1 | #include <tommath.h> |
---|
2 | #ifdef BN_MP_DIV_C |
---|
3 | /* LibTomMath, multiple-precision integer library -- Tom St Denis |
---|
4 | * |
---|
5 | * LibTomMath is a library that provides multiple-precision |
---|
6 | * integer arithmetic as well as number theoretic functionality. |
---|
7 | * |
---|
8 | * The library was designed directly after the MPI library by |
---|
9 | * Michael Fromberger but has been written from scratch with |
---|
10 | * additional optimizations in place. |
---|
11 | * |
---|
12 | * The library is free for all purposes without any express |
---|
13 | * guarantee it works. |
---|
14 | * |
---|
15 | * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
---|
16 | */ |
---|
17 | |
---|
18 | #ifdef BN_MP_DIV_SMALL |
---|
19 | |
---|
20 | /* slower bit-bang division... also smaller */ |
---|
21 | int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
---|
22 | { |
---|
23 | mp_int ta, tb, tq, q; |
---|
24 | int res, n, n2; |
---|
25 | |
---|
26 | /* is divisor zero ? */ |
---|
27 | if (mp_iszero (b) == 1) { |
---|
28 | return MP_VAL; |
---|
29 | } |
---|
30 | |
---|
31 | /* if a < b then q=0, r = a */ |
---|
32 | if (mp_cmp_mag (a, b) == MP_LT) { |
---|
33 | if (d != NULL) { |
---|
34 | res = mp_copy (a, d); |
---|
35 | } else { |
---|
36 | res = MP_OKAY; |
---|
37 | } |
---|
38 | if (c != NULL) { |
---|
39 | mp_zero (c); |
---|
40 | } |
---|
41 | return res; |
---|
42 | } |
---|
43 | |
---|
44 | /* init our temps */ |
---|
45 | if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { |
---|
46 | return res; |
---|
47 | } |
---|
48 | |
---|
49 | |
---|
50 | mp_set(&tq, 1); |
---|
51 | n = mp_count_bits(a) - mp_count_bits(b); |
---|
52 | if (((res = mp_abs(a, &ta)) != MP_OKAY) || |
---|
53 | ((res = mp_abs(b, &tb)) != MP_OKAY) || |
---|
54 | ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || |
---|
55 | ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { |
---|
56 | goto LBL_ERR; |
---|
57 | } |
---|
58 | |
---|
59 | while (n-- >= 0) { |
---|
60 | if (mp_cmp(&tb, &ta) != MP_GT) { |
---|
61 | if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || |
---|
62 | ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { |
---|
63 | goto LBL_ERR; |
---|
64 | } |
---|
65 | } |
---|
66 | if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || |
---|
67 | ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { |
---|
68 | goto LBL_ERR; |
---|
69 | } |
---|
70 | } |
---|
71 | |
---|
72 | /* now q == quotient and ta == remainder */ |
---|
73 | n = a->sign; |
---|
74 | n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); |
---|
75 | if (c != NULL) { |
---|
76 | mp_exch(c, &q); |
---|
77 | c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; |
---|
78 | } |
---|
79 | if (d != NULL) { |
---|
80 | mp_exch(d, &ta); |
---|
81 | d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; |
---|
82 | } |
---|
83 | LBL_ERR: |
---|
84 | mp_clear_multi(&ta, &tb, &tq, &q, NULL); |
---|
85 | return res; |
---|
86 | } |
---|
87 | |
---|
88 | #else |
---|
89 | |
---|
90 | /* integer signed division. |
---|
91 | * c*b + d == a [e.g. a/b, c=quotient, d=remainder] |
---|
92 | * HAC pp.598 Algorithm 14.20 |
---|
93 | * |
---|
94 | * Note that the description in HAC is horribly |
---|
95 | * incomplete. For example, it doesn't consider |
---|
96 | * the case where digits are removed from 'x' in |
---|
97 | * the inner loop. It also doesn't consider the |
---|
98 | * case that y has fewer than three digits, etc.. |
---|
99 | * |
---|
100 | * The overall algorithm is as described as |
---|
101 | * 14.20 from HAC but fixed to treat these cases. |
---|
102 | */ |
---|
103 | int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
---|
104 | { |
---|
105 | mp_int q, x, y, t1, t2; |
---|
106 | int res, n, t, i, norm, neg; |
---|
107 | |
---|
108 | /* is divisor zero ? */ |
---|
109 | if (mp_iszero (b) == 1) { |
---|
