Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/cd/src/lib/collision_detection/obb_tree_node.cc @ 7705

Last change on this file since 7705 was 7705, checked in by patrick, 19 years ago

cd: removed some old stuff

File size: 36.8 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13*/
14
15#define DEBUG_SPECIAL_MODULE 3/* DEBUG_MODULE_COLLISION_DETECTION*/
16
17#include "obb_tree_node.h"
18#include "obb_tree.h"
19#include "obb.h"
20
21#include "matrix.h"
22#include "model.h"
23#include "world_entity.h"
24#include "plane.h"
25
26#include "color.h"
27#include "glincl.h"
28
29#include <list>
30#include <vector>
31#include "debug.h"
32
33
34
35using namespace std;
36
37
38GLUquadricObj* OBBTreeNode_sphereObj = NULL;
39
40
41/**
42 *  standard constructor
43 * @param tree: reference to the obb tree
44 * @param depth: the depth of the obb tree to generate
45 */
46OBBTreeNode::OBBTreeNode (const OBBTree& tree, OBBTreeNode* prev, int depth)
47    : BVTreeNode()
48{
49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
50
51  this->obbTree = &tree;
52  this->nodePrev = prev;
53  this->depth = depth;
54  this->nextID = 0;
55
56  this->nodeLeft = NULL;
57  this->nodeRight = NULL;
58  this->bvElement = NULL;
59
60  this->triangleIndexList1 = NULL;
61  this->triangleIndexList2 = NULL;
62
63  this->modelInf = NULL;
64  this->triangleIndexes = NULL;
65
66  if( OBBTreeNode_sphereObj == NULL)
67    OBBTreeNode_sphereObj = gluNewQuadric();
68
69  this->owner = NULL;
70
71  /* debug ids */
72  if( this->nodePrev)
73    this->treeIndex = 100 * this->depth + this->nodePrev->getID();
74  else
75    this->treeIndex = 0;
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85    delete this->nodeLeft;
86  if( this->nodeRight)
87    delete this->nodeRight;
88
89  if( this->bvElement)
90    delete this->bvElement;
91
92//   if( this->triangleIndexList1 != NULL)
93//     delete [] this->triangleIndexList1;
94//   if( this->triangleIndexList2 != NULL)
95//     delete [] this->triangleIndexList2;
96}
97
98
99/**
100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param modInfo: model informations from the abstrac model
103 *
104 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
105 * on the triangle informations (triangle soup not polygon soup)
106 */
107void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, int length)
108{
109  PRINTF(3)("\n==============================Creating OBB Tree Node==================\n");
110  PRINT(3)(" OBB Tree Infos: \n");
111  PRINT(3)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, this->treeIndex, length);
112  this->depth = depth;
113
114  this->bvElement = new OBB();
115  this->bvElement->modelInf = &modelInf;
116  this->bvElement->triangleIndexes = triangleIndexes;
117  this->bvElement->triangleIndexesLength = length;
118
119  // full debug output
120
121  //indexes debug
122  for( int i = 0; i < length; ++i)
123  {
124    PRINTF(2)("triangle[%i], index: %i\n", i, triangleIndexes[i]);
125  }
126
127  // vertex coordinates
128  for( int i = 0; i < length; ++i)
129  {
130    PRINTF(2)("triangle[%i]\n", i);
131    for(int j = 0; j < 3; ++j)
132    {
133      PRINTF(2)("  vertex[%i]: %f, %f, %f\n", j,
134      (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[0],
135      (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[1],
136      (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[2]);
137    }
138  }
139
140  PRINT(0)("\n\n\n");
141  for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
142    PRINTF(0)(  "vertex[%i]: %f, %f, %f\n", i, this->bvElement->modelInf->pVertices[i],
143               this->bvElement->modelInf->pVertices[i+1],
144               this->bvElement->modelInf->pVertices[i+2]);
145
146
147  /* create the bounding boxes in three steps */
148  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
149  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
150//   this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
151//   this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
152  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
153
154  /* do we need to descent further in the obb tree?*/
155  if( likely( this->depth > 0))
156  {
157    this->forkBox(*this->bvElement);
158
159    if( this->triangleIndexLength1 >= 3)
160    {
161      this->nodeLeft = new OBBTreeNode(*this->obbTree, this, depth - 1);
162      this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1);
163    }
164    if( this->triangleIndexLength2 >= 3)
