Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/collision_detection/src/lib/collision_detection/obb_tree_node.cc @ 5713

Last change on this file since 5713 was 5713, checked in by patrick, 18 years ago

collision_bibischen: more interface changes, more covariance building

File size: 36.5 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13   co-programmer: ...
14*/
15
16#define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION_DETECTION
17
18#include "obb_tree_node.h"
19#include "list.h"
20#include "obb.h"
21#include "obb_tree.h"
22#include "matrix.h"
23#include "abstract_model.h"
24#include "world_entity.h"
25
26#include "color.h"
27
28#include "debug.h"
29#include "glincl.h"
30
31
32
33using namespace std;
34
35float**  OBBTreeNode::coMat = NULL;
36float**  OBBTreeNode::eigvMat = NULL;
37float*   OBBTreeNode::eigvlMat = NULL;
38int*     OBBTreeNode::rotCount = NULL;
39GLUquadricObj* OBBTreeNode_sphereObj = NULL;
40
41/**
42 *  standard constructor
43 */
44OBBTreeNode::OBBTreeNode (const OBBTree& tree, unsigned int depth)
45  : BVTreeNode()
46{
47  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
48
49  this->obbTree = &tree;
50  this->depth = depth;
51
52  this->nodeLeft = NULL;
53  this->nodeRight = NULL;
54  this->bvElement = NULL;
55
56  this->tmpVert1 = NULL;
57  this->tmpVert2 = NULL;
58
59  if( OBBTreeNode::coMat == NULL)
60  {
61    OBBTreeNode::coMat = new float*[4];
62    for(int i = 0; i < 4; i++)
63      OBBTreeNode::coMat[i] = new float[4];
64  }
65  if( OBBTreeNode::eigvMat == NULL)
66  {
67    OBBTreeNode::eigvMat = new float*[4];
68    for( int i = 0; i < 4; i++)
69      OBBTreeNode::eigvMat[i] = new float[4];
70  }
71  if( OBBTreeNode::eigvlMat == NULL)
72  {
73    OBBTreeNode::eigvlMat = new float[4];
74  }
75  if( OBBTreeNode::rotCount == NULL)
76    OBBTreeNode::rotCount = new int;
77
78  if( OBBTreeNode_sphereObj == NULL)
79    OBBTreeNode_sphereObj = gluNewQuadric();
80}
81
82/**
83 *  standard deconstructor
84 */
85OBBTreeNode::~OBBTreeNode ()
86{
87  if( this->nodeLeft)
88  {
89    delete this->nodeLeft;
90    this->nodeLeft = NULL;
91  }
92  if( this->nodeRight)
93  {
94    delete this->nodeRight;
95    this->nodeRight = NULL;
96  }
97  if( this->bvElement)
98    delete this->bvElement;
99  this->bvElement = NULL;
100
101  if (this->tmpVert1 != NULL)
102    delete this->tmpVert1;
103  if (this->tmpVert2 != NULL)
104    delete this->tmpVert2;
105}
106
107
108/**
109 *  creates a new BVTree or BVTree partition
110 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
111 * @param modInfo: model informations from the abstrac model
112 *
113 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
114 * on the triangle informations (triangle soup not polygon soup)
115 */
116void OBBTreeNode::spawnBVTree(const int depth, const modelInfo& modelInf,
117                              const int* triangleIndexes, unsigned int length)
118{
119  sVec3D* verticesList;
120
121  PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
122  printf("OBBTreeNode::spawnBVTree()\n");
123  this->depth = depth;
124
125  this->bvElement = new OBB();
126  this->bvElement->modelInf = &modelInf;
127  this->bvElement->triangleIndexes = triangleIndexes;
128  this->bvElement->numTriangles = length;
129
130  /* create the boxes in three steps */
131  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
132  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
133  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
134
135  /* do we need to descent further in the obb tree?*/
136  if( likely( this->depth > 0))
137  {
138    //this->forkBox(*this->bvElement);
139
140
141//     if(this->tmpLen1 > 2)
142//     {
143//       OBBTreeNode* node1 = new OBBTreeNode();
144//       this->nodeLeft = node1;
145//       this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
146//     }
147//     else
148//     {
149//       PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
150//     }
151//
152//     if( this->tmpLen2 > 2)
153//     {
154//       OBBTreeNode* node2 = new OBBTreeNode();
155//       this->nodeRight = node2;
156//       this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
157//     }
158//     else
159//     {
160//       PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
161//     }
162
163  }
164}
165
166
167/**
168 *  creates a new BVTree or BVTree partition
169 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
170 * @param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle
171 *
172 * this function creates an Bounding Volume tree from a vertices soup (no triangle data)
173 */
174void OBBTreeNode::spawnBVTree(const int depth, const sVec3D *verticesList, unsigned int length)
175{
176//   PRINTF(3)("\n");
177//   PRINTF(3)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length);
178//   this->depth = depth;
179//
180//
181//   this->bvElement = new OBB();
182//   this->bvElement->vertices = verticesList;
183//   this->bvElement->numOfVertices = length;
184//   PRINTF(3)("Created OBBox\n");
