Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/branches/cd/src/lib/collision_detection/obb_tree_node.cc @ 7660

Last change on this file since 7660 was 7660, checked in by patrick, 18 years ago

cd: collision boxes getting better. but still not centered correctly

File size: 36.7 KB
Line 
1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Patrick Boenzli
13*/
14
15#define DEBUG_SPECIAL_MODULE 3/* DEBUG_MODULE_COLLISION_DETECTION*/
16
17#include "obb_tree_node.h"
18#include "obb_tree.h"
19#include "obb.h"
20
21#include "matrix.h"
22#include "model.h"
23#include "world_entity.h"
24#include "plane.h"
25
26#include "color.h"
27#include "glincl.h"
28
29#include <list>
30#include <vector>
31#include "debug.h"
32
33
34
35using namespace std;
36
37
38GLUquadricObj* OBBTreeNode_sphereObj = NULL;
39
40
41/**
42 *  standard constructor
43 * @param tree: reference to the obb tree
44 * @param depth: the depth of the obb tree to generate
45 */
46OBBTreeNode::OBBTreeNode (const OBBTree& tree, OBBTreeNode* prev, int depth)
47    : BVTreeNode()
48{
49  this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode");
50
51  this->obbTree = &tree;
52  this->nodePrev = prev;
53  this->depth = depth;
54  this->nextID = 0;
55
56  this->nodeLeft = NULL;
57  this->nodeRight = NULL;
58  this->bvElement = NULL;
59
60  this->triangleIndexList1 = NULL;
61  this->triangleIndexList2 = NULL;
62
63  this->modelInf = NULL;
64  this->triangleIndexes = NULL;
65
66  if( OBBTreeNode_sphereObj == NULL)
67    OBBTreeNode_sphereObj = gluNewQuadric();
68
69  this->owner = NULL;
70
71  /* debug ids */
72  if( this->nodePrev)
73    this->treeIndex = 100 * this->depth + this->nodePrev->getID();
74  else
75    this->treeIndex = 0;
76}
77
78
79/**
80 *  standard deconstructor
81 */
82OBBTreeNode::~OBBTreeNode ()
83{
84  if( this->nodeLeft)
85    delete this->nodeLeft;
86  if( this->nodeRight)
87    delete this->nodeRight;
88
89  if( this->bvElement)
90    delete this->bvElement;
91
92//   if( this->triangleIndexList1 != NULL)
93//     delete [] this->triangleIndexList1;
94//   if( this->triangleIndexList2 != NULL)
95//     delete [] this->triangleIndexList2;
96}
97
98
99/**
100 *  creates a new BVTree or BVTree partition
101 * @param depth: how much more depth-steps to go: if == 1 don't go any deeper!
102 * @param modInfo: model informations from the abstrac model
103 *
104 * this function creates the Bounding Volume tree from a modelInfo struct and bases its calculations
105 * on the triangle informations (triangle soup not polygon soup)
106 */
107void OBBTreeNode::spawnBVTree(const modelInfo& modelInf, const int* triangleIndexes, int length)
108{
109  PRINTF(3)("\n==============================Creating OBB Tree Node==================\n");
110  PRINT(3)(" OBB Tree Infos: \n");
111  PRINT(3)("\tDepth: %i \n\tTree Index: %i \n\tNumber of Triangles: %i\n", depth, this->treeIndex, length);
112  this->depth = depth;
113
114  this->bvElement = new OBB();
115  this->bvElement->modelInf = &modelInf;
116  this->bvElement->triangleIndexes = triangleIndexes;
117  this->bvElement->triangleIndexesLength = length;
118
119  // full debug output
120
121  //indexes debug
122  for( int i = 0; i < length; ++i)
123  {
124    PRINTF(2)("triangle[%i], index: %i\n", i, triangleIndexes[i]);
125  }
126
127  // vertex coordinates
128  for( int i = 0; i < length; ++i)
129  {
130    PRINTF(2)("triangle[%i]\n", i);
131    for(int j = 0; j < 3; ++j)
132    {
133      PRINTF(2)("  vertex[%i]: %f, %f, %f\n", j, (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[0],
134      (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[1],
135      (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[j]])[2]);
136    }
137  }
138
139
140
141  /* create the bounding boxes in three steps */
142  this->calculateBoxCovariance(*this->bvElement, modelInf, triangleIndexes, length);
143  this->calculateBoxEigenvectors(*this->bvElement, modelInf, triangleIndexes, length);
144//   this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
145//   this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
146  this->calculateBoxAxis(*this->bvElement, modelInf, triangleIndexes, length);
147
148  /* do we need to descent further in the obb tree?*/
149  if( likely( this->depth > 0))
150  {
151    this->forkBox(*this->bvElement);
152
153    if( this->triangleIndexLength1 >= 3)
154    {
155      this->nodeLeft = new OBBTreeNode(*this->obbTree, this, depth - 1);
156      this->nodeLeft->spawnBVTree(modelInf, this->triangleIndexList1, this->triangleIndexLength1);
157    }
158    if( this->triangleIndexLength2 >= 3)
159    {
160      this->nodeRight = new OBBTreeNode(*this->obbTree, this, depth - 1);