165    {
166      this->nodeRight = new OBBTreeNode(*this->obbTree, this, depth - 1);
167      this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2);
168    }
169  }
170}
171
172
173
174/**
175 *  calculate the box covariance matrix
176 * @param box: reference to the box
177 * @param modelInf: the model info structure of the model
178 * @param tirangleIndexes: an array with the indexes of the triangles inside this
179 * @param length: the length of the indexes array
180 */
181void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
182{
183  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
184  float     face = 0.0f;                             //!< surface area of the entire convex hull
185  Vector    centroid[length];                        //!< centroid of the i'th convex hull
186  Vector    center;                                  //!< the center of the entire hull
187  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
188  Vector    t1, t2;                                  //!< temporary values
189  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
190  const float*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
191
192  /* fist compute all the convex hull face/facelets and centroids */
193  for( int i = 0; i < length ; ++i)
194  {
195    p = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]];
196    q = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]];
197    r = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]];
198
199    /* finding the facelet surface via cross-product */
200    t1 = p - q;
201    t2 = p - r;
202    facelet[i] = 0.5f * /*fabs*/( t1.cross(t2).len() );
203    /* update the entire convex hull surface */
204    face += facelet[i];
205
206    /* calculate the cetroid of the hull triangles */
207    centroid[i] = (p + q + r) / 3.0f;
208    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
209    center += centroid[i] * facelet[i];
210    /* the arithmetical center */
211  }
212  /* take the average of the centroid sum */
213  center /= face;
214
215
216  /* now calculate the covariance matrix - if not written in three for-loops,
217     it would compute faster: minor */
218  for( int j = 0; j < 3; ++j)
219  {
220    for( int k = 0; k < 3; ++k)
221    {
222      for( int i = 0; i < length; ++i)
223      {
224        p = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
225        q = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
226        r = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
227
228        covariance[j][k] = facelet[i] * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
229                           q[j] * q[k] + r[j] * r[k]);
230      }
231      covariance[j][k] = covariance[j][k] / (12.0f * face) - center[j] * center[k];
232    }
233  }
234  for( int i = 0; i < 3; ++i)
235  {
236    box.covarianceMatrix[i][0] = covariance[i][0];
237    box.covarianceMatrix[i][1] = covariance[i][1];
238    box.covarianceMatrix[i][2] = covariance[i][2];
239  }
240  box.center = center;
241
242  /* debug output section*/
243  PRINTF(3)("\nOBB Covariance Matrix:\n");
244  for(int j = 0; j < 3; ++j)
245  {
246    PRINT(3)("\t\t");
247    for(int k = 0; k < 3; ++k)
248    {
249      PRINT(3)("%11.4f\t", covariance[j][k]);
250    }
251    PRINT(3)("\n");
252  }
253  PRINTF(3)("\nWeighteed OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", center.x, center.y, center.z);
254//   PRINTF(3)("\nArithmetical OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", box.arithCenter.x, box.arithCenter.y, box.arithCenter.z);
255
256  /* write back the covariance matrix data to the object oriented bouning box */
257}
258
259
260
261/**
262 *  calculate the eigenvectors for the object oriented box
263 * @param box: reference to the box
264 * @param modelInf: the model info structure of the model
265 * @param tirangleIndexes: an array with the indexes of the triangles inside this
266 * @param length: the length of the indexes array
267 */
268void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modelInf,
269    const int* triangleIndexes, int length)
270{
271
272  Vector         axis[3];                            //!< the references to the obb axis
273  Matrix         covMat(  box.covarianceMatrix  );   //!< covariance matrix (in the matrix dataform)
274
275  /*
276  now getting spanning vectors of the sub-space:
277  the eigenvectors of a symmertric matrix, such as the
278  covarience matrix are mutually orthogonal.
