| 1 | /* |
|---|
| 2 | * tclWinTime.c -- |
|---|
| 3 | * |
|---|
| 4 | * Contains Windows specific versions of Tcl functions that obtain time |
|---|
| 5 | * values from the operating system. |
|---|
| 6 | * |
|---|
| 7 | * Copyright 1995-1998 by Sun Microsystems, Inc. |
|---|
| 8 | * |
|---|
| 9 | * See the file "license.terms" for information on usage and redistribution of |
|---|
| 10 | * this file, and for a DISCLAIMER OF ALL WARRANTIES. |
|---|
| 11 | * |
|---|
| 12 | * RCS: @(#) $Id: tclWinTime.c,v 1.33 2005/11/04 00:06:51 dkf Exp $ |
|---|
| 13 | */ |
|---|
| 14 | |
|---|
| 15 | #include "tclInt.h" |
|---|
| 16 | |
|---|
| 17 | #define SECSPERDAY (60L * 60L * 24L) |
|---|
| 18 | #define SECSPERYEAR (SECSPERDAY * 365L) |
|---|
| 19 | #define SECSPER4YEAR (SECSPERYEAR * 4L + SECSPERDAY) |
|---|
| 20 | |
|---|
| 21 | /* |
|---|
| 22 | * Number of samples over which to estimate the performance counter. |
|---|
| 23 | */ |
|---|
| 24 | |
|---|
| 25 | #define SAMPLES 64 |
|---|
| 26 | |
|---|
| 27 | /* |
|---|
| 28 | * The following arrays contain the day of year for the last day of each |
|---|
| 29 | * month, where index 1 is January. |
|---|
| 30 | */ |
|---|
| 31 | |
|---|
| 32 | static int normalDays[] = { |
|---|
| 33 | -1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364 |
|---|
| 34 | }; |
|---|
| 35 | |
|---|
| 36 | static int leapDays[] = { |
|---|
| 37 | -1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 |
|---|
| 38 | }; |
|---|
| 39 | |
|---|
| 40 | typedef struct ThreadSpecificData { |
|---|
| 41 | char tzName[64]; /* Time zone name */ |
|---|
| 42 | struct tm tm; /* time information */ |
|---|
| 43 | } ThreadSpecificData; |
|---|
| 44 | static Tcl_ThreadDataKey dataKey; |
|---|
| 45 | |
|---|
| 46 | /* |
|---|
| 47 | * Data for managing high-resolution timers. |
|---|
| 48 | */ |
|---|
| 49 | |
|---|
| 50 | typedef struct TimeInfo { |
|---|
| 51 | CRITICAL_SECTION cs; /* Mutex guarding this structure. */ |
|---|
| 52 | int initialized; /* Flag == 1 if this structure is |
|---|
| 53 | * initialized. */ |
|---|
| 54 | int perfCounterAvailable; /* Flag == 1 if the hardware has a performance |
|---|
| 55 | * counter. */ |
|---|
| 56 | HANDLE calibrationThread; /* Handle to the thread that keeps the virtual |
|---|
| 57 | * clock calibrated. */ |
|---|
| 58 | HANDLE readyEvent; /* System event used to trigger the requesting |
|---|
| 59 | * thread when the clock calibration procedure |
|---|
| 60 | * is initialized for the first time. */ |
|---|
| 61 | HANDLE exitEvent; /* Event to signal out of an exit handler to |
|---|
| 62 | * tell the calibration loop to terminate. */ |
|---|
| 63 | LARGE_INTEGER nominalFreq; /* Nominal frequency of the system performance |
|---|
| 64 | * counter, that is, the value returned from |
|---|
| 65 | * QueryPerformanceFrequency. */ |
|---|
| 66 | |
|---|
| 67 | /* |
|---|
| 68 | * The following values are used for calculating virtual time. Virtual |
|---|
| 69 | * time is always equal to: |
|---|
| 70 | * lastFileTime + (current perf counter - lastCounter) |
|---|
| 71 | * * 10000000 / curCounterFreq |
|---|
| 72 | * and lastFileTime and lastCounter are updated any time that virtual time |
|---|
| 73 | * is returned to a caller. |
|---|
| 74 | */ |
|---|
| 75 | |
|---|
| 76 | ULARGE_INTEGER fileTimeLastCall; |
|---|
| 77 | LARGE_INTEGER perfCounterLastCall; |
|---|
| 78 | LARGE_INTEGER curCounterFreq; |
|---|
| 79 | |
|---|
| 80 | /* |
|---|
| 81 | * Data used in developing the estimate of performance counter frequency |
|---|
| 82 | */ |
|---|
| 83 | |
|---|
| 84 | Tcl_WideUInt fileTimeSample[SAMPLES]; |
|---|
| 85 | /* Last 64 samples of system time. */ |
|---|
| 86 | Tcl_WideInt perfCounterSample[SAMPLES]; |
|---|
| 87 | /* Last 64 samples of performance counter. */ |
|---|
| 88 | int sampleNo; /* Current sample number. */ |
|---|
| 89 | } TimeInfo; |
|---|
| 90 | |
|---|
| 91 | static TimeInfo timeInfo = { |
|---|
| 92 | { NULL }, |
|---|
| 93 | 0, |
|---|
| 94 | 0, |
|---|
| 95 | (HANDLE) NULL, |
|---|
| 96 | (HANDLE) NULL, |
|---|
| 97 | (HANDLE) NULL, |
|---|
| 98 | #ifdef HAVE_CAST_TO_UNION |
|---|
| 99 | (LARGE_INTEGER) (Tcl_WideInt) 0, |
|---|
| 100 | (ULARGE_INTEGER) (DWORDLONG) 0, |
|---|
| 101 | (LARGE_INTEGER) (Tcl_WideInt) 0, |
|---|
| 102 | (LARGE_INTEGER) (Tcl_WideInt) 0, |
|---|
| 103 | #else |
|---|
| 104 | 0, |
|---|
| 105 | 0, |
|---|
| 106 | 0, |
|---|
| 107 | 0, |
|---|
| 108 | #endif |
|---|
| 109 | { 0 }, |
|---|
| 110 | { 0 }, |
|---|
| 111 | 0 |
|---|
| 112 | }; |
|---|
| 113 | |
|---|
| 114 | /* |
|---|
| 115 | * Declarations for functions defined later in this file. |
|---|
| 116 | */ |
|---|
| 117 | |
|---|
| 118 | static struct tm * ComputeGMT(const time_t *tp); |
|---|
| 119 | static void StopCalibration(ClientData clientData); |
|---|
| 120 | static DWORD WINAPI CalibrationThread(LPVOID arg); |
|---|
| 121 | static void UpdateTimeEachSecond(void); |
|---|
| 122 | static void ResetCounterSamples(Tcl_WideUInt fileTime, |
|---|
| 123 | Tcl_WideInt perfCounter, Tcl_WideInt perfFreq); |
|---|
| 124 | static Tcl_WideInt AccumulateSample(Tcl_WideInt perfCounter, |
|---|
| 125 | Tcl_WideUInt fileTime); |
|---|
| 126 | static void NativeScaleTime(Tcl_Time* timebuf, |
|---|
| 127 | ClientData clientData); |
|---|
| 128 | static void NativeGetTime(Tcl_Time* timebuf, |
|---|
| 129 | ClientData clientData); |
|---|
| 130 | |
|---|
| 131 | /* |
|---|
| 132 | * TIP #233 (Virtualized Time): Data for the time hooks, if any. |
|---|
| 133 | */ |
|---|
| 134 | |
|---|
| 135 | Tcl_GetTimeProc *tclGetTimeProcPtr = NativeGetTime; |
|---|
| 136 | Tcl_ScaleTimeProc *tclScaleTimeProcPtr = NativeScaleTime; |
|---|
| 137 | ClientData tclTimeClientData = NULL; |
|---|
| 138 | |
|---|
| 139 | /* |
|---|
| 140 | *---------------------------------------------------------------------- |
|---|
| 141 | * |
|---|
| 142 | * TclpGetSeconds -- |
|---|
| 143 | * |
|---|
| 144 | * This procedure returns the number of seconds from the epoch. On most |
|---|
| 145 | * Unix systems the epoch is Midnight Jan 1, 1970 GMT. |
|---|
| 146 | * |
|---|
| 147 | * Results: |
|---|
| 148 | * Number of seconds from the epoch. |
|---|
| 149 | * |
|---|
| 150 | * Side effects: |
|---|
| 151 | * None. |
|---|
| 152 | * |
|---|
| 153 | *---------------------------------------------------------------------- |
|---|
| 154 | */ |
|---|
| 155 | |
|---|
| 156 | unsigned long |
|---|
| 157 | TclpGetSeconds(void) |
|---|
| 158 | { |
|---|
| 159 | Tcl_Time t; |
|---|
| 160 | |
|---|
| 161 | (*tclGetTimeProcPtr) (&t, tclTimeClientData); /* Tcl_GetTime inlined. */ |
