  nodeB.getAbsDir().apply(boxB.axis[2]);
669
670
671  t = nodeA.getAbsCoor() + nodeA.getAbsDir().apply(boxA.center) - ( nodeB.getAbsCoor() + nodeB.getAbsDir().apply(boxB.center));
672
673//   printf("\n");
674//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
675//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
676//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
677//
678//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
679//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
680//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
681
682
683  /* All 3 axis of the object A */
684  for( int j = 0; j < 3; ++j)
685  {
686    rA = 0.0f;
687    rB = 0.0f;
688    l = rotAxisA[j];
689
690    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
691    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
692    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
693
694    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
695    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
696    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
697
698    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
699
700    if( (rA + rB) < fabs(t.dot(l)))
701    {
702      PRINTF(3)("no Collision\n");
703      return false;
704    }
705  }
706
707  /* All 3 axis of the object B */
708  for( int j = 0; j < 3; ++j)
709  {
710    rA = 0.0f;
711    rB = 0.0f;
712    l = rotAxisB[j];
713
714    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
715    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
716    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
717
718    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
719    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
720    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
721
722    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
723
724    if( (rA + rB) < fabs(t.dot(l)))
725    {
726      PRINTF(3)("no Collision\n");
727      return false;
728    }
729  }
730
731
732  /* Now check for all face cross products */
733
734  for( int j = 0; j < 3; ++j)
735  {
736    for(int k = 0; k < 3; ++k )
737    {
738      rA = 0.0f;
739      rB = 0.0f;
740      l = rotAxisA[j].cross(rotAxisB[k]);
741
742      rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
743      rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
744      rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
745
746      rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
747      rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
748      rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
749
750      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
751
752      if( (rA + rB) < fabs(t.dot(l)))
753      {
754        PRINTF(3)("keine Kollision\n");
755        return false;
756      }
757    }
758  }
759
760  /* FIXME: there is no collision mark set now */
761//   boxA.bCollided = true; /* use this ONLY(!!!!) for drawing operations */
762//   boxB.bCollided = true;
763
764
765  PRINTF(3)("Kollision!\n");
766  return true;
767}
768
769
770
771
772
773void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
774{
775
776  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
777  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
778  {
779    if( !(drawMode & DRAW_SINGLE && depth != 0))
780    {
781      if( drawMode & DRAW_POINTS)
782        glBegin(GL_POINTS);
783      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
784      {
785        if( drawMode & DRAW_POINTS)
786          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
787        else
788        {
789          glPushMatrix();
790          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
791          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
792          glPopMatrix();
793        }
794      }
795      if( drawMode & DRAW_POINTS)
796        glEnd();
797    }
798  }
799
800  if (top)
801  {
802    glPushAttrib(GL_ENABLE_BIT);
803    glDisable(GL_LIGHTING);
804    glDisable(GL_TEXTURE_2D);
805  }
806  glColor3f(color.x, color.y, color.z);
807
808
809  /* draw world axes */
810  if( drawMode & DRAW_BV_AXIS)
811  {
812    glBegin(GL_LINES);
813    glColor3f(1.0, 0.0, 0.0);
814    glVertex3f(0.0, 0.0, 0.0);
815    glVertex3f(3.0, 0.0, 0.0);
816
817    glColor3f(0.0, 1.0, 0.0);
818    glVertex3f(0.0, 0.0, 0.0);
819    glVertex3f(0.0, 3.0, 0.0);
820
821    glColor3f(0.0, 0.0, 1.0);
822    glVertex3f(0.0, 0.0, 0.0);
823    glVertex3f(0.0, 0.0, 3.0);
824    glEnd();
825  }
826
827
828  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
829  {
830    if( !(drawMode & DRAW_SINGLE && depth != 0))
831    {
832      /* draw the obb axes */
833      glBegin(GL_LINES);
834      glColor3f(0.0, 0.4, 0.3);
835      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
836      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
837                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
838                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
839
840      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
841      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
842                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
843                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
844
845      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
846      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
847                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
848                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
849      glEnd();
850    }
851  }
852
853
854  /* DRAW POLYGONS */
855  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
856  {
857    if (top)
858    {
859      glEnable(GL_BLEND);
860      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
861    }
862
863    if(this->nodeLeft == NULL || this->nodeRight == NULL)
864      depth = 0;
865    if( !(drawMode & DRAW_SINGLE && depth != 0))
866    {
867    Vector cen = this->bvElement->center;
868    Vector* axis = this->bvElement->axis;
869    float* len = this->bvElement->halfLength;
870
871    if( this->bvElement->bCollided)
872    {
873      glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
874    }
875    else if( drawMode & DRAW_BV_BLENDED)
876    {
877      glColor4f(color.x, color.y, color.z, .5);
878    }
879
880    /* draw bounding box */
881    if( drawMode & DRAW_BV_BLENDED)
882      glBegin(GL_QUADS);
883    else
884      glBegin(GL_LINE_LOOP);
885    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
886               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
887               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
888    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
889               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
890               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