279  after normalizing them, they can be used as a the basis
280  vectors
281  */
282
283  /* calculate the axis */
284  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
285  box.axis[0] = axis[0];
286  box.axis[1] = axis[1];
287  box.axis[2] = axis[2];
288
289//   box.axis[0] = Vector(1,0,0);
290//   box.axis[1] = Vector(0,1,0);
291//   box.axis[2] = Vector(0,0,1);
292
293  PRINTF(3)("Eigenvectors:\n");
294  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
295  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
296  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
297}
298
299
300
301
302/**
303 *  calculate the eigenvectors for the object oriented box
304 * @param box: reference to the box
305 * @param modelInf: the model info structure of the model
306 * @param tirangleIndexes: an array with the indexes of the triangles inside this
307 * @param length: the length of the indexes array
308 */
309void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
310{
311
312  PRINTF(3)("Calculate Box Axis\n");
313  /* now get the axis length */
314  float               halfLength[3];                         //!< half length of the axis
315  float               tmpLength;                             //!< tmp save point for the length
316  Plane               p0(box.axis[0], box.center);           //!< the axis planes
317  Plane               p1(box.axis[1], box.center);           //!< the axis planes
318  Plane               p2(box.axis[2], box.center);           //!< the axis planes
319  float               maxLength[3];                          //!< maximal lenth of the axis
320  float               minLength[3];                          //!< minimal length of the axis
321  const float*        tmpVec;                                //!< variable taking tmp vectors
322  float               centerOffset[3];
323
324  /* get the maximal dimensions of the body in all directions */
325  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
326  for( int k = 0; k  < 3; k++)
327  {
328    tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
329    Plane* p;
330    if( k == 0)
331      p = &p0;
332    else if( k == 1)
333      p = &p1;
334    else
335      p = &p2;
336    maxLength[k] = p->distancePoint(tmpVec);
337    minLength[k] = p->distancePoint(tmpVec);
338    PRINT(0)("axis[%i]: %f %f %f\n", k, box.axis[k].x, box.axis[k].y, box.axis[k].z);
339
340    for( int j = 0; j < length; ++j) {
341      for( int i = 0; i < 3; ++i) {
342        tmpVec = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]];
343        tmpLength = p->distancePoint(tmpVec);
344        PRINT(0)("vertex normal vec: %i, (%f, %f, %f) distance = %f\n", k, (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]])[0],
345        (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]])[1],
346        (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]])[2],
347        tmpLength);
348        if( tmpLength > maxLength[k])
349          maxLength[k] = tmpLength;
350        else if( tmpLength < minLength[k])
351          minLength[k] = tmpLength;
352      }
353    }
354  }
355
356
357
358  /* calculate the real centre of the body by using the axis length */
359  for( int i = 0; i < 3; ++i)
360  {
361//     centerOffset[i] = (fabs(maxLength[i]) - fabs(minLength[i])) / 2.0f;       // min length is negatie
362    centerOffset[i] = (maxLength[i] + minLength[i]) / 2.0f;       // min length is negatie
363    box.halfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;                 // min length is negative
364  }
365
366  box.center.x += centerOffset[0];
367  box.center.y += centerOffset[1];
368  box.center.z += centerOffset[2];
369
370  PRINTF(3)("\n");
371  PRINT(3)("\tAxis halflength x: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[0], maxLength[0], minLength[0], centerOffset[0]);
372  PRINT(3)("\tAxis halflength y: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[1], maxLength[1], minLength[1], centerOffset[1] );
373  PRINT(3)("\tAxis halflength z: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[2], maxLength[2], minLength[2], centerOffset[2]);
374}
375
376
377
378/**
379 *  this separates an ob-box in the middle
380 * @param box: the box to separate
381 *
382 * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
383 */
384void OBBTreeNode::forkBox(OBB& box)
385{
386
387  PRINTF(3)("Fork Box\n");
388  PRINTF(4)("Calculating the longest Axis\n");
389  /* get the longest axis of the box */
390  float               longestAxis = -1.0f;                 //!< the length of the longest axis
391  int                 longestAxisIndex = 0;                //!< this is the nr of the longest axis
392
393
394  /* now get the longest axis of the three exiting */
395  for( int i = 0; i < 3; ++i)
396  {
397    if( longestAxis < box.halfLength[i])
398    {
399      longestAxis = box.halfLength[i];
400      longestAxisIndex = i;
401    }
402  }
403  PRINTF(3)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis);
404
405
406  PRINTF(4)("Separating along the longest axis\n");
407  /* get the closest vertex near the center */
408  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
409  float               tmpDist;                             //!< variable to save diverse distances temporarily
410  int                 vertexIndex;                         //!< index of the vertex near the center
411  Plane               middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane
412  const sVec3D*       tmpVec;                              //!< temp simple 3D vector
413
414
415  /* now definin the separation plane through this specified nearest point and partition
416  the points depending on which side they are located
417  */
418  std::list<int>           partition1;                           //!< the vertex partition 1
419  std::list<int>           partition2;                           //!< the vertex partition 2
420  float*                   triangleCenter = new float[3];        //!< the center of the triangle
421  const float*             a;                                    //!< triangle  edge a
422  const float*             b;                                    //!< triangle  edge b
423  const float*             c;                                    //!< triangle  edge c
424
425
426  /* find the center of the box */
427  this->separationPlane = Plane(box.axis[longestAxisIndex], box.center);
428  this->sepPlaneCenter[0] = box.center.x;
429  this->sepPlaneCenter[1] = box.center.y;
430  this->sepPlaneCenter[2] = box.center.z;
431  this->longestAxisIndex = longestAxisIndex;
432