|---|
| 162 | return t.sec; |
|---|
| 163 | } |
|---|
| 164 | |
|---|
| 165 | /* |
|---|
| 166 | *---------------------------------------------------------------------- |
|---|
| 167 | * |
|---|
| 168 | * TclpGetClicks -- |
|---|
| 169 | * |
|---|
| 170 | * This procedure returns a value that represents the highest resolution |
|---|
| 171 | * clock available on the system. There are no guarantees on what the |
|---|
| 172 | * resolution will be. In Tcl we will call this value a "click". The |
|---|
| 173 | * start time is also system dependant. |
|---|
| 174 | * |
|---|
| 175 | * Results: |
|---|
| 176 | * Number of clicks from some start time. |
|---|
| 177 | * |
|---|
| 178 | * Side effects: |
|---|
| 179 | * None. |
|---|
| 180 | * |
|---|
| 181 | *---------------------------------------------------------------------- |
|---|
| 182 | */ |
|---|
| 183 | |
|---|
| 184 | unsigned long |
|---|
| 185 | TclpGetClicks(void) |
|---|
| 186 | { |
|---|
| 187 | /* |
|---|
| 188 | * Use the Tcl_GetTime abstraction to get the time in microseconds, as |
|---|
| 189 | * nearly as we can, and return it. |
|---|
| 190 | */ |
|---|
| 191 | |
|---|
| 192 | Tcl_Time now; /* Current Tcl time */ |
|---|
| 193 | unsigned long retval; /* Value to return */ |
|---|
| 194 | |
|---|
| 195 | (*tclGetTimeProcPtr) (&now, tclTimeClientData); /* Tcl_GetTime inlined */ |
|---|
| 196 | |
|---|
| 197 | retval = (now.sec * 1000000) + now.usec; |
|---|
| 198 | return retval; |
|---|
| 199 | |
|---|
| 200 | } |
|---|
| 201 | |
|---|
| 202 | /* |
|---|
| 203 | *---------------------------------------------------------------------- |
|---|
| 204 | * |
|---|
| 205 | * TclpGetTimeZone -- |
|---|
| 206 | * |
|---|
| 207 | * Determines the current timezone. The method varies wildly between |
|---|
| 208 | * different Platform implementations, so its hidden in this function. |
|---|
| 209 | * |
|---|
| 210 | * Results: |
|---|
| 211 | * Minutes west of GMT. |
|---|
| 212 | * |
|---|
| 213 | * Side effects: |
|---|
| 214 | * None. |
|---|
| 215 | * |
|---|
| 216 | *---------------------------------------------------------------------- |
|---|
| 217 | */ |
|---|
| 218 | |
|---|
| 219 | int |
|---|
| 220 | TclpGetTimeZone( |
|---|
| 221 | unsigned long currentTime) |
|---|
| 222 | { |
|---|
| 223 | int timeZone; |
|---|
| 224 | |
|---|
| 225 | tzset(); |
|---|
| 226 | timeZone = timezone / 60; |
|---|
| 227 | |
|---|
| 228 | return timeZone; |
|---|
| 229 | } |
|---|
| 230 | |
|---|
| 231 | /* |
|---|
| 232 | *---------------------------------------------------------------------- |
|---|
| 233 | * |
|---|
| 234 | * Tcl_GetTime -- |
|---|
| 235 | * |
|---|
| 236 | * Gets the current system time in seconds and microseconds since the |
|---|
| 237 | * beginning of the epoch: 00:00 UCT, January 1, 1970. |
|---|
| 238 | * |
|---|
| 239 | * Results: |
|---|
| 240 | * Returns the current time in timePtr. |
|---|
| 241 | * |
|---|
| 242 | * Side effects: |
|---|
| 243 | * On the first call, initializes a set of static variables to keep track |
|---|
| 244 | * of the base value of the performance counter, the corresponding wall |
|---|
| 245 | * clock (obtained through ftime) and the frequency of the performance |
|---|
| 246 | * counter. Also spins a thread whose function is to wake up periodically |
|---|
| 247 | * and monitor these values, adjusting them as necessary to correct for |
|---|
| 248 | * drift in the performance counter's oscillator. |
|---|
| 249 | * |
|---|
| 250 | *---------------------------------------------------------------------- |
|---|
| 251 | */ |
|---|
| 252 | |
|---|
| 253 | void |
|---|
| 254 | Tcl_GetTime( |
|---|
| 255 | Tcl_Time *timePtr) /* Location to store time information. */ |
|---|
| 256 | { |
|---|
| 257 | (*tclGetTimeProcPtr) (timePtr, tclTimeClientData); |
|---|
| 258 | } |
|---|
| 259 | |
|---|
| 260 | /* |
|---|
| 261 | *---------------------------------------------------------------------- |
|---|
| 262 | * |
|---|
| 263 | * NativeScaleTime -- |
|---|
| 264 | * |
|---|
| 265 | * TIP #233: Scale from virtual time to the real-time. For native scaling |
|---|
| 266 | * the relationship is 1:1 and nothing has to be done. |
|---|
| 267 | * |
|---|
| 268 | * Results: |
|---|
| 269 | * Scales the time in timePtr. |
|---|
| 270 | * |
|---|
| 271 | * Side effects: |
|---|
| 272 | * See above. |
|---|
| 273 | * |
|---|
| 274 | *---------------------------------------------------------------------- |
|---|
| 275 | */ |
|---|
| 276 | |
|---|
| 277 | static void |
|---|
| 278 | NativeScaleTime( |
|---|
| 279 | Tcl_Time *timePtr, |
|---|
| 280 | ClientData clientData) |
|---|
| 281 | { |
|---|
| 282 | /* |
|---|
| 283 | * Native scale is 1:1. Nothing is done. |
|---|
| 284 | */ |
|---|
| 285 | } |
|---|
| 286 | |
|---|
| 287 | /* |
|---|
| 288 | *---------------------------------------------------------------------- |
|---|
| 289 | * |
|---|
| 290 | * NativeGetTime -- |
|---|
| 291 | * |
|---|
| 292 | * TIP #233: Gets the current system time in seconds and microseconds |
|---|
| 293 | * since the beginning of the epoch: 00:00 UCT, January 1, 1970. |
|---|
| 294 | * |
|---|
| 295 | * Results: |
|---|
| 296 | * Returns the current time in timePtr. |
|---|
| 297 | * |
|---|
| 298 | * Side effects: |
|---|
| 299 | * On the first call, initializes a set of static variables to keep track |
|---|
| 300 | * of the base value of the performance counter, the corresponding wall |
|---|
| 301 | * clock (obtained through ftime) and the frequency of the performance |
|---|
| 302 | * counter. Also spins a thread whose function is to wake up periodically |
|---|
| 303 | * and monitor these values, adjusting them as necessary to correct for |
|---|
| 304 | * drift in the performance counter's oscillator. |
|---|
| 305 | * |
|---|
| 306 | *---------------------------------------------------------------------- |
|---|
| 307 | */ |
|---|
| 308 | |
|---|
| 309 | static void |
|---|
| 310 | NativeGetTime( |
|---|
| 311 | Tcl_Time *timePtr, |
|---|
| 312 | ClientData clientData) |
|---|
| 313 | { |
|---|
| 314 | struct timeb t; |
|---|
| 315 | int useFtime = 1; /* Flag == TRUE if we need to fall back on |
|---|
| 316 | * ftime rather than using the perf counter. */ |
|---|
| 317 | |
|---|
| 318 | /* |
|---|
| 319 | * Initialize static storage on the first trip through. |
|---|
| 320 | * |
|---|
| 321 | * Note: Outer check for 'initialized' is a performance win since it |
|---|
| 322 | * avoids an extra mutex lock in the common case. |
|---|
| 323 | */ |
|---|
| 324 | |
|---|
| 325 | if (!timeInfo.initialized) { |
|---|
