| 1 | /* | 
|---|
| 2 |    orxonox - the future of 3D-vertical-scrollers | 
|---|
| 3 |  | 
|---|
| 4 |    Copyright (C) 2004 orx | 
|---|
| 5 |  | 
|---|
| 6 |    This program is free software; you can redistribute it and/or modify | 
|---|
| 7 |    it under the terms of the GNU General Public License as published by | 
|---|
| 8 |    the Free Software Foundation; either version 2, or (at your option) | 
|---|
| 9 |    any later version. | 
|---|
| 10 |  | 
|---|
| 11 | ### File Specific: | 
|---|
| 12 |    main-programmer: Benjamin Grauer | 
|---|
| 13 |    co-programmer: Patrick Boenzli | 
|---|
| 14 | */ | 
|---|
| 15 | #include "matrix.h" | 
|---|
| 16 |  | 
|---|
| 17 | #include <stdio.h> | 
|---|
| 18 | #include <math.h> | 
|---|
| 19 |  | 
|---|
| 20 |  | 
|---|
| 21 | int Matrix::getEigenValues(Vector& eigenValues) const | 
|---|
| 22 | { | 
|---|
| 23 |   int retVal = -1; | 
|---|
| 24 |   float a = 0; | 
|---|
| 25 |   float b = 0; | 
|---|
| 26 |  | 
|---|
| 27 |   float c[3]; | 
|---|
| 28 |  | 
|---|
| 29 |   // c[0] is the determinante of mat | 
|---|
| 30 |   c[0] = this->m11 * this->m22 * this->m33 + | 
|---|
| 31 |       2* this->m12 * this->m13 * this->m23 - | 
|---|
| 32 |       this->m11 * this->m23 * this->m23 - | 
|---|
| 33 |       this->m22 * this->m13 * this->m13 - | 
|---|
| 34 |       this->m33 * this->m12 * this->m12; | 
|---|
| 35 |  | 
|---|
| 36 |   // c[1] is the trace of a | 
|---|
| 37 |   c[1] = this->m11 * this->m22 - | 
|---|
| 38 |       this->m12 * this->m12 + | 
|---|
| 39 |       this->m11 * this->m33 - | 
|---|
| 40 |       this->m13 * this->m13 + | 
|---|
| 41 |       this->m22 * this->m33 - | 
|---|
| 42 |       this->m23 * this->m23; | 
|---|
| 43 |  | 
|---|
| 44 |   // c[2] is the sum of the diagonal elements | 
|---|
| 45 |   c[2] = this->m11 + | 
|---|
| 46 |       this->m22 + | 
|---|
| 47 |       this->m33; | 
|---|
| 48 |  | 
|---|
| 49 |  | 
|---|
| 50 |   // Computing the roots: | 
|---|
| 51 |   a = (3.0*c[1] - c[2]*c[2]) / 3.0; | 
|---|
| 52 |   b = (-2.0*c[2]*c[2]*c[2] + 9.0*c[1]*c[2] - 27.0*c[0]) / 27.0; | 
|---|
| 53 |  | 
|---|
| 54 |   float Q = b*b/4.0 + a*a*a/27.0; | 
|---|
| 55 |  | 
|---|
| 56 |   // 3 distinct Roots | 
|---|
| 57 |   if (Q < 0) | 
|---|
| 58 |   { | 
|---|
| 59 |     float psi = atan2(sqrt(-Q), -b/2.0); | 
|---|
| 60 |     float p = sqrt((b/2.0)*(b/2.0) - Q); | 
|---|
| 61 |  | 
|---|
| 62 |     eigenValues.x = c[2]/3.0 + 2 * pow(p, 1/3.0) * cos(psi/3.0); | 
|---|
| 63 |     eigenValues.y = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) | 
|---|
| 64 |         + sqrt(3.0) * sin(psi/3.0)); | 
|---|
| 65 |     eigenValues.z = c[2]/3.0 - pow(p, 1/3.0) * (cos(psi/3.0) | 
|---|
| 66 |         - sqrt(3.0) * sin(psi/3.0)); | 
|---|
| 67 |     retVal = 3; | 
|---|
| 68 |   } | 
|---|
| 69 |   // 2 Distinct Roots | 
|---|
| 70 |   else if (Q == 0) | 
|---|
| 71 |   { | 
|---|
| 72 |     eigenValues.x = eigenValues.y = c[2]/3.0 + pow(b/2.0, 1.0/3.0); | 
|---|
| 73 |     eigenValues.z = c[2]/3.0 + 2* pow(b/2.0, 1.0/3.0); | 