433  for( int i = 0; i < box.triangleIndexesLength; ++i)
434  {
435    /* first calculate the middle of the triangle */
436    a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]];
437    b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]];
438    c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]];
439
440    triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f;
441    triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f;
442    triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f;
443    tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter));
444
445    if( tmpDist > 0.0f)
446      partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */
447    else if( tmpDist < 0.0f)
448      partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */
449    else {
450      partition1.push_back(box.triangleIndexes[i]); /* 0.0f? unprobable... */
451      partition2.push_back(box.triangleIndexes[i]);
452    }
453  }
454  PRINTF(3)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size());
455
456
457  /* now comes the separation into two different sVec3D arrays */
458  int                index;                                //!< index storage place
459  int*               triangleIndexList1;                   //!< the vertex list 1
460  int*               triangleIndexList2;                   //!< the vertex list 2
461  std::list<int>::iterator element;                        //!< the list iterator
462
463  triangleIndexList1 = new int[partition1.size()];
464  triangleIndexList2 = new int[partition2.size()];
465
466  for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++)
467    triangleIndexList1[index] = (*element);
468
469  for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++)
470    triangleIndexList2[index] = (*element);
471
472  if( this->triangleIndexList1!= NULL)
473    delete[] this->triangleIndexList1;
474  this->triangleIndexList1 = triangleIndexList1;
475  this->triangleIndexLength1 = partition1.size();
476
477  if( this->triangleIndexList2 != NULL)
478    delete[] this->triangleIndexList2;
479  this->triangleIndexList2 = triangleIndexList2;
480  this->triangleIndexLength2 = partition2.size();
481}
482
483
484
485
486void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
487{
488  if( unlikely(treeNode == NULL))
489    return;
490
491  PRINTF(3)("collideWith\n");
492  /* if the obb overlap, make subtests: check which node is realy overlaping  */
493  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
494  //   if( unlikely(treeNode == NULL)) return;
495
496
497  if( this->overlapTest(*this->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
498  {
499    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
500
501    /* check if left node overlaps */
502    if( likely( this->nodeLeft != NULL))
503    {
504      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
505      if( this->overlapTest(*this->nodeLeft->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
506      {
507        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
508        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
509      }
510    }
511    /* check if right node overlaps */
512    if( likely( this->nodeRight != NULL))
513    {
514      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
515      if(this->overlapTest(*this->nodeRight->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
516      {
517        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
518        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
519      }
520    }
521
522    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
523    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
524    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
525    {
526      nodeA->collidesWith(nodeB, (((const OBBTreeNode*)&treeNode)->bvElement->center));
527
528      nodeB->collidesWith(nodeA, this->bvElement->center);
529    }
530
531  }
532}
533
534
535
536bool OBBTreeNode::overlapTest(OBB& boxA, OBB& boxB, WorldEntity* nodeA, WorldEntity* nodeB)
537{
538  //HACK remove this again
539  this->owner = nodeA;
540  //   if( boxB == NULL || boxA == NULL)
541  //     return false;
542
543  /* first check all axis */
544  Vector t;
545  float rA = 0.0f;
546  float rB = 0.0f;
547  Vector l;
548  Vector rotAxisA[3];
549  Vector rotAxisB[3];
550
551  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA.axis[0]);
552  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA.axis[1]);
553  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA.axis[2]);
554
555  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB.axis[0]);
556  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB.axis[1]);
557  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB.axis[2]);
558
559
560  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA.center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB.center));
561
562  //   printf("\n");
563  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
564  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
565  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
566  //
567  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
568  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
569  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
570
571
572  /* All 3 axis of the object A */
573  for( int j = 0; j < 3; ++j)
574  {
575    rA = 0.0f;
576    rB = 0.0f;
577    l = rotAxisA[j];
578
579    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
580    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
581    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
582
583    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
584    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
585    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
586
587    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
588
589    if( (rA + rB) < fabs(t.dot(l)))
590    {
591      PRINTF(3)("no Collision\n");
592      return false;
593    }
594  }
595
596  /* All 3 axis of the object B */
597  for( int j = 0; j < 3; ++j)
598  {
599    rA = 0.0f;
600    rB = 0.0f;
601    l = rotAxisB[j];
602
603    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
604    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
605    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
606
607    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
608    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
609    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
610
611    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