185//   this->calculateBoxCovariance(this->bvElement, verticesList, length);
186//   PRINTF(3)("Calculated attributes1\n");
187//   this->calculateBoxEigenvectors(this->bvElement, verticesList, length);
188//   PRINTF(3)("Calculated attributes2\n");
189//   this->calculateBoxAxis(this->bvElement, verticesList, length);
190//   PRINTF(3)("Calculated attributes3\n");
191//
192//
193//
194//   if( likely( this->depth > 0))
195//   {
196//     this->forkBox(this->bvElement);
197//
198//
199//     if(this->tmpLen1 > 2)
200//     {
201//       OBBTreeNode* node1 = new OBBTreeNode(this->obbTree);
202//       this->nodeLeft = node1;
203//       this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1);
204//     }
205//     else
206//     {
207//       PRINTF(3)("Aboarding tree walk: less than 3 vertices left\n");
208//     }
209//
210//     if( this->tmpLen2 > 2)
211//     {
212//       OBBTreeNode* node2 = new OBBTreeNode(this->obbTree);
213//       this->nodeRight = node2;
214//       this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2);
215//     }
216//     else
217//     {
218//       PRINTF(3)("Abording tree walk: less than 3 vertices left\n");
219//     }
220//   }
221}
222
223
224void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf,
225                                         const int* triangleIndexes, unsigned int length)
226{
227  const sVec3D* verticesList;
228
229  PRINTF(3)("Created OBBox\n");
230
231  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
232  float     face = 0.0f;                             //!< surface area of the entire convex hull
233  Vector    centroid[length];                        //!< centroid of the i'th convex hull
234  Vector    center;                                  //!< the center of the entire hull
235  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
236  Vector    t1, t2;                                  //!< temporary values
237  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
238  sVec3D*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
239
240
241
242  /* fist compute all the convex hull face/facelets and centroids */
243  for( int i = 0; i < length ; ++i)
244  {
245    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
246    p = *tmpVec;
247    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
248    q = *tmpVec;
249    tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
250    r = *tmpVec;
251
252    /* finding the facelet surface via cross-product */
253    t1 = p - q; t2 = p - r;
254    facelet[i] = 0.5f * fabs( t1.cross(t2).len() );
255    /* update the entire convex hull surface */
256    face += facelet[i];
257
258    /* calculate the cetroid of the hull triangles */
259    centroid[i] = (p + q + r) * 1/3;
260    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
261    center += centroid[i] * facelet[i];
262  }
263  /* take the average of the centroid sum */
264  center /= face;
265  PRINTF(3)("-- Calculated Center\n");
266
267
268  /* now calculate the covariance matrix - if not written in three for-loops,
269     it would compute faster: minor */
270  for( int j = 0; j < 3; ++j)
271  {
272    for( int k = 0; k < 3; ++k)
273    {
274      for( int i = 0; i + 3 < length; i+=3)
275      {
276        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
277        p = *tmpVec;
278        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
279        q = *tmpVec;
280        tmpVec = (sVec3D*)(&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
281        r = *tmpVec;
282
283
284        covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
285            q[j] * q[k] + r[j] * r[k]) - center[j] * center[k];
286      }
287    }
288  }
289  PRINTF(3)("-- Calculated Covariance\n");
290
291
292  PRINTF(3)("\nVertex Data:\n");
293  for(int i = 0; i < length; i++)
294    PRINTF(3)(" Vertex[%i]: %f, %f, %f\n", i, box.vertices[i][0], box.vertices[i][1], box.vertices[i][2]);
295  PRINTF(3)("\nOBB Covariance Matrix:\n");
296  for(int j = 0; j < 3; ++j) { PRINTF(3)(" |"); for(int k = 0; k < 3; ++k) { PRINTF(3)(" \b%f ", covariance[j][k]); } PRINTF(3)(" |\n"); }
297  PRINTF(3)("OBB Center: %f, %f, %f\n", center.x, center.y, center.z);
298
299
300  for(int i = 0; i < 3; ++i)
301  {
302    box.covarianceMatrix[i][0] = covariance[i][0];
303    box.covarianceMatrix[i][1] = covariance[i][1];
304    box.covarianceMatrix[i][2] = covariance[i][2];
305  }
306  box.center = center;
307
308  PRINTF(3)("-- Written Result to OBB\n");
309}
310
311
312void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modInfo,
313                                           const int* triangleIndexes, unsigned int length)
314{}
315
316void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const sVec3D* verticesList, unsigned int length)
317{
318  PRINTF(3)("Calculated attributes1\n");
319  /* now getting spanning vectors of the sub-space:
320  the eigenvectors of a symmertric matrix, such as the
321  covarience matrix are mutually orthogonal.