891    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
892               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
893               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
894    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
895               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
896               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
897    glEnd();
898
899    if( drawMode & DRAW_BV_BLENDED)
900      glBegin(GL_QUADS);
901    else
902      glBegin(GL_LINE_LOOP);
903    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
904               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
905               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
906    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
907               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
908               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
909    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
910               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
911               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
912    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
913               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
914               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
915    glEnd();
916
917    if( drawMode & DRAW_BV_BLENDED)
918      glBegin(GL_QUADS);
919    else
920      glBegin(GL_LINE_LOOP);
921    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
922               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
923               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
924    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
925               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
926               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
927    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
928               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
929               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
930    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
931               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
932               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
933    glEnd();
934
935    if( drawMode & DRAW_BV_BLENDED)
936      glBegin(GL_QUADS);
937    else
938      glBegin(GL_LINE_LOOP);
939    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
940               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
941               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
942    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
943               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
944               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
945    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
946               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
947               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
948    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
949               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
950               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
951    glEnd();
952
953
954    if( drawMode & DRAW_BV_BLENDED)
955    {
956      glBegin(GL_QUADS);
957      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
958                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
959                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
960      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
961                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
962                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
963      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
964                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
965                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
966      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
967                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
968                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
969      glEnd();
970
971      glBegin(GL_QUADS);
972      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
973                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
974                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
975      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
976                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
977                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
978      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
979                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
980                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
981      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
982                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
983                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
984      glEnd();
985    }
986
987
988    if( drawMode & DRAW_BV_BLENDED)
989      glColor3f(color.x, color.y, color.z);
990    }
991
992  }
993
994  /* DRAW SEPARATING PLANE */
995  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
996  {
997    if( !(drawMode & DRAW_SINGLE && depth != 0))
998    {
999      if( drawMode & DRAW_BV_BLENDED)
1000        glColor4f(color.x, color.y, color.z, .6);
1001
1002    /* now draw the separation plane */
1003    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1004    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
1005    Vector c = this->bvElement->center;
1006    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1007    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1008    glBegin(GL_QUADS);
1009    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1010    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1011    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1012    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1013    glEnd();
1014
1015    if( drawMode & DRAW_BV_BLENDED)
1016      glColor4f(color.x, color.y, color.z, 1.0);
1017
1018    }
1019  }
1020
1021
1022
1023  if (depth > 0)
1024  {
1025    if( this->nodeLeft != NULL)
1026      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
1027    if( this->nodeRight != NULL)
1028      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
1029  }
1030  this->bvElement->bCollided = false;
1031
1032  if (top)
1033    glPopAttrib();
1034}
1035
1036
1037
1038void OBBTreeNode::debug() const
1039{
1040
1041  /*
1042  for(int i = 0; i < length; i++)
1043  {
1044  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
1045}
1046  */
1047}
Note: See TracBrowser for help on using the repository browser.