| 326 | TclpInitLock(); |
|---|
| 327 | if (!timeInfo.initialized) { |
|---|
| 328 | timeInfo.perfCounterAvailable = |
|---|
| 329 | QueryPerformanceFrequency(&timeInfo.nominalFreq); |
|---|
| 330 | |
|---|
| 331 | /* |
|---|
| 332 | * Some hardware abstraction layers use the CPU clock in place of |
|---|
| 333 | * the real-time clock as a performance counter reference. This |
|---|
| 334 | * results in: |
|---|
| 335 | * - inconsistent results among the processors on |
|---|
| 336 | * multi-processor systems. |
|---|
| 337 | * - unpredictable changes in performance counter frequency on |
|---|
| 338 | * "gearshift" processors such as Transmeta and SpeedStep. |
|---|
| 339 | * |
|---|
| 340 | * There seems to be no way to test whether the performance |
|---|
| 341 | * counter is reliable, but a useful heuristic is that if its |
|---|
| 342 | * frequency is 1.193182 MHz or 3.579545 MHz, it's derived from a |
|---|
| 343 | * colorburst crystal and is therefore the RTC rather than the |
|---|
| 344 | * TSC. |
|---|
| 345 | * |
|---|
| 346 | * A sloppier but serviceable heuristic is that the RTC crystal is |
|---|
| 347 | * normally less than 15 MHz while the TSC crystal is virtually |
|---|
| 348 | * assured to be greater than 100 MHz. Since Win98SE appears to |
|---|
| 349 | * fiddle with the definition of the perf counter frequency |
|---|
| 350 | * (perhaps in an attempt to calibrate the clock?), we use the |
|---|
| 351 | * latter rule rather than an exact match. |
|---|
| 352 | * |
|---|
| 353 | * We also assume (perhaps questionably) that the vendors have |
|---|
| 354 | * gotten their act together on Win64, so bypass all this rubbish |
|---|
| 355 | * on that platform. |
|---|
| 356 | */ |
|---|
| 357 | |
|---|
| 358 | #if !defined(_WIN64) |
|---|
| 359 | if (timeInfo.perfCounterAvailable |
|---|
| 360 | /* |
|---|
| 361 | * The following lines would do an exact match on crystal |
|---|
| 362 | * frequency: |
|---|
| 363 | * && timeInfo.nominalFreq.QuadPart != (Tcl_WideInt)1193182 |
|---|
| 364 | * && timeInfo.nominalFreq.QuadPart != (Tcl_WideInt)3579545 |
|---|
| 365 | */ |
|---|
| 366 | && timeInfo.nominalFreq.QuadPart > (Tcl_WideInt) 15000000){ |
|---|
| 367 | /* |
|---|
| 368 | * As an exception, if every logical processor on the system |
|---|
| 369 | * is on the same chip, we use the performance counter anyway, |
|---|
| 370 | * presuming that everyone's TSC is locked to the same |
|---|
| 371 | * oscillator. |
|---|
| 372 | */ |
|---|
| 373 | |
|---|
| 374 | SYSTEM_INFO systemInfo; |
|---|
| 375 | unsigned int regs[4]; |
|---|
| 376 | |
|---|
| 377 | GetSystemInfo(&systemInfo); |
|---|
| 378 | if (TclWinCPUID(0, regs) == TCL_OK |
|---|
| 379 | && regs[1] == 0x756e6547 /* "Genu" */ |
|---|
| 380 | && regs[3] == 0x49656e69 /* "ineI" */ |
|---|
| 381 | && regs[2] == 0x6c65746e /* "ntel" */ |
|---|
| 382 | && TclWinCPUID(1, regs) == TCL_OK |
|---|
| 383 | && ((regs[0]&0x00000F00) == 0x00000F00 /* Pentium 4 */ |
|---|
| 384 | || ((regs[0] & 0x00F00000) /* Extended family */ |
|---|
| 385 | && (regs[3] & 0x10000000))) /* Hyperthread */ |
|---|
| 386 | && (((regs[1]&0x00FF0000) >> 16)/* CPU count */ |
|---|
| 387 | == systemInfo.dwNumberOfProcessors)) { |
|---|
| 388 | timeInfo.perfCounterAvailable = TRUE; |
|---|
| 389 | } else { |
|---|
| 390 | timeInfo.perfCounterAvailable = FALSE; |
|---|
| 391 | } |
|---|
| 392 | } |
|---|
| 393 | #endif /* above code is Win32 only */ |
|---|
| 394 | |
|---|
| 395 | /* |
|---|
| 396 | * If the performance counter is available, start a thread to |
|---|
| 397 | * calibrate it. |
|---|
| 398 | */ |
|---|
| 399 | |
|---|
| 400 | if (timeInfo.perfCounterAvailable) { |
|---|
| 401 | DWORD id; |
|---|
| 402 | |
|---|
| 403 | InitializeCriticalSection(&timeInfo.cs); |
|---|
| 404 | timeInfo.readyEvent = CreateEvent(NULL, FALSE, FALSE, NULL); |
|---|
| 405 | timeInfo.exitEvent = CreateEvent(NULL, FALSE, FALSE, NULL); |
|---|
| 406 | timeInfo.calibrationThread = CreateThread(NULL, 256, |
|---|
| 407 | CalibrationThread, (LPVOID) NULL, 0, &id); |
|---|
| 408 | SetThreadPriority(timeInfo.calibrationThread, |
|---|
| 409 | THREAD_PRIORITY_HIGHEST); |
|---|
| 410 | |
|---|
| 411 | /* |
|---|
| 412 | * Wait for the thread just launched to start running, and |
|---|
| 413 | * create an exit handler that kills it so that it doesn't |
|---|
| 414 | * outlive unloading tclXX.dll |
|---|
| 415 | */ |
|---|
| 416 | |
|---|
| 417 | WaitForSingleObject(timeInfo.readyEvent, INFINITE); |
|---|
| 418 | CloseHandle(timeInfo.readyEvent); |
|---|
| 419 | Tcl_CreateExitHandler(StopCalibration, (ClientData) NULL); |
|---|
| 420 | } |
|---|
| 421 | timeInfo.initialized = TRUE; |
|---|
| 422 | } |
|---|
| 423 | TclpInitUnlock(); |
|---|
| 424 | } |
|---|
| 425 | |
|---|
| 426 | if (timeInfo.perfCounterAvailable && timeInfo.curCounterFreq.QuadPart!=0) { |
|---|
| 427 | /* |
|---|
| 428 | * Query the performance counter and use it to calculate the current |
|---|
| 429 | * time. |
|---|
| 430 | */ |
|---|
| 431 | |
|---|
| 432 | LARGE_INTEGER curCounter; |
|---|
| 433 | /* Current performance counter. */ |
|---|
| 434 | Tcl_WideInt curFileTime;/* Current estimated time, expressed as 100-ns |
|---|
| 435 | * ticks since the Windows epoch. */ |
|---|
| 436 | static LARGE_INTEGER posixEpoch; |
|---|
| 437 | /* Posix epoch expressed as 100-ns ticks since |
|---|
| 438 | * the windows epoch. */ |
|---|
| 439 | Tcl_WideInt usecSincePosixEpoch; |
|---|
| 440 | /* Current microseconds since Posix epoch. */ |
|---|
| 441 | |
|---|
| 442 | posixEpoch.LowPart = 0xD53E8000; |
|---|
| 443 | posixEpoch.HighPart = 0x019DB1DE; |
|---|
| 444 | |
|---|
| 445 | EnterCriticalSection(&timeInfo.cs); |
|---|
| 446 | |
|---|
| 447 | QueryPerformanceCounter(&curCounter); |
|---|
| 448 | |
|---|
| 449 | /* |
|---|
| 450 | * If it appears to be more than 1.1 seconds since the last trip |
|---|
| 451 | * through the calibration loop, the performance counter may have |
|---|
| 452 | * jumped forward. (See MSDN Knowledge Base article Q274323 for a |
|---|
| 453 | * description of the hardware problem that makes this test |
|---|
| 454 | * necessary.) If the counter jumps, we don't want to use it directly. |
|---|
| 455 | * Instead, we must return system time. Eventually, the calibration |
|---|
| 456 | * loop should recover. |
|---|
| 457 | */ |
|---|
| 458 | |
|---|
| 459 | if (curCounter.QuadPart - timeInfo.perfCounterLastCall.QuadPart < |
|---|
| 460 | 11 * timeInfo.curCounterFreq.QuadPart / 10) { |
|---|
| 461 | curFileTime = timeInfo.fileTimeLastCall.QuadPart + |
|---|