322  after normalizing them, they can be used as a the basis
323  vectors
324  */
325  Vector axis[3];                //!< the references to the obb axis
326
327  Matrix covMat(  box.covarianceMatrix  );
328  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
329
330
331  /* new jacobi tests */
332//  JacobI(OBBTreeNode::coMat, OBBTreeNode::eigvlMat, OBBTreeNode::eigvMat, OBBTreeNode::rotCount);
333//  PRINTF(3)("-- Done Jacobi Decomposition\n");
334
335
336//   PRINTF(0)("Jacobi\n");
337//   for(int j = 0; j < 3; ++j)
338//   {
339//     printf(" |");
340//     for(int k = 0; k < 3; ++k)
341//     {
342//       printf(" \t%f ", OBBTreeNode::OBBTreeNode::eigvMat[j][k]);
343//     }
344//     printf(" |\n");
345//   }
346
347/*  axis[0].x = OBBTreeNode::eigvMat[0][0]; axis[0].y = OBBTreeNode::eigvMat[1][0]; axis[0].z = OBBTreeNode::eigvMat[2][0];
348  axis[1].x = OBBTreeNode::eigvMat[0][1]; axis[1].y = OBBTreeNode::eigvMat[1][1]; axis[1].z = OBBTreeNode::eigvMat[2][1];
349  axis[2].x = OBBTreeNode::eigvMat[0][2]; axis[2].y = OBBTreeNode::eigvMat[1][2]; axis[2].z = OBBTreeNode::eigvMat[2][2];
350  axis[0].normalize();
351  axis[1].normalize();
352  axis[2].normalize();*/
353  box.axis[0] = axis[0];
354  box.axis[1] = axis[1];
355  box.axis[2] = axis[2];
356
357//   PRINTF(0)("-- Got Axis\n");
358//
359//   PRINTF(0)("eigenvector: %f, %f, %f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
360//   PRINTF(0)("eigenvector: %f, %f, %f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
361//   PRINTF(0)("eigenvector: %f, %f, %f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
362}
363
364
365void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modInfo, const int* triangleIndexes, unsigned int length)
366{
367  //this->calculateBoxAxis(box, (const sVec3D*)modInfo.pVertices, modInfo.numVertices);
368}
369
370
371
372void OBBTreeNode::calculateBoxAxis(OBB& box, const sVec3D* verticesList, unsigned int length)
373{
374  PRINTF(3)("Calculated attributes3\n");
375  /* now get the axis length */
376  Line                ax[3];                                 //!< the axis
377  float               halfLength[3];                         //!< half length of the axis
378  float               tmpLength;                             //!< tmp save point for the length
379  Plane               p0(box.axis[0], box.center);        //!< the axis planes
380  Plane               p1(box.axis[1], box.center);
381  Plane               p2(box.axis[2], box.center);
382  float               maxLength[3];
383  float               minLength[3];
384
385
386  /* get a bad bounding box */
387  halfLength[0] = -1.0f;
388  for(int j = 0; j < length; ++j)
389    {
390      tmpLength = fabs(p0.distancePoint(vertices[j]));
391      if( tmpLength > halfLength[0])
392        halfLength[0] = tmpLength;
393    }
394
395  halfLength[1] = -1.0f;
396  for(int j = 0; j < length; ++j)
397    {
398      tmpLength = fabs(p1.distancePoint(vertices[j]));
399      if( tmpLength > halfLength[1])
400        halfLength[1] = tmpLength;
401    }
402
403  halfLength[2] = -1.0f;
404  for(int j = 0; j < length; ++j)
405    {
406      tmpLength = fabs(p2.distancePoint(vertices[j]));
407      if( tmpLength > halfLength[2])
408        halfLength[2] = tmpLength;
409    }
410
411
412
413  /* get the maximal dimensions of the body in all directions */
414    maxLength[0] = p0.distancePoint(vertices[0]);
415    minLength[0] = p0.distancePoint(vertices[0]);
416   for(int j = 0; j < length; ++j)
417   {
418     tmpLength = p0.distancePoint(vertices[j]);
419     if( tmpLength > maxLength[0])
420       maxLength[0] = tmpLength;
421     else if( tmpLength < minLength[0])
422       minLength[0] = tmpLength;
423   }
424
425   maxLength[1] = p1.distancePoint(vertices[0]);
426   minLength[1] = p1.distancePoint(vertices[0]);
427   for(int j = 0; j < length; ++j)
428   {
429     tmpLength = p1.distancePoint(vertices[j]);
430     if( tmpLength > maxLength[1])
431       maxLength[1] = tmpLength;
432     else if( tmpLength < minLength[1])
433       minLength[1] = tmpLength;
434   }
435
436   maxLength[2] = p2.distancePoint(vertices[0]);
437   minLength[2] = p2.distancePoint(vertices[0]);
438   for(int j = 0; j < length; ++j)
439   {
440     tmpLength = p2.distancePoint(vertices[j]);
441     if( tmpLength > maxLength[2])
442       maxLength[2] = tmpLength;
443     else if( tmpLength < minLength[2])
444       minLength[2] = tmpLength;
445   }
446
447
448   /* calculate the real centre of the body by using the axis length */
449   float centerOffset[3];
450   float newHalfLength[3];
451   for(int i = 0; i < 3; ++i)
452     {
453       PRINTF(3)("max: %f, min: %f \n", maxLength[i], minLength[i]);
454       centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
455       newHalfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;      // min length is negative
456       box.center +=  (box.axis[i] * centerOffset[i]);            // update the new center vector
457       halfLength[i] = newHalfLength[i];
458     }
459
460
461
462  box.halfLength[0] = halfLength[0];
463  box.halfLength[1] = halfLength[1];
464  box.halfLength[2] = halfLength[2];
465  PRINTF(3)("-- Written Axis to obb\n");