161      this->nodeRight->spawnBVTree(modelInf, this->triangleIndexList2, this->triangleIndexLength2);
162    }
163  }
164}
165
166
167
168/**
169 *  calculate the box covariance matrix
170 * @param box: reference to the box
171 * @param modelInf: the model info structure of the model
172 * @param tirangleIndexes: an array with the indexes of the triangles inside this
173 * @param length: the length of the indexes array
174 */
175void OBBTreeNode::calculateBoxCovariance(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
176{
177  float     facelet[length];                         //!< surface area of the i'th triangle of the convex hull
178  float     face = 0.0f;                             //!< surface area of the entire convex hull
179  Vector    centroid[length];                        //!< centroid of the i'th convex hull
180  Vector    center;                                  //!< the center of the entire hull
181  Vector    p, q, r;                                 //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d
182  Vector    t1, t2;                                  //!< temporary values
183  float     covariance[3][3] = {0,0,0, 0,0,0, 0,0,0};//!< the covariance matrix
184  const float*   tmpVec = NULL;                           //!< a temp saving place for sVec3Ds
185
186  /* fist compute all the convex hull face/facelets and centroids */
187  for( int i = 0; i < length ; ++i)
188  {
189    p = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]];
190    q = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]];
191    r = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]];
192
193    /* finding the facelet surface via cross-product */
194    t1 = p - q;
195    t2 = p - r;
196    facelet[i] = 0.5f * /*fabs*/( t1.cross(t2).len() );
197    /* update the entire convex hull surface */
198    face += facelet[i];
199
200    /* calculate the cetroid of the hull triangles */
201    centroid[i] = (p + q + r) / 3.0f;
202    /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */
203    center += centroid[i] * facelet[i];
204    /* the arithmetical center */
205  }
206  /* take the average of the centroid sum */
207  center /= face;
208
209
210  /* now calculate the covariance matrix - if not written in three for-loops,
211     it would compute faster: minor */
212  for( int j = 0; j < 3; ++j)
213  {
214    for( int k = 0; k < 3; ++k)
215    {
216      for( int i = 0; i < length; ++i)
217      {
218        p = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[0]]);
219        q = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[1]]);
220        r = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[i]].indexToVertices[2]]);
221
222        covariance[j][k] = facelet[i] * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] +
223                           q[j] * q[k] + r[j] * r[k]);
224      }
225      covariance[j][k] = covariance[j][k] / (12.0f * face) - center[j] * center[k];
226    }
227  }
228  for( int i = 0; i < 3; ++i)
229  {
230    box.covarianceMatrix[i][0] = covariance[i][0];
231    box.covarianceMatrix[i][1] = covariance[i][1];
232    box.covarianceMatrix[i][2] = covariance[i][2];
233  }
234  //box.center = center;
235  //FIXME setting center to 0,0,0
236  box.center = Vector();
237
238
239  /* debug output section*/
240  PRINTF(3)("\nOBB Covariance Matrix:\n");
241  for(int j = 0; j < 3; ++j)
242  {
243    PRINT(3)("\t\t");
244    for(int k = 0; k < 3; ++k)
245    {
246      PRINT(3)("%11.4f\t", covariance[j][k]);
247    }
248    PRINT(3)("\n");
249  }
250  PRINTF(3)("\nWeighteed OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", center.x, center.y, center.z);
251//   PRINTF(3)("\nArithmetical OBB Center:\n\t\t%11.4f\t %11.4f\t %11.4f\n", box.arithCenter.x, box.arithCenter.y, box.arithCenter.z);
252
253  /* write back the covariance matrix data to the object oriented bouning box */
254}
255
256
257
258/**
259 *  calculate the eigenvectors for the object oriented box
260 * @param box: reference to the box
261 * @param modelInf: the model info structure of the model
262 * @param tirangleIndexes: an array with the indexes of the triangles inside this
263 * @param length: the length of the indexes array
264 */
265void OBBTreeNode::calculateBoxEigenvectors(OBB& box, const modelInfo& modelInf,
266    const int* triangleIndexes, int length)
267{
268
269  Vector         axis[3];                            //!< the references to the obb axis
270  Matrix         covMat(  box.covarianceMatrix  );   //!< covariance matrix (in the matrix dataform)
271
272  /*
273  now getting spanning vectors of the sub-space:
274  the eigenvectors of a symmertric matrix, such as the
275  covarience matrix are mutually orthogonal.