|---|
| 74 |     retVal = 2; | 
|---|
| 75 |   } | 
|---|
| 76 |   // 1 Root (not calculating anything.) | 
|---|
| 77 |   else if (Q > 0) | 
|---|
| 78 |   { | 
|---|
| 79 |     eigenValues.x = eigenValues.y = eigenValues.z = 1; | 
|---|
| 80 |     retVal = 1; | 
|---|
| 81 |   } | 
|---|
| 82 |   return retVal; | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|
| 85 |  | 
|---|
| 86 |  | 
|---|
| 87 |  | 
|---|
| 88 | void Matrix::getEigenVectors(Vector& eigVc1, Vector& eigVc2, Vector& eigVc3) const | 
|---|
| 89 | { | 
|---|
| 90 |   Vector eigenValues; | 
|---|
| 91 |   int eigenValuesCount = this->getEigenValues(eigenValues); | 
|---|
| 92 |  | 
|---|
| 93 |   if (eigenValuesCount == 2 || eigenValuesCount == 3) | 
|---|
| 94 |   { | 
|---|
| 95 |     /* eigenvec creation */ | 
|---|
| 96 |     eigVc1.x = -1/this->m13*(this->m33 - eigenValues.x) + | 
|---|
| 97 |         (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.x)) / | 
|---|
| 98 |         this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.x); | 
|---|
| 99 |  | 
|---|
| 100 |     eigVc1.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.x) / | 
|---|
| 101 |         (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.x); | 
|---|
| 102 |  | 
|---|
| 103 |     eigVc1.z = 1.0f; | 
|---|
| 104 |  | 
|---|
| 105 |     eigVc2.x = -1/this->m13*(this->m33 - eigenValues.y) + | 
|---|
| 106 |         (this->m32*(-this->m31*this->m32 + this->m12*this->m33 - this->m12*eigenValues.y)) / | 
|---|
| 107 |         this->m13*(-this->m13*this->m22 - this->m12*this->m23 + this->m13*eigenValues.y); | 
|---|
| 108 |  | 
|---|
| 109 |     eigVc2.y = -( -this->m13*this->m23 + this->m12*this->m33 - this->m12*eigenValues.y) / | 
|---|
| 110 |         (-this->m31*this->m22 + this->m12*this->m23 + this->m13*eigenValues.y); | 
|---|
| 111 |  | 
|---|
| 112 |     eigVc2.z = 1.0f; | 
|---|
| 113 |  | 
|---|
| 114 |     eigVc3 = eigVc1.cross(eigVc2); | 
|---|
| 115 |  | 
|---|
| 116 |     eigVc2 = eigVc3.cross(eigVc1); | 
|---|
| 117 |   } | 
|---|
| 118 |   else if (eigenValuesCount == 1) | 
|---|
| 119 |   { | 
|---|
| 120 |     eigVc1 = Vector(1,0,0); | 
|---|
| 121 |     eigVc2 = Vector(0,1,0); | 
|---|
| 122 |     eigVc3 = Vector(0,0,1); | 
|---|
| 123 |   } | 
|---|
| 124 |   eigVc1.normalize(); | 
|---|
| 125 |   eigVc2.normalize(); | 
|---|
| 126 |   eigVc3.normalize(); | 
|---|
| 127 |  | 
|---|
| 128 |   if (!(eigVc1.cross(eigVc3) == eigVc2)) | 
|---|
| 129 |   { | 
|---|
| 130 |     eigVc3.cross(eigVc1).debug(); | 
|---|
| 131 |     eigVc2.debug(); | 
|---|
| 132 |   } | 
|---|
| 133 |   printf("ok\n"); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | void Matrix::debug() const | 
|---|
| 137 | { | 
|---|
| 138 |   printf("| %f | %f | %f |\n", this->m11, this->m12, this->m13 ); | 
|---|
| 139 |   printf("| %f | %f | %f |\n", this->m21, this->m22, this->m23 ); | 
|---|
| 140 |   printf("| %f | %f | %f |\n", this->m31, this->m32, this->m33 ); | 
|---|
| 141 |  | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|