466  PRINTF(3)("-- Finished Calculating Attributes\n");
467}
468
469
470
471/**
472  \brief this separates an ob-box in the middle
473* @param box: the box to separate
474
475  this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
476 */
477void OBBTreeNode::forkBox(OBB& box)
478{
479  /* get the longest axis of the box */
480  float               aLength = -1.0f;                     //!< the length of the longest axis
481  int                 axisIndex = 0;                       //!< this is the nr of the longest axis
482
483  for(int i = 0; i < 3; ++i)
484  {
485    if( aLength < box.halfLength[i])
486    {
487      aLength = box.halfLength[i];
488      axisIndex = i;
489    }
490  }
491
492   PRINTF(3)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength);
493
494
495  /* get the closest vertex near the center */
496  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
497  float               tmpDist;                             //!< temporary distance
498  int                 vertexIndex;
499  Plane               middlePlane(box.axis[axisIndex], box.center); //!< the middle plane
500
501  vertexIndex = 0;
502  for(int i = 0; i < box.numOfVertices; ++i)
503  {
504    tmpDist = fabs(middlePlane.distancePoint(box.vertices[i]));
505    if( tmpDist < dist)
506    {
507      dist = tmpDist;
508      vertexIndex = i;
509    }
510  }
511
512  PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist);
513
514
515  /* now definin the separation plane through this specified nearest point and partition
516  the points depending on which side they are located
517  */
518  tList<const sVec3D>      partition1;                           //!< the vertex partition 1
519  tList<const sVec3D>      partition2;                           //!< the vertex partition 2
520
521
522  PRINTF(3)("vertex index: %i, of %i\n", vertexIndex, box.numOfVertices);
523  this->separationPlane = Plane(box.axis[axisIndex], box.vertices[vertexIndex]);  //!< separation plane
524  this->sepPlaneCenter = &box.vertices[vertexIndex];
525  this->longestAxisIndex = axisIndex;
526
527  for(int i = 0; i < box.numOfVertices; ++i)
528  {
529    if( i == vertexIndex) continue;
530    tmpDist = this->separationPlane.distancePoint(box.vertices[i]);
531    if( tmpDist > 0.0)
532      partition1.add(&box.vertices[i]); /* positive numbers plus zero */
533    else
534      partition2.add(&box.vertices[i]); /* negatice numbers */
535  }
536  partition1.add(&box.vertices[vertexIndex]);
537  partition2.add(&box.vertices[vertexIndex]);
538
539  PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize());
540
541
542  /* now comes the separation into two different sVec3D arrays */
543  tIterator<const sVec3D>* iterator;                       //!< the iterator to go through the lists
544  const sVec3D*      element;                              //!< the elements
545  int                index;                                //!< index storage place
546  sVec3D*            vertList1;                            //!< the vertex list 1
547  sVec3D*            vertList2;                            //!< the vertex list 2
548
549  vertList1 = new sVec3D[partition1.getSize()];
550  vertList2 = new sVec3D[partition2.getSize()];
551
552  iterator = partition1.getIterator();
553  element = iterator->firstElement();
554  index = 0;
555  while( element != NULL)
556  {
557    vertList1[index][0] = element[0][0];
558    vertList1[index][1] = element[0][1];
559    vertList1[index][2] = element[0][2];
560    ++index;
561    element = iterator->nextElement();
562  }
563  delete iterator;
564//   PRINTF(0)("\npartition 1:\n");
565//   for(int i = 0; i < partition1.getSize(); ++i)
566//   {
567//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]);
568//   }
569
570  iterator = partition2.getIterator();
571  element = iterator->firstElement();
572  index = 0;
573  while( element != NULL)
574  {
575    vertList2[index][0] = element[0][0];
576    vertList2[index][1] = element[0][1];
577    vertList2[index][2] = element[0][2];
578    ++index;
579    element = iterator->nextElement();
580  }
581
582  if (this->tmpVert1 != NULL)
583    delete[] this->tmpVert1;
584  this->tmpVert1 = vertList1;
585  if (this->tmpVert2 != NULL)
586    delete[] this->tmpVert2;
587  this->tmpVert2 = vertList2;
588  this->tmpLen1 = partition1.getSize();
589  this->tmpLen2 = partition2.getSize();
590
591  delete iterator;
592
593//   PRINTF(0)("\npartition 2:\n");
594//   for(int i = 0; i < partition2.getSize(); ++i)
595//   {
596//     PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i,  vertList2[i][1], i, vertList2[i][2]);
597//   }
598}
599
600
601
602
603void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
604{
605  PRINTF(3)("collideWith\n");
606  /* if the obb overlap, make subtests: check which node is realy overlaping  */
607  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
608  if( unlikely(treeNode == NULL)) return;
609
610  if( this->overlapTest(this->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
611  {
612    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
613
614    /* check if left node overlaps */
615    if( likely( this->nodeLeft != NULL))