276  after normalizing them, they can be used as a the basis
277  vectors
278  */
279
280  /* calculate the axis */
281  covMat.getEigenVectors(axis[0], axis[1], axis[2] );
282  box.axis[0] = axis[0];
283  box.axis[1] = axis[1];
284  box.axis[2] = axis[2];
285
286  box.axis[0] = Vector(1,0,0);
287  box.axis[1] = Vector(0,1,0);
288  box.axis[2] = Vector(0,0,1);
289
290  PRINTF(3)("Eigenvectors:\n");
291  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[0].x, box.axis[0].y, box.axis[0].z);
292  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[1].x, box.axis[1].y, box.axis[1].z);
293  PRINT(3)("\t\t%11.2f \t%11.2f \t%11.2f\n", box.axis[2].x, box.axis[2].y, box.axis[2].z);
294}
295
296
297
298
299/**
300 *  calculate the eigenvectors for the object oriented box
301 * @param box: reference to the box
302 * @param modelInf: the model info structure of the model
303 * @param tirangleIndexes: an array with the indexes of the triangles inside this
304 * @param length: the length of the indexes array
305 */
306void OBBTreeNode::calculateBoxAxis(OBB& box, const modelInfo& modelInf, const int* triangleIndexes, int length)
307{
308
309  PRINTF(3)("Calculate Box Axis\n");
310  /* now get the axis length */
311  float               halfLength[3];                         //!< half length of the axis
312  float               tmpLength;                             //!< tmp save point for the length
313  Plane               p0(box.axis[0], box.center);           //!< the axis planes
314  Plane               p1(box.axis[1], box.center);           //!< the axis planes
315  Plane               p2(box.axis[2], box.center);           //!< the axis planes
316  float               maxLength[3];                          //!< maximal lenth of the axis
317  float               minLength[3];                          //!< minimal length of the axis
318  const float*        tmpVec;                                //!< variable taking tmp vectors
319  float               centerOffset[3];
320
321
322
323  /* get the maximal dimensions of the body in all directions */
324  /* for the initialisation the value just has to be inside of the polygon soup -> first vertices (rand) */
325  for( int k = 0; k  < 3; k++)
326  {
327    tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
328    Plane* p;
329    if( k == 0)
330      p = &p0;
331    else if( k == 1)
332      p = &p1;
333    else
334      p = &p2;
335    maxLength[k] = p->distancePoint(tmpVec);
336    minLength[k] = p->distancePoint(tmpVec);
337
338
339    for( int j = 0; j < length; ++j) {
340      for( int i = 0; i < 3; ++i) {
341        tmpVec = &modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]];
342        tmpLength = p->distancePoint(tmpVec);
343        if( tmpLength > maxLength[k])
344          maxLength[k] = tmpLength;
345        else if( tmpLength < minLength[k])
346          minLength[k] = tmpLength;
347      }
348    }
349  }
350
351
352//   tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
353//   maxLength[1] = p1.distancePoint(tmpVec);
354//   minLength[1] = p1.distancePoint(tmpVec);
355//   for( int j = 0; j < length; ++j)
356//   {
357//     for( int i = 0; i < 3; ++i)
358//     {
359//       tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
360//       tmpLength = p1.distancePoint(tmpVec);
361//       if( tmpLength > maxLength[1])
362//         maxLength[1] = tmpLength;
363//       else if( tmpLength < minLength[1])
364//         minLength[1] = tmpLength;
365//     }
366//   }
367//
368//
369//   tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[0]].indexToVertices[0]]);
370//   maxLength[2] = p2.distancePoint(tmpVec);
371//   minLength[2] = p2.distancePoint(tmpVec);
372//   for( int j = 0; j < length; ++j)
373//   {
374//     for( int i = 0; i < 3; ++i)
375//     {
376//       tmpVec = (&modelInf.pVertices[modelInf.pTriangles[triangleIndexes[j]].indexToVertices[i]]);
377//       tmpLength = p2.distancePoint(tmpVec);
378//       if( tmpLength > maxLength[2])
379//         maxLength[2] = tmpLength;
380//       else if( tmpLength < minLength[2])
381//         minLength[2] = tmpLength;
382//     }
383//   }
384
385
386  /* calculate the real centre of the body by using the axis length */
387
388
389  for( int i = 0; i < 3; ++i)
390  {
391    centerOffset[i] = (fabs(maxLength[i]) - fabs(minLength[i])) / 2.0f;       // min length is negatie
392    box.halfLength[i] = (maxLength[i] - minLength[i]) / 2.0f;                 // min length is negative
393  }
394
395  // FIXME: += anstatt -= ????????? verwirr
396  box.center.x += centerOffset[0];
397  box.center.y += centerOffset[1];
398  box.center.z += centerOffset[2];
399
400  PRINTF(3)("\n");
401  PRINT(3)("\tAxis halflength x: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[0], maxLength[0], minLength[0], centerOffset[0]);