612
613    if( (rA + rB) < fabs(t.dot(l)))
614    {
615      PRINTF(3)("no Collision\n");
616      return false;
617    }
618  }
619
620
621  /* Now check for all face cross products */
622
623  for( int j = 0; j < 3; ++j)
624  {
625    for(int k = 0; k < 3; ++k )
626    {
627      rA = 0.0f;
628      rB = 0.0f;
629      l = rotAxisA[j].cross(rotAxisB[k]);
630
631      rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
632      rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
633      rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
634
635      rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
636      rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
637      rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
638
639      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
640
641      if( (rA + rB) < fabs(t.dot(l)))
642      {
643        PRINTF(3)("keine Kollision\n");
644        return false;
645      }
646    }
647  }
648
649  /* FIXME: there is no collision mark set now */
650     boxA.bCollided = true; /* use this ONLY(!!!!) for drawing operations */
651     boxB.bCollided = true;
652
653
654  PRINTF(3)("Kollision!\n");
655  return true;
656}
657
658
659
660
661
662
663
664
665
666
667/**
668 *
669 * draw the BV tree - debug mode
670 */
671void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
672{
673  /* this function can be used to draw the triangles and/or the points only  */
674  if( 1 /*drawMode & DRAW_MODEL || drawMode & DRAW_ALL*/)
675  {
676    if( depth == 0/*!(drawMode & DRAW_SINGLE && depth != 0)*/)
677    {
678      if( 1 /*drawMode & DRAW_POINTS*/)
679      {
680        glBegin(GL_POINTS);
681        glColor3f(0.3, 0.8, 0.54);
682        for( int i = 0; i < this->bvElement->modelInf->numTriangles; ++i)
683        {
684          for(int j = 0; j < 3; ++j)
685          {
686            glVertex3f(
687                (&this->bvElement->modelInf->pVertices[this->bvElement->modelInf->pTriangles[i].indexToVertices[j]])[0],
688                (&this->bvElement->modelInf->pVertices[this->bvElement->modelInf->pTriangles[i].indexToVertices[j]])[1],
689                (&this->bvElement->modelInf->pVertices[this->bvElement->modelInf->pTriangles[i].indexToVertices[j]])[2]);
690          }
691        }
692
693//         for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
694//           glVertex3f(this->bvElement->modelInf->pVertices[i],
695//                      this->bvElement->modelInf->pVertices[i+1],
696//                      this->bvElement->modelInf->pVertices[i+2]);
697        glEnd();
698      }
699    }
700  }
701
702  if (top)
703  {
704    glPushAttrib(GL_ENABLE_BIT);
705    glDisable(GL_LIGHTING);
706    glDisable(GL_TEXTURE_2D);
707  }
708  glColor3f(color.x, color.y, color.z);
709
710
711  /* draw world axes */
712  if( 1 /*drawMode & DRAW_BV_AXIS*/)
713  {
714    glBegin(GL_LINES);
715    glColor3f(1.0, 0.0, 0.0);
716    glVertex3f(0.0, 0.0, 0.0);
717    glVertex3f(3.0, 0.0, 0.0);
718
719    glColor3f(0.0, 1.0, 0.0);
720    glVertex3f(0.0, 0.0, 0.0);
721    glVertex3f(0.0, 3.0, 0.0);
722
723    glColor3f(0.0, 0.0, 1.0);
724    glVertex3f(0.0, 0.0, 0.0);
725    glVertex3f(0.0, 0.0, 3.0);
726    glEnd();
727  }
728
729
730  if( 1/*drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL*/)
731  {
732    if( 1/*drawMode & DRAW_SINGLE && depth != 0*/)
733    {
734      /* draw the obb axes */
735      glBegin(GL_LINES);
736      glColor3f(1.0, 0.0, 0.0);
737      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
738      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
739                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
740                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
741
742      glColor3f(0.0, 1.0, 0.0);
743      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
744      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
745                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
746                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
747
748      glColor3f(0.0, 0.0, 1.0);
749      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
750      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
751                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
752                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
753      glEnd();
754    }
755  }
756
757
758  /* DRAW POLYGONS */
759  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
760  {
761    if (top)
762    {
763      glEnable(GL_BLEND);
764      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
765    }
766
767    if( this->nodeLeft == NULL && this->nodeRight == NULL)
768      depth = 0;
769
770    if( depth == 0 /*!(drawMode & DRAW_SINGLE && depth != 0)*/)
771    {
772
773
774      Vector cen = this->bvElement->center;
775      Vector* axis = this->bvElement->axis;
776      float* len = this->bvElement->halfLength;
777
778      if( this->bvElement->bCollided)
779      {
780        glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
781      }
782      else if( drawMode & DRAW_BV_BLENDED)
783      {
784        glColor4f(color.x, color.y, color.z, .5);
785      }
786
787      // debug out
788      if( this->obbTree->getOwner() != NULL)
789      {
790        PRINTF(4)("debug poly draw: depth: %i, mode: %i, entity-name: %s, class: %s\n", depth, drawMode, this->obbTree->getOwner()->getName(), this->obbTree->getOwner()->getClassName());
791      }
792      else
793        PRINTF(4)("debug poly draw: depth: %i, mode: %i\n", depth, drawMode);
794
795
796      /* draw bounding box */
797      if( drawMode & DRAW_BV_BLENDED)
798        glBegin(GL_QUADS);
799      else
800        glBegin(GL_LINE_LOOP);
801      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
802                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
803                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
804      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
805                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
806                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
807      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
808                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
809                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
810      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
811                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
812                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