616    {
617      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
618      if( this->overlapTest(this->nodeLeft->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
619      {
620        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
621        this->nodeLeft->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
622      }
623    }
624    /* check if right node overlaps */
625    if( likely( this->nodeRight != NULL))
626    {
627      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
628      if(this->overlapTest(this->nodeRight->bvElement, ((OBBTreeNode*)treeNode)->bvElement, nodeA, nodeB))
629      {
630       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeLeft, nodeA, nodeB);
631       this->nodeRight->collideWith(((OBBTreeNode*)treeNode)->nodeRight, nodeA, nodeB);
632      }
633    }
634
635    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
636    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
637    {
638      nodeA->collidesWith(nodeB, ((OBBTreeNode*)treeNode)->bvElement->center);
639
640      nodeB->collidesWith(nodeA, this->bvElement->center);
641    }
642
643  }
644}
645
646
647
648bool OBBTreeNode::overlapTest(OBB* boxA, OBB* boxB, WorldEntity* nodeA, WorldEntity* nodeB)
649{
650  if( boxB == NULL || boxA == NULL)
651    return false;
652
653  /* first check all axis */
654  Vector t;
655  float rA = 0.0f;
656  float rB = 0.0f;
657  Vector l;
658  Vector rotAxisA[3];
659  Vector rotAxisB[3];
660
661  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA->axis[0]);
662  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA->axis[1]);
663  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA->axis[2]);
664
665  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB->axis[0]);
666  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB->axis[1]);
667  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB->axis[2]);
668
669
670  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA->center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB->center));
671
672//   printf("\n");
673//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
674//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
675//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
676//
677//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
678//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
679//   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
680
681
682  /* All 3 axis of the object A */
683  for( int j = 0; j < 3; ++j)
684  {
685    rA = 0.0f;
686    rB = 0.0f;
687    l = rotAxisA[j];
688
689    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
690    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
691    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
692
693    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
694    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
695    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
696
697    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
698
699    if( (rA + rB) < fabs(t.dot(l)))
700    {
701      PRINTF(3)("no Collision\n");
702      return false;
703    }
704  }
705
706  /* All 3 axis of the object B */
707  for( int j = 0; j < 3; ++j)
708  {
709    rA = 0.0f;
710    rB = 0.0f;
711    l = rotAxisB[j];
712
713    rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
714    rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
715    rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
716
717    rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
718    rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
719    rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
720
721    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
722
723    if( (rA + rB) < fabs(t.dot(l)))
724    {
725      PRINTF(3)("no Collision\n");
726      return false;
727    }
728  }
729
730
731  /* Now check for all face cross products */
732
733  for( int j = 0; j < 3; ++j)
734  {
735    for(int k = 0; k < 3; ++k )
736    {
737      rA = 0.0f;
738      rB = 0.0f;
739      l = rotAxisA[j].cross(rotAxisB[k]);
740
741      rA += fabs(boxA->halfLength[0] * rotAxisA[0].dot(l));
742      rA += fabs(boxA->halfLength[1] * rotAxisA[1].dot(l));
743      rA += fabs(boxA->halfLength[2] * rotAxisA[2].dot(l));
744
745      rB += fabs(boxB->halfLength[0] * rotAxisB[0].dot(l));
746      rB += fabs(boxB->halfLength[1] * rotAxisB[1].dot(l));
747      rB += fabs(boxB->halfLength[2] * rotAxisB[2].dot(l));
748
749      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
750
751      if( (rA + rB) < fabs(t.dot(l)))
752      {
753        PRINTF(3)("keine Kollision\n");
754        return false;
755      }
756    }
757  }
758
759
760  boxA->bCollided = true; /* use this ONLY(!!!!) for drawing operations */
761  boxB->bCollided = true;
762  PRINTF(3)("Kollision!\n");
763  return true;
764}
765
766
767
768
769
770void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
771{
772
773  /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */
774  if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL)
775  {
776    if( !(drawMode & DRAW_SINGLE && depth != 0))
777    {
778      if( drawMode & DRAW_POINTS)
779        glBegin(GL_POINTS);