402  PRINT(3)("\tAxis halflength y: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[1], maxLength[1], minLength[1], centerOffset[1] );
403  PRINT(3)("\tAxis halflength z: %11.2f (max: %11.2f, \tmin: %11.2f), offset: %11.2f\n", box.halfLength[2], maxLength[2], minLength[2], centerOffset[2]);
404}
405
406
407
408/**
409 *  this separates an ob-box in the middle
410 * @param box: the box to separate
411 *
412 * this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis
413 */
414void OBBTreeNode::forkBox(OBB& box)
415{
416
417  PRINTF(3)("Fork Box\n");
418  PRINTF(4)("Calculating the longest Axis\n");
419  /* get the longest axis of the box */
420  float               longestAxis = -1.0f;                 //!< the length of the longest axis
421  int                 longestAxisIndex = 0;                //!< this is the nr of the longest axis
422
423
424  /* now get the longest axis of the three exiting */
425  for( int i = 0; i < 3; ++i)
426  {
427    if( longestAxis < box.halfLength[i])
428    {
429      longestAxis = box.halfLength[i];
430      longestAxisIndex = i;
431    }
432  }
433  PRINTF(3)("\nLongest Axis is: Nr %i with a half-length of:%11.2f\n", longestAxisIndex, longestAxis);
434
435
436  PRINTF(4)("Separating along the longest axis\n");
437  /* get the closest vertex near the center */
438  float               dist = 999999.0f;                    //!< the smallest distance to each vertex
439  float               tmpDist;                             //!< variable to save diverse distances temporarily
440  int                 vertexIndex;                         //!< index of the vertex near the center
441  Plane               middlePlane(box.axis[longestAxisIndex], box.center); //!< the middle plane
442  const sVec3D*       tmpVec;                              //!< temp simple 3D vector
443
444
445  /* now definin the separation plane through this specified nearest point and partition
446  the points depending on which side they are located
447  */
448  std::list<int>           partition1;                           //!< the vertex partition 1
449  std::list<int>           partition2;                           //!< the vertex partition 2
450  float*                   triangleCenter = new float[3];        //!< the center of the triangle
451  const float*             a;                                    //!< triangle  edge a
452  const float*             b;                                    //!< triangle  edge b
453  const float*             c;                                    //!< triangle  edge c
454
455
456  /* find the center of the box */
457  this->separationPlane = Plane(box.axis[longestAxisIndex], box.center);
458  this->sepPlaneCenter[0] = box.center.x;
459  this->sepPlaneCenter[1] = box.center.y;
460  this->sepPlaneCenter[2] = box.center.z;
461  this->longestAxisIndex = longestAxisIndex;
462
463  for( int i = 0; i < box.triangleIndexesLength; ++i)
464  {
465    /* first calculate the middle of the triangle */
466    a = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[0]];
467    b = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[1]];
468    c = &box.modelInf->pVertices[box.modelInf->pTriangles[box.triangleIndexes[i]].indexToVertices[2]];
469
470    triangleCenter[0] = (a[0] + b[0] + c[0]) / 3.0f;
471    triangleCenter[1] = (a[1] + b[1] + c[1]) / 3.0f;
472    triangleCenter[2] = (a[2] + b[2] + c[2]) / 3.0f;
473    tmpDist = this->separationPlane.distancePoint(*((sVec3D*)triangleCenter));
474
475    if( tmpDist > 0.0f)
476      partition1.push_back(box.triangleIndexes[i]); /* positive numbers plus zero */
477    else if( tmpDist < 0.0f)
478      partition2.push_back(box.triangleIndexes[i]); /* negatice numbers */
479    else {
480      partition1.push_back(box.triangleIndexes[i]); /* 0.0f? unprobable... */
481      partition2.push_back(box.triangleIndexes[i]);
482    }
483  }
484  PRINTF(3)("\nPartition1: got \t%i Vertices \nPartition2: got \t%i Vertices\n", partition1.size(), partition2.size());
485
486
487  /* now comes the separation into two different sVec3D arrays */
488  int                index;                                //!< index storage place
489  int*               triangleIndexList1;                   //!< the vertex list 1
490  int*               triangleIndexList2;                   //!< the vertex list 2
491  std::list<int>::iterator element;                        //!< the list iterator
492
493  triangleIndexList1 = new int[partition1.size()];
494  triangleIndexList2 = new int[partition2.size()];
495
496  for( element = partition1.begin(), index = 0; element != partition1.end(); element++, index++)
497    triangleIndexList1[index] = (*element);
498
499  for( element = partition2.begin(), index = 0; element != partition2.end(); element++, index++)