813      glEnd();
814
815      if( drawMode & DRAW_BV_BLENDED)
816        glBegin(GL_QUADS);
817      else
818        glBegin(GL_LINE_LOOP);
819      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
820                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
821                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
822      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
823                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
824                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
825      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
826                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
827                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
828      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
829                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
830                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
831      glEnd();
832
833      if( drawMode & DRAW_BV_BLENDED)
834        glBegin(GL_QUADS);
835      else
836        glBegin(GL_LINE_LOOP);
837      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
838                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
839                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
840      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
841                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
842                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
843      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
844                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
845                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
846      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
847                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
848                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
849      glEnd();
850
851      if( drawMode & DRAW_BV_BLENDED)
852        glBegin(GL_QUADS);
853      else
854        glBegin(GL_LINE_LOOP);
855      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
856                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
857                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
858      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
859                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
860                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
861      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
862                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
863                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
864      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
865                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
866                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
867      glEnd();
868
869
870      if( drawMode & DRAW_BV_BLENDED)
871      {
872        glBegin(GL_QUADS);
873        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
874                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
875                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
876        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
877                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
878                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
879        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
880                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
881                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
882        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
883                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
884                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
885        glEnd();
886
887        glBegin(GL_QUADS);
888        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
889                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
890                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
891        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
892                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
893                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
894        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
895                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
896                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
897        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
898                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
899                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
900        glEnd();
901      }
902
903      if( drawMode & DRAW_BV_BLENDED)
904        glColor3f(color.x, color.y, color.z);
905    }
906  }
907
908  /* DRAW SEPARATING PLANE */
909  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
910  {
911    if( !(drawMode & DRAW_SINGLE && depth != 0))
912    {
913      if( drawMode & DRAW_BV_BLENDED)
914        glColor4f(color.x, color.y, color.z, .6);
915
916      /* now draw the separation plane */
917      Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
918      Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
919      Vector c = this->bvElement->center;
920      float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
921      float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
922      glBegin(GL_QUADS);
923      glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
924      glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
925      glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
926      glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
927      glEnd();
928
929      if( drawMode & DRAW_BV_BLENDED)
930        glColor4f(color.x, color.y, color.z, 1.0);
931
932    }
933  }
934
935
936
937  if (depth > 0)
938  {
939    if( this->nodeLeft != NULL)
940      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
941    if( this->nodeRight != NULL)
942      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
943  }
944  this->bvElement->bCollided = false;
945
946  if (top)
947    glPopAttrib();
948}
949
950
951
952void OBBTreeNode::debug() const
953{
954  PRINT(0)("========OBBTreeNode::debug()=====\n");
955  PRINT(0)(" Current depth: %i", this->depth);
956  PRINT(0)(" ");
957  PRINT(0)("=================================\n");
958}
Note: See TracBrowser for help on using the repository browser.