| 462 | ((curCounter.QuadPart - timeInfo.perfCounterLastCall.QuadPart) |
|---|
| 463 | * 10000000 / timeInfo.curCounterFreq.QuadPart); |
|---|
| 464 | timeInfo.fileTimeLastCall.QuadPart = curFileTime; |
|---|
| 465 | timeInfo.perfCounterLastCall.QuadPart = curCounter.QuadPart; |
|---|
| 466 | usecSincePosixEpoch = (curFileTime - posixEpoch.QuadPart) / 10; |
|---|
| 467 | timePtr->sec = (long) (usecSincePosixEpoch / 1000000); |
|---|
| 468 | timePtr->usec = (unsigned long) (usecSincePosixEpoch % 1000000); |
|---|
| 469 | useFtime = 0; |
|---|
| 470 | } |
|---|
| 471 | |
|---|
| 472 | LeaveCriticalSection(&timeInfo.cs); |
|---|
| 473 | } |
|---|
| 474 | |
|---|
| 475 | if (useFtime) { |
|---|
| 476 | /* |
|---|
| 477 | * High resolution timer is not available. Just use ftime. |
|---|
| 478 | */ |
|---|
| 479 | |
|---|
| 480 | ftime(&t); |
|---|
| 481 | timePtr->sec = (long)t.time; |
|---|
| 482 | timePtr->usec = t.millitm * 1000; |
|---|
| 483 | } |
|---|
| 484 | } |
|---|
| 485 | |
|---|
| 486 | /* |
|---|
| 487 | *---------------------------------------------------------------------- |
|---|
| 488 | * |
|---|
| 489 | * StopCalibration -- |
|---|
| 490 | * |
|---|
| 491 | * Turns off the calibration thread in preparation for exiting the |
|---|
| 492 | * process. |
|---|
| 493 | * |
|---|
| 494 | * Results: |
|---|
| 495 | * None. |
|---|
| 496 | * |
|---|
| 497 | * Side effects: |
|---|
| 498 | * Sets the 'exitEvent' event in the 'timeInfo' structure to ask the |
|---|
| 499 | * thread in question to exit, and waits for it to do so. |
|---|
| 500 | * |
|---|
| 501 | *---------------------------------------------------------------------- |
|---|
| 502 | */ |
|---|
| 503 | |
|---|
| 504 | static void |
|---|
| 505 | StopCalibration( |
|---|
| 506 | ClientData unused) /* Client data is unused */ |
|---|
| 507 | { |
|---|
| 508 | SetEvent(timeInfo.exitEvent); |
|---|
| 509 | |
|---|
| 510 | /* |
|---|
| 511 | * If Tcl_Finalize was called from DllMain, the calibration thread is in a |
|---|
| 512 | * paused state so we need to timeout and continue. |
|---|
| 513 | */ |
|---|
| 514 | |
|---|
| 515 | WaitForSingleObject(timeInfo.calibrationThread, 100); |
|---|
| 516 | CloseHandle(timeInfo.exitEvent); |
|---|
| 517 | CloseHandle(timeInfo.calibrationThread); |
|---|
| 518 | } |
|---|
| 519 | |
|---|
| 520 | /* |
|---|
| 521 | *---------------------------------------------------------------------- |
|---|
| 522 | * |
|---|
| 523 | * TclpGetTZName -- |
|---|
| 524 | * |
|---|
| 525 | * Gets the current timezone string. |
|---|
| 526 | * |
|---|
| 527 | * Results: |
|---|
| 528 | * Returns a pointer to a static string, or NULL on failure. |
|---|
| 529 | * |
|---|
| 530 | * Side effects: |
|---|
| 531 | * None. |
|---|
| 532 | * |
|---|
| 533 | *---------------------------------------------------------------------- |
|---|
| 534 | */ |
|---|
| 535 | |
|---|
| 536 | char * |
|---|
| 537 | TclpGetTZName( |
|---|
| 538 | int dst) |
|---|
| 539 | { |
|---|
| 540 | int len; |
|---|
| 541 | char *zone, *p; |
|---|
| 542 | TIME_ZONE_INFORMATION tz; |
|---|
| 543 | Tcl_Encoding encoding; |
|---|
| 544 | ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); |
|---|
| 545 | char *name = tsdPtr->tzName; |
|---|
| 546 | |
|---|
| 547 | /* |
|---|
| 548 | * tzset() under Borland doesn't seem to set up tzname[] at all. |
|---|
| 549 | * tzset() under MSVC has the following weird observed behavior: |
|---|
| 550 | * First time we call "clock format [clock seconds] -format %Z -gmt 1" |
|---|
| 551 | * we get "GMT", but on all subsequent calls we get the current time |
|---|
| 552 | * ezone string, even though env(TZ) is GMT and the variable _timezone |
|---|
| 553 | * is 0. |
|---|
| 554 | */ |
|---|
| 555 | |
|---|
| 556 | name[0] = '\0'; |
|---|
| 557 | |
|---|
| 558 | zone = getenv("TZ"); |
|---|
| 559 | if (zone != NULL) { |
|---|
| 560 | /* |
|---|
| 561 | * TZ is of form "NST-4:30NDT", where "NST" would be the name of the |
|---|
| 562 | * standard time zone for this area, "-4:30" is the offset from GMT in |
|---|
| 563 | * hours, and "NDT is the name of the daylight savings time zone in |
|---|
| 564 | * this area. The offset and DST strings are optional. |
|---|
| 565 | */ |
|---|
| 566 | |
|---|
| 567 | len = strlen(zone); |
|---|
| 568 | if (len > 3) { |
|---|
| 569 | len = 3; |
|---|
| 570 | } |
|---|
| 571 | if (dst != 0) { |
|---|
| 572 | /* |
|---|
| 573 | * Skip the offset string and get the DST string. |
|---|
| 574 | */ |
|---|
| 575 | |
|---|
| 576 | p = zone + len; |
|---|
| 577 | p += strspn(p, "+-:0123456789"); |
|---|
| 578 | if (*p != '\0') { |
|---|
| 579 | zone = p; |
|---|
| 580 | len = strlen(zone); |
|---|
| 581 | if (len > 3) { |
|---|
| 582 | len = 3; |
|---|
| 583 | } |
|---|
| 584 | } |
|---|
| 585 | } |
|---|
| 586 | Tcl_ExternalToUtf(NULL, NULL, zone, len, 0, NULL, name, |
|---|
| 587 | sizeof(tsdPtr->tzName), NULL, NULL, NULL); |
|---|
| 588 | } |
|---|
| 589 | if (name[0] == '\0') { |
|---|
| 590 | if (GetTimeZoneInformation(&tz) == TIME_ZONE_ID_UNKNOWN) { |
|---|
| 591 | /* |
|---|
| 592 | * MSDN: On NT this is returned if DST is not used in the current |
|---|
| 593 | * TZ |
|---|
| 594 | */ |
|---|
| 595 | |
|---|
| 596 | dst = 0; |
|---|
| 597 | } |
|---|
| 598 | encoding = Tcl_GetEncoding(NULL, "unicode"); |
|---|
| 599 | Tcl_ExternalToUtf(NULL, encoding, |
|---|
| 600 | (char *) ((dst) ? tz.DaylightName : tz.StandardName), -1, |
|---|
| 601 | 0, NULL, name, sizeof(tsdPtr->tzName), NULL, NULL, NULL); |
|---|
| 602 | Tcl_FreeEncoding(encoding); |
|---|
| 603 | } |
|---|
| 604 | return name; |
|---|
| 605 | } |
|---|
| 606 | |
|---|
| 607 | /* |
|---|
| 608 | *---------------------------------------------------------------------- |
|---|
| 609 | * |
|---|
| 610 | * TclpGetDate -- |
|---|
| 611 | * |
|---|
| 612 | * This function converts between seconds and struct tm. If useGMT is |
|---|
| 613 | * true, then the returned date will be in Greenwich Mean Time (GMT). |
|---|
| 614 | * Otherwise, it will be in the local time zone. |
|---|
| 615 | * |
|---|
| 616 | * Results: |
|---|
| 617 | * Returns a static tm structure. |
|---|
| 618 | * |
|---|
| 619 | * Side effects: |
|---|
| 620 | * None. |
|---|
| 621 | * |
|---|
| 622 | *---------------------------------------------------------------------- |
|---|
| 623 | */ |
|---|
| 624 | |
|---|
| 625 | struct tm * |
|---|
| 626 | TclpGetDate( |
|---|
| 627 | CONST time_t *t, |
|---|
| 628 | int useGMT) |
|---|
| 629 | { |
|---|
| 630 | struct tm *tmPtr; |
|---|
| 631 | time_t time; |
|---|
| 632 | |
|---|
| 633 | if (!useGMT) { |
|---|
| 634 | tzset(); |