500    triangleIndexList2[index] = (*element);
501
502  if( this->triangleIndexList1!= NULL)
503    delete[] this->triangleIndexList1;
504  this->triangleIndexList1 = triangleIndexList1;
505  this->triangleIndexLength1 = partition1.size();
506
507  if( this->triangleIndexList2 != NULL)
508    delete[] this->triangleIndexList2;
509  this->triangleIndexList2 = triangleIndexList2;
510  this->triangleIndexLength2 = partition2.size();
511}
512
513
514
515
516void OBBTreeNode::collideWith(BVTreeNode* treeNode, WorldEntity* nodeA, WorldEntity* nodeB)
517{
518  if( unlikely(treeNode == NULL))
519    return;
520
521  PRINTF(3)("collideWith\n");
522  /* if the obb overlap, make subtests: check which node is realy overlaping  */
523  PRINTF(3)("Checking OBB %i vs %i: ", this->getIndex(), treeNode->getIndex());
524  //   if( unlikely(treeNode == NULL)) return;
525
526
527  if( this->overlapTest(*this->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
528  {
529    PRINTF(3)("collision @ lvl %i, object %s vs. %s, (%p, %p)\n", this->depth, nodeA->getClassName(), nodeB->getClassName(), this->nodeLeft, this->nodeRight);
530
531    /* check if left node overlaps */
532    if( likely( this->nodeLeft != NULL))
533    {
534      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeLeft->getIndex(), treeNode->getIndex());
535      if( this->overlapTest(*this->nodeLeft->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
536      {
537        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
538        this->nodeLeft->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
539      }
540    }
541    /* check if right node overlaps */
542    if( likely( this->nodeRight != NULL))
543    {
544      PRINTF(3)("Checking OBB %i vs %i: ", this->nodeRight->getIndex(), treeNode->getIndex());
545      if(this->overlapTest(*this->nodeRight->bvElement, *(((const OBBTreeNode*)&treeNode)->bvElement), nodeA, nodeB))
546      {
547        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeLeft), nodeA, nodeB);
548        this->nodeRight->collideWith((((const OBBTreeNode*)treeNode)->nodeRight), nodeA, nodeB);
549      }
550    }
551
552    /* so there is a collision and this is the last box in the tree (i.e. leaf) */
553    /* FIXME: If we would choose || insead of && there would also be asymmetrical cases supported */
554    if( unlikely(this->nodeRight == NULL && this->nodeLeft == NULL))
555    {
556      nodeA->collidesWith(nodeB, (((const OBBTreeNode*)&treeNode)->bvElement->center));
557
558      nodeB->collidesWith(nodeA, this->bvElement->center);
559    }
560
561  }
562}
563
564
565
566bool OBBTreeNode::overlapTest(OBB& boxA, OBB& boxB, WorldEntity* nodeA, WorldEntity* nodeB)
567{
568  //HACK remove this again
569  this->owner = nodeA;
570  //   if( boxB == NULL || boxA == NULL)
571  //     return false;
572
573  /* first check all axis */
574  Vector t;
575  float rA = 0.0f;
576  float rB = 0.0f;
577  Vector l;
578  Vector rotAxisA[3];
579  Vector rotAxisB[3];
580
581  rotAxisA[0] =  nodeA->getAbsDir().apply(boxA.axis[0]);
582  rotAxisA[1] =  nodeA->getAbsDir().apply(boxA.axis[1]);
583  rotAxisA[2] =  nodeA->getAbsDir().apply(boxA.axis[2]);
584
585  rotAxisB[0] =  nodeB->getAbsDir().apply(boxB.axis[0]);
586  rotAxisB[1] =  nodeB->getAbsDir().apply(boxB.axis[1]);
587  rotAxisB[2] =  nodeB->getAbsDir().apply(boxB.axis[2]);
588
589
590  t = nodeA->getAbsCoor() + nodeA->getAbsDir().apply(boxA.center) - ( nodeB->getAbsCoor() + nodeB->getAbsDir().apply(boxB.center));
591
592  //   printf("\n");
593  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[0].x, boxA->axis[0].y, boxA->axis[0].z, rotAxisA[0].x, rotAxisA[0].y, rotAxisA[0].z);
594  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[1].x, boxA->axis[1].y, boxA->axis[1].z, rotAxisA[1].x, rotAxisA[1].y, rotAxisA[1].z);
595  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxA->axis[2].x, boxA->axis[2].y, boxA->axis[2].z, rotAxisA[2].x, rotAxisA[2].y, rotAxisA[2].z);
596  //
597  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[0].x, boxB->axis[0].y, boxB->axis[0].z, rotAxisB[0].x, rotAxisB[0].y, rotAxisB[0].z);
598  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[1].x, boxB->axis[1].y, boxB->axis[1].z, rotAxisB[1].x, rotAxisB[1].y, rotAxisB[1].z);
599  //   printf("(%f, %f, %f) -> (%f, %f, %f)\n", boxB->axis[2].x, boxB->axis[2].y, boxB->axis[2].z, rotAxisB[2].x, rotAxisB[2].y, rotAxisB[2].z);
600
601
602  /* All 3 axis of the object A */
603  for( int j = 0; j < 3; ++j)
604  {
605    rA = 0.0f;
606    rB = 0.0f;
607    l = rotAxisA[j];
608
609    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
610    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
611    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
612
613    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