780      for(int i = 0; i < this->bvElement->numOfVertices; ++i)
781      {
782        if( drawMode & DRAW_POINTS)
783          glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
784        else
785        {
786          glPushMatrix();
787          glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]);
788          gluSphere(OBBTreeNode_sphereObj, 0.1, 10, 10);
789          glPopMatrix();
790        }
791      }
792      if( drawMode & DRAW_POINTS)
793        glEnd();
794    }
795  }
796
797  if (top)
798  {
799    glPushAttrib(GL_ENABLE_BIT);
800    glDisable(GL_LIGHTING);
801    glDisable(GL_TEXTURE_2D);
802  }
803  glColor3f(color.x, color.y, color.z);
804
805
806  /* draw world axes */
807  if( drawMode & DRAW_BV_AXIS)
808  {
809    glBegin(GL_LINES);
810    glColor3f(1.0, 0.0, 0.0);
811    glVertex3f(0.0, 0.0, 0.0);
812    glVertex3f(3.0, 0.0, 0.0);
813
814    glColor3f(0.0, 1.0, 0.0);
815    glVertex3f(0.0, 0.0, 0.0);
816    glVertex3f(0.0, 3.0, 0.0);
817
818    glColor3f(0.0, 0.0, 1.0);
819    glVertex3f(0.0, 0.0, 0.0);
820    glVertex3f(0.0, 0.0, 3.0);
821    glEnd();
822  }
823
824
825  if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL)
826  {
827    if( !(drawMode & DRAW_SINGLE && depth != 0))
828    {
829      /* draw the obb axes */
830      glBegin(GL_LINES);
831      glColor3f(0.0, 0.4, 0.3);
832      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
833      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
834                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
835                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
836
837      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
838      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
839                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
840                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
841
842      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
843      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
844                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
845                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
846      glEnd();
847    }
848  }
849
850
851  /* DRAW POLYGONS */
852  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
853  {
854    if (top)
855    {
856      glEnable(GL_BLEND);
857      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
858    }
859
860    if(this->nodeLeft == NULL || this->nodeRight == NULL)
861      depth = 0;
862    if( !(drawMode & DRAW_SINGLE && depth != 0))
863    {
864    Vector cen = this->bvElement->center;
865    Vector* axis = this->bvElement->axis;
866    float* len = this->bvElement->halfLength;
867
868    if( this->bvElement->bCollided)
869    {
870      glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
871    }
872    else if( drawMode & DRAW_BV_BLENDED)
873    {
874      glColor4f(color.x, color.y, color.z, .5);
875    }
876
877    /* draw bounding box */
878    if( drawMode & DRAW_BV_BLENDED)
879      glBegin(GL_QUADS);
880    else
881      glBegin(GL_LINE_LOOP);
882    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
883               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
884               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
885    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
886               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
887               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
888    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
889               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
890               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
891    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
892               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
893               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
894    glEnd();
895
896    if( drawMode & DRAW_BV_BLENDED)
897      glBegin(GL_QUADS);
898    else
899      glBegin(GL_LINE_LOOP);
900    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
901               cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
902               cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
903    glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
904               cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
905               cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
906    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
907               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
908               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
909    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
910               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
911               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
912    glEnd();
913
914    if( drawMode & DRAW_BV_BLENDED)
915      glBegin(GL_QUADS);
916    else
917      glBegin(GL_LINE_LOOP);
918    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
919               cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
920               cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