|---|
| 635 | |
|---|
| 636 | /* |
|---|
| 637 | * If we are in the valid range, let the C run-time library handle it. |
|---|
| 638 | * Otherwise we need to fake it. Note that this algorithm ignores |
|---|
| 639 | * daylight savings time before the epoch. |
|---|
| 640 | */ |
|---|
| 641 | |
|---|
| 642 | /* |
|---|
| 643 | * Hm, Borland's localtime manages to return NULL under certain |
|---|
| 644 | * circumstances (e.g. wintime.test, test 1.2). Nobody tests for this, |
|---|
| 645 | * since 'localtime' isn't supposed to do this, possibly leading to |
|---|
| 646 | * crashes. |
|---|
| 647 | * |
|---|
| 648 | * Patch: We only call this function if we are at least one day into |
|---|
| 649 | * the epoch, else we handle it ourselves (like we do for times < 0). |
|---|
| 650 | * H. Giese, June 2003 |
|---|
| 651 | */ |
|---|
| 652 | |
|---|
| 653 | #ifdef __BORLANDC__ |
|---|
| 654 | #define LOCALTIME_VALIDITY_BOUNDARY SECSPERDAY |
|---|
| 655 | #else |
|---|
| 656 | #define LOCALTIME_VALIDITY_BOUNDARY 0 |
|---|
| 657 | #endif |
|---|
| 658 | |
|---|
| 659 | if (*t >= LOCALTIME_VALIDITY_BOUNDARY) { |
|---|
| 660 | return TclpLocaltime(t); |
|---|
| 661 | } |
|---|
| 662 | |
|---|
| 663 | time = *t - timezone; |
|---|
| 664 | |
|---|
| 665 | /* |
|---|
| 666 | * If we aren't near to overflowing the long, just add the bias and |
|---|
| 667 | * use the normal calculation. Otherwise we will need to adjust the |
|---|
| 668 | * result at the end. |
|---|
| 669 | */ |
|---|
| 670 | |
|---|
| 671 | if (*t < (LONG_MAX - 2*SECSPERDAY) && *t > (LONG_MIN + 2*SECSPERDAY)) { |
|---|
| 672 | tmPtr = ComputeGMT(&time); |
|---|
| 673 | } else { |
|---|
| 674 | tmPtr = ComputeGMT(t); |
|---|
| 675 | |
|---|
| 676 | tzset(); |
|---|
| 677 | |
|---|
| 678 | /* |
|---|
| 679 | * Add the bias directly to the tm structure to avoid overflow. |
|---|
| 680 | * Propagate seconds overflow into minutes, hours and days. |
|---|
| 681 | */ |
|---|
| 682 | |
|---|
| 683 | time = tmPtr->tm_sec - timezone; |
|---|
| 684 | tmPtr->tm_sec = (int)(time % 60); |
|---|
| 685 | if (tmPtr->tm_sec < 0) { |
|---|
| 686 | tmPtr->tm_sec += 60; |
|---|
| 687 | time -= 60; |
|---|
| 688 | } |
|---|
| 689 | |
|---|
| 690 | time = tmPtr->tm_min + time/60; |
|---|
| 691 | tmPtr->tm_min = (int)(time % 60); |
|---|
| 692 | if (tmPtr->tm_min < 0) { |
|---|
| 693 | tmPtr->tm_min += 60; |
|---|
| 694 | time -= 60; |
|---|
| 695 | } |
|---|
| 696 | |
|---|
| 697 | time = tmPtr->tm_hour + time/60; |
|---|
| 698 | tmPtr->tm_hour = (int)(time % 24); |
|---|
| 699 | if (tmPtr->tm_hour < 0) { |
|---|
| 700 | tmPtr->tm_hour += 24; |
|---|
| 701 | time -= 24; |
|---|
| 702 | } |
|---|
| 703 | |
|---|
| 704 | time /= 24; |
|---|
| 705 | tmPtr->tm_mday += (int)time; |
|---|
| 706 | tmPtr->tm_yday += (int)time; |
|---|
| 707 | tmPtr->tm_wday = (tmPtr->tm_wday + (int)time) % 7; |
|---|
| 708 | } |
|---|
| 709 | } else { |
|---|
| 710 | tmPtr = ComputeGMT(t); |
|---|
| 711 | } |
|---|
| 712 | return tmPtr; |
|---|
| 713 | } |
|---|
| 714 | |
|---|
| 715 | /* |
|---|
| 716 | *---------------------------------------------------------------------- |
|---|
| 717 | * |
|---|
| 718 | * ComputeGMT -- |
|---|
| 719 | * |
|---|
| 720 | * This function computes GMT given the number of seconds since the epoch |
|---|
| 721 | * (midnight Jan 1 1970). |
|---|
| 722 | * |
|---|
| 723 | * Results: |
|---|
| 724 | * Returns a (per thread) statically allocated struct tm. |
|---|
| 725 | * |
|---|
| 726 | * Side effects: |
|---|
| 727 | * Updates the values of the static struct tm. |
|---|
| 728 | * |
|---|
| 729 | *---------------------------------------------------------------------- |
|---|
| 730 | */ |
|---|
| 731 | |
|---|
| 732 | static struct tm * |
|---|
| 733 | ComputeGMT( |
|---|
| 734 | const time_t *tp) |
|---|
| 735 | { |
|---|
| 736 | struct tm *tmPtr; |
|---|
| 737 | long tmp, rem; |
|---|
| 738 | int isLeap; |
|---|
| 739 | int *days; |
|---|
| 740 | ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); |
|---|
| 741 | |
|---|
| 742 | tmPtr = &tsdPtr->tm; |
|---|
| 743 | |
|---|
| 744 | /* |
|---|
| 745 | * Compute the 4 year span containing the specified time. |
|---|
| 746 | */ |
|---|
| 747 | |
|---|
| 748 | tmp = (long)(*tp / SECSPER4YEAR); |
|---|
| 749 | rem = (long)(*tp % SECSPER4YEAR); |
|---|
| 750 | |
|---|
| 751 | /* |
|---|
| 752 | * Correct for weird mod semantics so the remainder is always positive. |
|---|
| 753 | */ |
|---|
| 754 | |
|---|
| 755 | if (rem < 0) { |
|---|
| 756 | tmp--; |
|---|
| 757 | rem += SECSPER4YEAR; |
|---|
| 758 | } |
|---|
| 759 | |
|---|
| 760 | /* |
|---|
| 761 | * Compute the year after 1900 by taking the 4 year span and adjusting for |
|---|
| 762 | * the remainder. This works because 2000 is a leap year, and 1900/2100 |
|---|
| 763 | * are out of the range. |
|---|
| 764 | */ |
|---|
| 765 | |
|---|
| 766 | tmp = (tmp * 4) + 70; |
|---|
| 767 | isLeap = 0; |
|---|
| 768 | if (rem >= SECSPERYEAR) { /* 1971, etc. */ |
|---|
| 769 | tmp++; |
|---|
| 770 | rem -= SECSPERYEAR; |
|---|
| 771 | if (rem >= SECSPERYEAR) { /* 1972, etc. */ |
|---|
| 772 | tmp++; |
|---|
| 773 | rem -= SECSPERYEAR; |
|---|
| 774 | if (rem >= SECSPERYEAR + SECSPERDAY) { /* 1973, etc. */ |
|---|
| 775 | tmp++; |
|---|
| 776 | rem -= SECSPERYEAR + SECSPERDAY; |
|---|
| 777 | } else { |
|---|
| 778 | isLeap = 1; |
|---|
| 779 | } |
|---|
| 780 | } |
|---|
| 781 | } |
|---|
| 782 | tmPtr->tm_year = tmp; |
|---|
| 783 | |
|---|
| 784 | /* |
|---|
| 785 | * Compute the day of year and leave the seconds in the current day in the |
|---|
| 786 | * remainder. |
|---|
| 787 | */ |
|---|
| 788 | |
|---|
| 789 | tmPtr->tm_yday = rem / SECSPERDAY; |
|---|
| 790 | rem %= SECSPERDAY; |
|---|
| 791 | |
|---|
| 792 | /* |
|---|
| 793 | * Compute the time of day. |
|---|
| 794 | */ |
|---|
| 795 | |
|---|
| 796 | tmPtr->tm_hour = rem / 3600; |
|---|
| 797 | rem %= 3600; |
|---|
| 798 | tmPtr->tm_min = rem / 60; |
|---|
| 799 | tmPtr->tm_sec = rem % 60; |
|---|
| 800 | |
|---|
| 801 | /* |
|---|
| 802 | * Compute the month and day of month. |
|---|
| 803 | */ |
|---|
| 804 | |
|---|
| 805 | days = (isLeap) ? leapDays : normalDays; |
|---|
| 806 | for (tmp = 1; days[tmp] < tmPtr->tm_yday; tmp++) { |
|---|
| 807 | /* empty body */ |
|---|
| 808 | } |
|---|
| 809 | tmPtr->tm_mon = --tmp; |
|---|
| 810 | tmPtr->tm_mday = tmPtr->tm_yday - days[tmp]; |
|---|
| 811 | |
|---|
| 812 | /* |
|---|
| 813 | * Compute day of week. Epoch started on a Thursday. |
|---|
| 814 | */ |
|---|
| 815 | |
|---|
| 816 | tmPtr->tm_wday = (long)(*tp / SECSPERDAY) + 4; |
|---|