614    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
615    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
616
617    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
618
619    if( (rA + rB) < fabs(t.dot(l)))
620    {
621      PRINTF(3)("no Collision\n");
622      return false;
623    }
624  }
625
626  /* All 3 axis of the object B */
627  for( int j = 0; j < 3; ++j)
628  {
629    rA = 0.0f;
630    rB = 0.0f;
631    l = rotAxisB[j];
632
633    rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
634    rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
635    rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
636
637    rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
638    rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
639    rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
640
641    PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
642
643    if( (rA + rB) < fabs(t.dot(l)))
644    {
645      PRINTF(3)("no Collision\n");
646      return false;
647    }
648  }
649
650
651  /* Now check for all face cross products */
652
653  for( int j = 0; j < 3; ++j)
654  {
655    for(int k = 0; k < 3; ++k )
656    {
657      rA = 0.0f;
658      rB = 0.0f;
659      l = rotAxisA[j].cross(rotAxisB[k]);
660
661      rA += fabs(boxA.halfLength[0] * rotAxisA[0].dot(l));
662      rA += fabs(boxA.halfLength[1] * rotAxisA[1].dot(l));
663      rA += fabs(boxA.halfLength[2] * rotAxisA[2].dot(l));
664
665      rB += fabs(boxB.halfLength[0] * rotAxisB[0].dot(l));
666      rB += fabs(boxB.halfLength[1] * rotAxisB[1].dot(l));
667      rB += fabs(boxB.halfLength[2] * rotAxisB[2].dot(l));
668
669      PRINTF(3)("s = %f, rA+rB = %f\n", fabs(t.dot(l)), rA+rB);
670
671      if( (rA + rB) < fabs(t.dot(l)))
672      {
673        PRINTF(3)("keine Kollision\n");
674        return false;
675      }
676    }
677  }
678
679  /* FIXME: there is no collision mark set now */
680     boxA.bCollided = true; /* use this ONLY(!!!!) for drawing operations */
681     boxB.bCollided = true;
682
683
684  PRINTF(3)("Kollision!\n");
685  return true;
686}
687
688
689
690
691
692
693
694
695
696
697/**
698 *
699 * draw the BV tree - debug mode
700 */
701void OBBTreeNode::drawBV(int depth, int drawMode, const Vector& color,  bool top) const
702{
703  /* this function can be used to draw the triangles and/or the points only  */
704  if( 1 /*drawMode & DRAW_MODEL || drawMode & DRAW_ALL*/)
705  {
706    if( depth == 0/*!(drawMode & DRAW_SINGLE && depth != 0)*/)
707    {
708      if( 1 /*drawMode & DRAW_POINTS*/)
709      {
710        glBegin(GL_POINTS);
711        glColor3f(0.3, 0.8, 0.54);
712        for( int i = 0; i < this->bvElement->modelInf->numVertices*3; i+=3)
713          glVertex3f(this->bvElement->modelInf->pVertices[i],
714                     this->bvElement->modelInf->pVertices[i+1],
715                     this->bvElement->modelInf->pVertices[i+2]);
716        glEnd();
717      }
718    }
719  }
720
721  if (top)
722  {
723    glPushAttrib(GL_ENABLE_BIT);
724    glDisable(GL_LIGHTING);
725    glDisable(GL_TEXTURE_2D);
726  }
727  glColor3f(color.x, color.y, color.z);
728
729
730  /* draw world axes */
731  if( 1 /*drawMode & DRAW_BV_AXIS*/)
732  {
733    glBegin(GL_LINES);
734    glColor3f(1.0, 0.0, 0.0);
735    glVertex3f(0.0, 0.0, 0.0);
736    glVertex3f(3.0, 0.0, 0.0);
737
738    glColor3f(0.0, 1.0, 0.0);
739    glVertex3f(0.0, 0.0, 0.0);
740    glVertex3f(0.0, 3.0, 0.0);
741
742    glColor3f(0.0, 0.0, 1.0);
743    glVertex3f(0.0, 0.0, 0.0);
744    glVertex3f(0.0, 0.0, 3.0);
745    glEnd();
746  }
747
748
749  if( 1/*drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL*/)
750  {
751    if( 1/*drawMode & DRAW_SINGLE && depth != 0*/)
752    {
753      /* draw the obb axes */
754      glBegin(GL_LINES);
755      glColor3f(1.0, 0.0, 0.0);
756      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
757      glVertex3f(this->bvElement->center.x + this->bvElement->axis[0].x * this->bvElement->halfLength[0],
758                 this->bvElement->center.y + this->bvElement->axis[0].y * this->bvElement->halfLength[0],
759                 this->bvElement->center.z + this->bvElement->axis[0].z * this->bvElement->halfLength[0]);
760
761      glColor3f(0.0, 1.0, 0.0);
762      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
763      glVertex3f(this->bvElement->center.x + this->bvElement->axis[1].x * this->bvElement->halfLength[1],
764                 this->bvElement->center.y + this->bvElement->axis[1].y * this->bvElement->halfLength[1],
765                 this->bvElement->center.z + this->bvElement->axis[1].z * this->bvElement->halfLength[1]);
766
767      glColor3f(0.0, 0.0, 1.0);
768      glVertex3f(this->bvElement->center.x, this->bvElement->center.y, this->bvElement->center.z);