921    glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
922               cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
923               cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
924    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
925               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
926               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
927    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
928               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
929               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
930    glEnd();
931
932    if( drawMode & DRAW_BV_BLENDED)
933      glBegin(GL_QUADS);
934    else
935      glBegin(GL_LINE_LOOP);
936    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
937               cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
938               cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
939    glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
940               cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
941               cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
942    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
943               cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
944               cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
945    glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
946               cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
947               cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
948    glEnd();
949
950
951    if( drawMode & DRAW_BV_BLENDED)
952    {
953      glBegin(GL_QUADS);
954      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
955                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
956                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
957      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
958                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
959                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
960      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
961                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
962                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
963      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
964                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
965                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
966      glEnd();
967
968      glBegin(GL_QUADS);
969      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
970                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
971                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
972      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
973                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
974                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
975      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
976                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
977                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
978      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
979                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
980                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
981      glEnd();
982    }
983
984
985    if( drawMode & DRAW_BV_BLENDED)
986      glColor3f(color.x, color.y, color.z);
987    }
988
989  }
990
991  /* DRAW SEPARATING PLANE */
992  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
993  {
994    if( !(drawMode & DRAW_SINGLE && depth != 0))
995    {
996      if( drawMode & DRAW_BV_BLENDED)
997        glColor4f(color.x, color.y, color.z, .6);
998
999    /* now draw the separation plane */
1000    Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
1001    Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
1002    Vector c = this->bvElement->center;
1003    float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
1004    float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
1005    glBegin(GL_QUADS);
1006    glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
1007    glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
1008    glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
1009    glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
1010    glEnd();
1011
1012    if( drawMode & DRAW_BV_BLENDED)
1013      glColor4f(color.x, color.y, color.z, 1.0);
1014
1015    }
1016  }
1017
1018
1019
1020  if (depth > 0)
1021  {
1022    if( this->nodeLeft != NULL)
1023      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
1024    if( this->nodeRight != NULL)
1025      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
1026  }
1027  this->bvElement->bCollided = false;
1028
1029  if (top)
1030    glPopAttrib();
1031}
1032
1033
1034
1035void OBBTreeNode::debug() const
1036{
1037
1038  /*
1039  for(int i = 0; i < length; i++)
1040  {
1041  PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]);
1042}
1043  */
1044}
Note: See TracBrowser for help on using the repository browser.