| 817 | if ((*tp % SECSPERDAY) < 0) { |
|---|
| 818 | tmPtr->tm_wday--; |
|---|
| 819 | } |
|---|
| 820 | tmPtr->tm_wday %= 7; |
|---|
| 821 | if (tmPtr->tm_wday < 0) { |
|---|
| 822 | tmPtr->tm_wday += 7; |
|---|
| 823 | } |
|---|
| 824 | |
|---|
| 825 | return tmPtr; |
|---|
| 826 | } |
|---|
| 827 | |
|---|
| 828 | /* |
|---|
| 829 | *---------------------------------------------------------------------- |
|---|
| 830 | * |
|---|
| 831 | * CalibrationThread -- |
|---|
| 832 | * |
|---|
| 833 | * Thread that manages calibration of the hi-resolution time derived from |
|---|
| 834 | * the performance counter, to keep it synchronized with the system |
|---|
| 835 | * clock. |
|---|
| 836 | * |
|---|
| 837 | * Parameters: |
|---|
| 838 | * arg - Client data from the CreateThread call. This parameter points to |
|---|
| 839 | * the static TimeInfo structure. |
|---|
| 840 | * |
|---|
| 841 | * Return value: |
|---|
| 842 | * None. This thread embeds an infinite loop. |
|---|
| 843 | * |
|---|
| 844 | * Side effects: |
|---|
| 845 | * At an interval of 1s, this thread performs virtual time discipline. |
|---|
| 846 | * |
|---|
| 847 | * Note: When this thread is entered, TclpInitLock has been called to |
|---|
| 848 | * safeguard the static storage. There is therefore no synchronization in the |
|---|
| 849 | * body of this procedure. |
|---|
| 850 | * |
|---|
| 851 | *---------------------------------------------------------------------- |
|---|
| 852 | */ |
|---|
| 853 | |
|---|
| 854 | static DWORD WINAPI |
|---|
| 855 | CalibrationThread( |
|---|
| 856 | LPVOID arg) |
|---|
| 857 | { |
|---|
| 858 | FILETIME curFileTime; |
|---|
| 859 | DWORD waitResult; |
|---|
| 860 | |
|---|
| 861 | /* |
|---|
| 862 | * Get initial system time and performance counter. |
|---|
| 863 | */ |
|---|
| 864 | |
|---|
| 865 | GetSystemTimeAsFileTime(&curFileTime); |
|---|
| 866 | QueryPerformanceCounter(&timeInfo.perfCounterLastCall); |
|---|
| 867 | QueryPerformanceFrequency(&timeInfo.curCounterFreq); |
|---|
| 868 | timeInfo.fileTimeLastCall.LowPart = curFileTime.dwLowDateTime; |
|---|
| 869 | timeInfo.fileTimeLastCall.HighPart = curFileTime.dwHighDateTime; |
|---|
| 870 | |
|---|
| 871 | ResetCounterSamples(timeInfo.fileTimeLastCall.QuadPart, |
|---|
| 872 | timeInfo.perfCounterLastCall.QuadPart, |
|---|
| 873 | timeInfo.curCounterFreq.QuadPart); |
|---|
| 874 | |
|---|
| 875 | /* |
|---|
| 876 | * Wake up the calling thread. When it wakes up, it will release the |
|---|
| 877 | * initialization lock. |
|---|
| 878 | */ |
|---|
| 879 | |
|---|
| 880 | SetEvent(timeInfo.readyEvent); |
|---|
| 881 | |
|---|
| 882 | /* |
|---|
| 883 | * Run the calibration once a second. |
|---|
| 884 | */ |
|---|
| 885 | |
|---|
| 886 | while (timeInfo.perfCounterAvailable) { |
|---|
| 887 | /* |
|---|
| 888 | * If the exitEvent is set, break out of the loop. |
|---|
| 889 | */ |
|---|
| 890 | |
|---|
| 891 | waitResult = WaitForSingleObjectEx(timeInfo.exitEvent, 1000, FALSE); |
|---|
| 892 | if (waitResult == WAIT_OBJECT_0) { |
|---|
| 893 | break; |
|---|
| 894 | } |
|---|
| 895 | UpdateTimeEachSecond(); |
|---|
| 896 | } |
|---|
| 897 | |
|---|
| 898 | /* lint */ |
|---|
| 899 | return (DWORD) 0; |
|---|
| 900 | } |
|---|
| 901 | |
|---|
| 902 | /* |
|---|
| 903 | *---------------------------------------------------------------------- |
|---|
| 904 | * |
|---|
| 905 | * UpdateTimeEachSecond -- |
|---|
| 906 | * |
|---|
| 907 | * Callback from the waitable timer in the clock calibration thread that |
|---|
| 908 | * updates system time. |
|---|
| 909 | * |
|---|
| 910 | * Parameters: |
|---|
| 911 | * info - Pointer to the static TimeInfo structure |
|---|
| 912 | * |
|---|
| 913 | * Results: |
|---|
| 914 | * None. |
|---|
| 915 | * |
|---|
| 916 | * Side effects: |
|---|
| 917 | * Performs virtual time calibration discipline. |
|---|
| 918 | * |
|---|
| 919 | *---------------------------------------------------------------------- |
|---|
| 920 | */ |
|---|
| 921 | |
|---|
| 922 | static void |
|---|
| 923 | UpdateTimeEachSecond(void) |
|---|
| 924 | { |
|---|
| 925 | LARGE_INTEGER curPerfCounter; |
|---|
| 926 | /* Current value returned from |
|---|
| 927 | * QueryPerformanceCounter. */ |
|---|
| 928 | FILETIME curSysTime; /* Current system time. */ |
|---|
| 929 | LARGE_INTEGER curFileTime; /* File time at the time this callback was |
|---|
| 930 | * scheduled. */ |
|---|
| 931 | Tcl_WideInt estFreq; /* Estimated perf counter frequency. */ |
|---|
| 932 | Tcl_WideInt vt0; /* Tcl time right now. */ |
|---|
| 933 | Tcl_WideInt vt1; /* Tcl time one second from now. */ |
|---|
| 934 | Tcl_WideInt tdiff; /* Difference between system clock and Tcl |
|---|
| 935 | * time. */ |
|---|
| 936 | Tcl_WideInt driftFreq; /* Frequency needed to drift virtual time into |
|---|
| 937 | * step over 1 second. */ |
|---|
| 938 | |
|---|
| 939 | /* |
|---|
| 940 | * Sample performance counter and system time. |
|---|
| 941 | */ |
|---|
| 942 | |
|---|
| 943 | QueryPerformanceCounter(&curPerfCounter); |
|---|
| 944 | GetSystemTimeAsFileTime(&curSysTime); |
|---|
| 945 | curFileTime.LowPart = curSysTime.dwLowDateTime; |
|---|
| 946 | curFileTime.HighPart = curSysTime.dwHighDateTime; |
|---|
| 947 | |
|---|
| 948 | EnterCriticalSection(&timeInfo.cs); |
|---|
| 949 | |
|---|
| 950 | /* |
|---|
| 951 | * We devide by timeInfo.curCounterFreq.QuadPart in several places. That |
|---|
| 952 | * value should always be positive on a correctly functioning system. But |
|---|
| 953 | * it is good to be defensive about such matters. So if something goes |
|---|
| 954 | * wrong and the value does goes to zero, we clear the |
|---|
| 955 | * timeInfo.perfCounterAvailable in order to cause the calibration thread |
|---|
| 956 | * to shut itself down, then return without additional processing. |
|---|
| 957 | */ |
|---|
| 958 | |
|---|
| 959 | if (timeInfo.curCounterFreq.QuadPart == 0){ |
|---|
| 960 | LeaveCriticalSection(&timeInfo.cs); |
|---|
| 961 | timeInfo.perfCounterAvailable = 0; |
|---|
| 962 | return; |
|---|
| 963 | } |
|---|
| 964 | |
|---|
| 965 | /* |
|---|
| 966 | * Several things may have gone wrong here that have to be checked for. |
|---|
| 967 | * (1) The performance counter may have jumped. |
|---|
| 968 | * (2) The system clock may have been reset. |
|---|
| 969 | * |
|---|
| 970 | * In either case, we'll need to reinitialize the circular buffer with |
|---|
| 971 | * samples relative to the current system time and the NOMINAL performance |
|---|
| 972 | * frequency (not the actual, because the actual has probably run slow in |