769      glVertex3f(this->bvElement->center.x + this->bvElement->axis[2].x * this->bvElement->halfLength[2],
770                 this->bvElement->center.y + this->bvElement->axis[2].y * this->bvElement->halfLength[2],
771                 this->bvElement->center.z + this->bvElement->axis[2].z * this->bvElement->halfLength[2]);
772      glEnd();
773    }
774  }
775
776
777  /* DRAW POLYGONS */
778  if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL || drawMode & DRAW_BV_BLENDED)
779  {
780    if (top)
781    {
782      glEnable(GL_BLEND);
783      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
784    }
785
786    if( this->nodeLeft == NULL && this->nodeRight == NULL)
787      depth = 0;
788
789    if( depth == 0 /*!(drawMode & DRAW_SINGLE && depth != 0)*/)
790    {
791
792
793      Vector cen = this->bvElement->center;
794      Vector* axis = this->bvElement->axis;
795      float* len = this->bvElement->halfLength;
796
797      if( this->bvElement->bCollided)
798      {
799        glColor4f(1.0, 1.0, 1.0, .5); // COLLISION COLOR
800      }
801      else if( drawMode & DRAW_BV_BLENDED)
802      {
803        glColor4f(color.x, color.y, color.z, .5);
804      }
805
806      // debug out
807      if( this->obbTree->getOwner() != NULL)
808      {
809        PRINTF(4)("debug poly draw: depth: %i, mode: %i, entity-name: %s, class: %s\n", depth, drawMode, this->obbTree->getOwner()->getName(), this->obbTree->getOwner()->getClassName());
810      }
811      else
812        PRINTF(4)("debug poly draw: depth: %i, mode: %i\n", depth, drawMode);
813
814
815      /* draw bounding box */
816      if( drawMode & DRAW_BV_BLENDED)
817        glBegin(GL_QUADS);
818      else
819        glBegin(GL_LINE_LOOP);
820      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
821                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
822                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
823      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
824                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
825                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
826      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
827                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
828                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
829      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
830                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
831                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
832      glEnd();
833
834      if( drawMode & DRAW_BV_BLENDED)
835        glBegin(GL_QUADS);
836      else
837        glBegin(GL_LINE_LOOP);
838      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
839                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
840                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
841      glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
842                 cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
843                 cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
844      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
845                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
846                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
847      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
848                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
849                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
850      glEnd();
851
852      if( drawMode & DRAW_BV_BLENDED)
853        glBegin(GL_QUADS);
854      else
855        glBegin(GL_LINE_LOOP);
856      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
857                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
858                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
859      glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
860                 cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
861                 cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
862      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
863                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
864                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
865      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
866                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
867                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
868      glEnd();
869
870      if( drawMode & DRAW_BV_BLENDED)
871        glBegin(GL_QUADS);
872      else
873        glBegin(GL_LINE_LOOP);
874      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
875                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
876                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
877      glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
878                 cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
879                 cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
880      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
881                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
882                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
883      glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
884                 cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
885                 cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
886      glEnd();
887
888
889      if( drawMode & DRAW_BV_BLENDED)
890      {
891        glBegin(GL_QUADS);
892        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
893                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
894                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
895        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] - axis[2].x * len[2],
896                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] - axis[2].y * len[2],
897                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] - axis[2].z * len[2]);
898        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
899                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
900                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
901        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] - axis[2].x * len[2],
902                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] - axis[2].y * len[2],
903                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] - axis[2].z * len[2]);
904        glEnd();
905
906        glBegin(GL_QUADS);
907        glVertex3f(cen.x - axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
908                   cen.y - axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
909                   cen.z - axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
910        glVertex3f(cen.x + axis[0].x * len[0] + axis[1].x * len[1] + axis[2].x * len[2],
911                   cen.y + axis[0].y * len[0] + axis[1].y * len[1] + axis[2].y * len[2],
912                   cen.z + axis[0].z * len[0] + axis[1].z * len[1] + axis[2].z * len[2]);
913        glVertex3f(cen.x + axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
914                   cen.y + axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
915                   cen.z + axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
916        glVertex3f(cen.x - axis[0].x * len[0] - axis[1].x * len[1] + axis[2].x * len[2],
917                   cen.y - axis[0].y * len[0] - axis[1].y * len[1] + axis[2].y * len[2],
918                   cen.z - axis[0].z * len[0] - axis[1].z * len[1] + axis[2].z * len[2]);
919        glEnd();
920      }
921
922      if( drawMode & DRAW_BV_BLENDED)
923        glColor3f(color.x, color.y, color.z);
924    }
925  }
926
927  /* DRAW SEPARATING PLANE */
928  if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL)
929  {
930    if( !(drawMode & DRAW_SINGLE && depth != 0))
931    {
932      if( drawMode & DRAW_BV_BLENDED)
933        glColor4f(color.x, color.y, color.z, .6);
934
935      /* now draw the separation plane */
936      Vector a1 = this->bvElement->axis[(this->longestAxisIndex + 1)%3];
937      Vector a2 = this->bvElement->axis[(this->longestAxisIndex + 2)%3];
938      Vector c = this->bvElement->center;
939      float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3];
940      float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3];
941      glBegin(GL_QUADS);
942      glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2);
943      glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2);
944      glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2);
945      glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2);
946      glEnd();
947
948      if( drawMode & DRAW_BV_BLENDED)
949        glColor4f(color.x, color.y, color.z, 1.0);
950
951    }
952  }
953
954
955
956  if (depth > 0)
957  {
958    if( this->nodeLeft != NULL)
959      this->nodeLeft->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(15.0,0.0,0.0)), false);
960    if( this->nodeRight != NULL)
961      this->nodeRight->drawBV(depth - 1, drawMode, Color::HSVtoRGB(Color::RGBtoHSV(color)+Vector(30.0,0.0,0.0)), false);
962  }
963  this->bvElement->bCollided = false;
964
965  if (top)
966    glPopAttrib();
967}
968
969
970
971void OBBTreeNode::debug() const
972{
973  PRINT(0)("========OBBTreeNode::debug()=====\n");
974  PRINT(0)(" Current depth: %i", this->depth);
975  PRINT(0)(" ");
976  PRINT(0)("=================================\n");
977}
Note: See TracBrowser for help on using the repository browser.