|---|
| 973 | * the first case). Our estimated frequency will be the nominal frequency. |
|---|
| 974 | * |
|---|
| 975 | * Store the current sample into the circular buffer of samples, and |
|---|
| 976 | * estimate the performance counter frequency. |
|---|
| 977 | */ |
|---|
| 978 | |
|---|
| 979 | estFreq = AccumulateSample(curPerfCounter.QuadPart, |
|---|
| 980 | (Tcl_WideUInt) curFileTime.QuadPart); |
|---|
| 981 | |
|---|
| 982 | /* |
|---|
| 983 | * We want to adjust things so that time appears to be continuous. |
|---|
| 984 | * Virtual file time, right now, is |
|---|
| 985 | * |
|---|
| 986 | * vt0 = 10000000 * (curPerfCounter - perfCounterLastCall) |
|---|
| 987 | * / curCounterFreq |
|---|
| 988 | * + fileTimeLastCall |
|---|
| 989 | * |
|---|
| 990 | * Ideally, we would like to drift the clock into place over a period of 2 |
|---|
| 991 | * sec, so that virtual time 2 sec from now will be |
|---|
| 992 | * |
|---|
| 993 | * vt1 = 20000000 + curFileTime |
|---|
| 994 | * |
|---|
| 995 | * The frequency that we need to use to drift the counter back into place |
|---|
| 996 | * is estFreq * 20000000 / (vt1 - vt0) |
|---|
| 997 | */ |
|---|
| 998 | |
|---|
| 999 | vt0 = 10000000 * (curPerfCounter.QuadPart |
|---|
| 1000 | - timeInfo.perfCounterLastCall.QuadPart) |
|---|
| 1001 | / timeInfo.curCounterFreq.QuadPart |
|---|
| 1002 | + timeInfo.fileTimeLastCall.QuadPart; |
|---|
| 1003 | vt1 = 20000000 + curFileTime.QuadPart; |
|---|
| 1004 | |
|---|
| 1005 | /* |
|---|
| 1006 | * If we've gotten more than a second away from system time, then drifting |
|---|
| 1007 | * the clock is going to be pretty hopeless. Just let it jump. Otherwise, |
|---|
| 1008 | * compute the drift frequency and fill in everything. |
|---|
| 1009 | */ |
|---|
| 1010 | |
|---|
| 1011 | tdiff = vt0 - curFileTime.QuadPart; |
|---|
| 1012 | if (tdiff > 10000000 || tdiff < -10000000) { |
|---|
| 1013 | timeInfo.fileTimeLastCall.QuadPart = curFileTime.QuadPart; |
|---|
| 1014 | timeInfo.curCounterFreq.QuadPart = estFreq; |
|---|
| 1015 | } else { |
|---|
| 1016 | driftFreq = estFreq * 20000000 / (vt1 - vt0); |
|---|
| 1017 | |
|---|
| 1018 | if (driftFreq > 1003*estFreq/1000) { |
|---|
| 1019 | driftFreq = 1003*estFreq/1000; |
|---|
| 1020 | } else if (driftFreq < 997*estFreq/1000) { |
|---|
| 1021 | driftFreq = 997*estFreq/1000; |
|---|
| 1022 | } |
|---|
| 1023 | |
|---|
| 1024 | timeInfo.fileTimeLastCall.QuadPart = vt0; |
|---|
| 1025 | timeInfo.curCounterFreq.QuadPart = driftFreq; |
|---|
| 1026 | } |
|---|
| 1027 | |
|---|
| 1028 | timeInfo.perfCounterLastCall.QuadPart = curPerfCounter.QuadPart; |
|---|
| 1029 | |
|---|
| 1030 | LeaveCriticalSection(&timeInfo.cs); |
|---|
| 1031 | } |
|---|
| 1032 | |
|---|
| 1033 | /* |
|---|
| 1034 | *---------------------------------------------------------------------- |
|---|
| 1035 | * |
|---|
| 1036 | * ResetCounterSamples -- |
|---|
| 1037 | * |
|---|
| 1038 | * Fills the sample arrays in 'timeInfo' with dummy values that will |
|---|
| 1039 | * yield the current performance counter and frequency. |
|---|
| 1040 | * |
|---|
| 1041 | * Results: |
|---|
| 1042 | * None. |
|---|
| 1043 | * |
|---|
| 1044 | * Side effects: |
|---|
| 1045 | * The array of samples is filled in so that it appears that there are |
|---|
| 1046 | * SAMPLES samples at one-second intervals, separated by precisely the |
|---|
| 1047 | * given frequency. |
|---|
| 1048 | * |
|---|
| 1049 | *---------------------------------------------------------------------- |
|---|
| 1050 | */ |
|---|
| 1051 | |
|---|
| 1052 | static void |
|---|
| 1053 | ResetCounterSamples( |
|---|
| 1054 | Tcl_WideUInt fileTime, /* Current file time */ |
|---|
| 1055 | Tcl_WideInt perfCounter, /* Current performance counter */ |
|---|
| 1056 | Tcl_WideInt perfFreq) /* Target performance frequency */ |
|---|
| 1057 | { |
|---|
| 1058 | int i; |
|---|
| 1059 | for (i=SAMPLES-1 ; i>=0 ; --i) { |
|---|
| 1060 | timeInfo.perfCounterSample[i] = perfCounter; |
|---|
| 1061 | timeInfo.fileTimeSample[i] = fileTime; |
|---|
| 1062 | perfCounter -= perfFreq; |
|---|
| 1063 | fileTime -= 10000000; |
|---|
| 1064 | } |
|---|
| 1065 | timeInfo.sampleNo = 0; |
|---|
| 1066 | } |
|---|
| 1067 | |
|---|
| 1068 | /* |
|---|
| 1069 | *---------------------------------------------------------------------- |
|---|
| 1070 | * |
|---|
| 1071 | * AccumulateSample -- |
|---|
| 1072 | * |
|---|
| 1073 | * Updates the circular buffer of performance counter and system time |
|---|
| 1074 | * samples with a new data point. |
|---|
| 1075 | * |
|---|
| 1076 | * Results: |
|---|
| 1077 | * None. |
|---|
| 1078 | * |
|---|
| 1079 | * Side effects: |
|---|
| 1080 | * The new data point replaces the oldest point in the circular buffer, |
|---|
| 1081 | * and the descriptive statistics are updated to accumulate the new |
|---|
| 1082 | * point. |
|---|
| 1083 | * |
|---|
| 1084 | * Several things may have gone wrong here that have to be checked for. |
|---|
| 1085 | * (1) The performance counter may have jumped. |
|---|
| 1086 | * (2) The system clock may have been reset. |
|---|
| 1087 | * |
|---|
| 1088 | * In either case, we'll need to reinitialize the circular buffer with samples |
|---|
| 1089 | * relative to the current system time and the NOMINAL performance frequency |
|---|
| 1090 | * (not the actual, because the actual has probably run slow in the first |
|---|
| 1091 | * case). |
|---|
| 1092 | */ |
|---|
| 1093 | |
|---|
| 1094 | static Tcl_WideInt |
|---|
| 1095 | AccumulateSample( |
|---|
| 1096 | Tcl_WideInt perfCounter, |
|---|
| 1097 | Tcl_WideUInt fileTime) |
|---|
| 1098 | { |
|---|
| 1099 | Tcl_WideUInt workFTSample; /* File time sample being removed from or |
|---|
| 1100 | * added to the circular buffer. */ |
|---|
| 1101 | Tcl_WideInt workPCSample; /* Performance counter sample being removed |
|---|
| 1102 | * from or added to the circular buffer. */ |
|---|
| 1103 | Tcl_WideUInt lastFTSample; /* Last file time sample recorded */ |
|---|
| 1104 | Tcl_WideInt lastPCSample; /* Last performance counter sample recorded */ |
|---|
| 1105 | Tcl_WideInt FTdiff; /* Difference between last FT and current */ |
|---|
| 1106 | Tcl_WideInt PCdiff; /* Difference between last PC and current */ |
|---|
| 1107 | Tcl_WideInt estFreq; /* Estimated performance counter frequency */ |
|---|
| 1108 | |
|---|
| 1109 | /* |
|---|
| 1110 | * Test for jumps and reset the samples if we have one. |
|---|
| 1111 | */ |
|---|
| 1112 | |
|---|
| 1113 | if (timeInfo.sampleNo == 0) { |
|---|
| 1114 | lastPCSample = |
|---|
| 1115 | timeInfo.perfCounterSample[timeInfo.sampleNo + SAMPLES - 1]; |
|---|
| 1116 | lastFTSample = |
|---|
| 1117 | timeInfo.fileTimeSample[timeInfo.sampleNo + SAMPLES - 1]; |
|---|
| 1118 | } else { |
|---|
| 1119 | lastPCSample = timeInfo.perfCounterSample[timeInfo.sampleNo - 1]; |
|---|
| 1120 | lastFTSample = timeInfo.fileTimeSample[timeInfo.sampleNo - 1]; |
|---|
| 1121 | } |
|---|
| 1122 | |
|---|
| 1123 | PCdiff = perfCounter - lastPCSample; |
|---|
| 1124 | FTdiff = fileTime - lastFTSample; |
|---|
| 1125 | if (PCdiff < timeInfo.nominalFreq.QuadPart * 9 / 10 |
|---|
| 1126 | || PCdiff > timeInfo.nominalFreq.QuadPart * 11 / 10 |
|---|
| 1127 | || FTdiff < 9000000 || FTdiff > 11000000) { |
|---|
| 1128 | ResetCounterSamples(fileTime, perfCounter, |
|---|
| 1129 | timeInfo.nominalFreq.QuadPart); |
|---|
| 1130 | return timeInfo.nominalFreq.QuadPart; |
|---|
| 1131 | } else { |
|---|
| 1132 | /* |
|---|
| 1133 | * Estimate the frequency. |
|---|
| 1134 | */ |
|---|
| 1135 | |
|---|
| 1136 | workPCSample = timeInfo.perfCounterSample[timeInfo.sampleNo]; |
|---|
| 1137 | workFTSample = timeInfo.fileTimeSample[timeInfo.sampleNo]; |
|---|
| 1138 | estFreq = 10000000 * (perfCounter - workPCSample) |
|---|
| 1139 | / (fileTime - workFTSample); |
|---|
| 1140 | timeInfo.perfCounterSample[timeInfo.sampleNo] = perfCounter; |
|---|
| 1141 | timeInfo.fileTimeSample[timeInfo.sampleNo] = (Tcl_WideInt) fileTime; |
|---|
| 1142 | |
|---|
| 1143 | /* |
|---|
| 1144 | * Advance the sample number. |
|---|
| 1145 | */ |
|---|
| 1146 | |
|---|
| 1147 | if (++timeInfo.sampleNo >= SAMPLES) { |
|---|
| 1148 | timeInfo.sampleNo = 0; |
|---|
| 1149 | } |
|---|
| 1150 | |
|---|
| 1151 | return estFreq; |
|---|
| 1152 | } |
|---|
| 1153 | } |
|---|
| 1154 | |
|---|
| 1155 | /* |
|---|
| 1156 | *---------------------------------------------------------------------- |
|---|
| 1157 | * |
|---|
| 1158 | * TclpGmtime -- |
|---|
| 1159 | * |
|---|
| 1160 | * Wrapper around the 'gmtime' library function to make it thread safe. |
|---|
| 1161 | * |
|---|
| 1162 | * Results: |
|---|
| 1163 | * Returns a pointer to a 'struct tm' in thread-specific data. |
|---|
| 1164 | * |
|---|
| 1165 | * Side effects: |
|---|
| 1166 | * Invokes gmtime or gmtime_r as appropriate. |
|---|
| 1167 | * |
|---|
| 1168 | *---------------------------------------------------------------------- |
|---|
| 1169 | */ |
|---|
| 1170 | |
|---|
| 1171 | struct tm * |
|---|
| 1172 | TclpGmtime( |
|---|
| 1173 | CONST time_t *timePtr) /* Pointer to the number of seconds since the |
|---|
| 1174 | * local system's epoch */ |
|---|
| 1175 | { |
|---|
| 1176 | /* |
|---|
| 1177 | * The MS implementation of gmtime is thread safe because it returns the |
|---|
| 1178 | * time in a block of thread-local storage, and Windows does not provide a |
|---|
| 1179 | * Posix gmtime_r function. |
|---|
| 1180 | */ |
|---|
| 1181 | |
|---|
| 1182 | return gmtime(timePtr); |
|---|
| 1183 | } |
|---|
| 1184 | |
|---|
| 1185 | /* |
|---|
| 1186 | *---------------------------------------------------------------------- |
|---|
| 1187 | * |
|---|
| 1188 | * TclpLocaltime -- |
|---|
| 1189 | * |
|---|
| 1190 | * Wrapper around the 'localtime' library function to make it thread |
|---|
| 1191 | * safe. |
|---|
| 1192 | * |
|---|
| 1193 | * Results: |
|---|
| 1194 | * Returns a pointer to a 'struct tm' in thread-specific data. |
|---|
| 1195 | * |
|---|
| 1196 | * Side effects: |
|---|
| 1197 | * Invokes localtime or localtime_r as appropriate. |
|---|
| 1198 | * |
|---|
| 1199 | *---------------------------------------------------------------------- |
|---|
| 1200 | */ |
|---|
| 1201 | |
|---|
| 1202 | struct tm * |
|---|
| 1203 | TclpLocaltime( |
|---|
| 1204 | CONST time_t *timePtr) /* Pointer to the number of seconds since the |
|---|
| 1205 | * local system's epoch */ |
|---|
| 1206 | |
|---|
| 1207 | { |
|---|
| 1208 | /* |
|---|
| 1209 | * The MS implementation of localtime is thread safe because it returns |
|---|
| 1210 | * the time in a block of thread-local storage, and Windows does not |
|---|
| 1211 | * provide a Posix localtime_r function. |
|---|
| 1212 | */ |
|---|
| 1213 | |
|---|
| 1214 | return localtime(timePtr); |
|---|
| 1215 | } |
|---|
| 1216 | |
|---|
| 1217 | /* |
|---|
| 1218 | *---------------------------------------------------------------------- |
|---|
| 1219 | * |
|---|
| 1220 | * Tcl_SetTimeProc -- |
|---|
| 1221 | * |
|---|
| 1222 | * TIP #233 (Virtualized Time): Registers two handlers for the |
|---|
| 1223 | * virtualization of Tcl's access to time information. |
|---|
| 1224 | * |
|---|
| 1225 | * Results: |
|---|
| 1226 | * None. |
|---|
| 1227 | * |
|---|
| 1228 | * Side effects: |
|---|
| 1229 | * Remembers the handlers, alters core behaviour. |
|---|
| 1230 | * |
|---|
| 1231 | *---------------------------------------------------------------------- |
|---|
| 1232 | */ |
|---|
| 1233 | |
|---|
| 1234 | void |
|---|
| 1235 | Tcl_SetTimeProc( |
|---|
| 1236 | Tcl_GetTimeProc *getProc, |
|---|
| 1237 | Tcl_ScaleTimeProc *scaleProc, |
|---|
| 1238 | ClientData clientData) |
|---|
| 1239 | { |
|---|
| 1240 | tclGetTimeProcPtr = getProc; |
|---|
| 1241 | tclScaleTimeProcPtr = scaleProc; |
|---|
| 1242 | tclTimeClientData = clientData; |
|---|
| 1243 | } |
|---|
| 1244 | |
|---|
| 1245 | /* |
|---|
| 1246 | *---------------------------------------------------------------------- |
|---|
| 1247 | * |
|---|
| 1248 | * Tcl_QueryTimeProc -- |
|---|
| 1249 | * |
|---|
| 1250 | * TIP #233 (Virtualized Time): Query which time handlers are registered. |
|---|
| 1251 | * |
|---|
| 1252 | * Results: |
|---|
| 1253 | * None. |
|---|
| 1254 | * |
|---|
| 1255 | * Side effects: |
|---|
| 1256 | * None. |
|---|
| 1257 | * |
|---|
| 1258 | *---------------------------------------------------------------------- |
|---|
| 1259 | */ |
|---|
| 1260 | |
|---|
| 1261 | void |
|---|
| 1262 | Tcl_QueryTimeProc( |
|---|
| 1263 | Tcl_GetTimeProc **getProc, |
|---|
| 1264 | Tcl_ScaleTimeProc **scaleProc, |
|---|
| 1265 | ClientData *clientData) |
|---|
| 1266 | { |
|---|
| 1267 | if (getProc) { |
|---|
| 1268 | *getProc = tclGetTimeProcPtr; |
|---|
| 1269 | } |
|---|
| 1270 | if (scaleProc) { |
|---|
| 1271 | *scaleProc = tclScaleTimeProcPtr; |
|---|
| 1272 | } |
|---|
| 1273 | if (clientData) { |
|---|
| 1274 | *clientData = tclTimeClientData; |
|---|
| 1275 | } |
|---|
| 1276 | } |
|---|
| 1277 | |
|---|
| 1278 | /* |
|---|
| 1279 | * Local Variables: |
|---|
| 1280 | * mode: c |
|---|
| 1281 | * c-basic-offset: 4 |
|---|
| 1282 | * fill-column: 78 |
|---|
| 1283 | * End: |
|---|
| 1284 | */ |
|---|