110 | return MP_VAL; |
---|
111 | } |
---|
112 | |
---|
113 | /* if a < b then q=0, r = a */ |
---|
114 | if (mp_cmp_mag (a, b) == MP_LT) { |
---|
115 | if (d != NULL) { |
---|
116 | res = mp_copy (a, d); |
---|
117 | } else { |
---|
118 | res = MP_OKAY; |
---|
119 | } |
---|
120 | if (c != NULL) { |
---|
121 | mp_zero (c); |
---|
122 | } |
---|
123 | return res; |
---|
124 | } |
---|
125 | |
---|
126 | if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { |
---|
127 | return res; |
---|
128 | } |
---|
129 | q.used = a->used + 2; |
---|
130 | |
---|
131 | if ((res = mp_init (&t1)) != MP_OKAY) { |
---|
132 | goto LBL_Q; |
---|
133 | } |
---|
134 | |
---|
135 | if ((res = mp_init (&t2)) != MP_OKAY) { |
---|
136 | goto LBL_T1; |
---|
137 | } |
---|
138 | |
---|
139 | if ((res = mp_init_copy (&x, a)) != MP_OKAY) { |
---|
140 | goto LBL_T2; |
---|
141 | } |
---|
142 | |
---|
143 | if ((res = mp_init_copy (&y, b)) != MP_OKAY) { |
---|
144 | goto LBL_X; |
---|
145 | } |
---|
146 | |
---|
147 | /* fix the sign */ |
---|
148 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
---|
149 | x.sign = y.sign = MP_ZPOS; |
---|
150 | |
---|
151 | /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ |
---|
152 | norm = mp_count_bits(&y) % DIGIT_BIT; |
---|
153 | if (norm < (int)(DIGIT_BIT-1)) { |
---|
154 | norm = (DIGIT_BIT-1) - norm; |
---|
155 | if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { |
---|
156 | goto LBL_Y; |
---|
157 | } |
---|
158 | if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { |
---|
159 | goto LBL_Y; |
---|
160 | } |
---|
161 | } else { |
---|
162 | norm = 0; |
---|
163 | } |
---|
164 | |
---|
165 | /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ |
---|
166 | n = x.used - 1; |
---|
167 | t = y.used - 1; |
---|
168 | |
---|
169 | /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ |
---|
170 | if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ |
---|
171 | goto LBL_Y; |
---|
172 | } |
---|
173 | |
---|
174 | while (mp_cmp (&x, &y) != MP_LT) { |
---|
175 | ++(q.dp[n - t]); |
---|
176 | if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { |
---|
177 | goto LBL_Y; |
---|
178 | } |
---|
179 | } |
---|
180 | |
---|
181 | /* reset y by shifting it back down */ |
---|
182 | mp_rshd (&y, n - t); |
---|
183 | |
---|
184 | /* step 3. for i from n down to (t + 1) */ |
---|
185 | for (i = n; i >= (t + 1); i--) { |
---|
186 | if (i > x.used) { |
---|
187 | continue; |
---|
188 | } |
---|
189 | |
---|
190 | /* step 3.1 if xi == yt then set q{i-t-1} to b-1, |
---|
191 | * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ |
---|
192 | if (x.dp[i] == y.dp[t]) { |
---|
193 | q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); |
---|
194 | } else { |
---|
195 | mp_word tmp; |
---|
196 | tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); |
---|
197 | tmp |= ((mp_word) x.dp[i - 1]); |
---|
198 | tmp /= ((mp_word) y.dp[t]); |
---|
199 | if (tmp > (mp_word) MP_MASK) |
---|
200 | tmp = MP_MASK; |
---|
201 | q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); |
---|
202 | } |
---|
203 | |
---|
204 | /* while (q{i-t-1} * (yt * b + y{t-1})) > |
---|
205 | xi * b**2 + xi-1 * b + xi-2 |
---|
206 | |
---|
207 | do q{i-t-1} -= 1; |
---|
208 | */ |
---|
209 | q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; |
---|
210 | do { |
---|
211 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; |
---|
212 | |
---|
213 | /* find left hand */ |
---|
214 | mp_zero (&t1); |
---|
215 | t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; |
---|
216 | t1.dp[1] = y.dp[t]; |
---|
217 | t1.used = 2; |
---|
218 | if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
---|
219 | goto LBL_Y; |
---|
220 | } |
---|
221 | |
---|
222 | /* find right hand */ |
---|
223 | t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; |
---|
224 | t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; |
---|
225 | t2.dp[2] = x.dp[i]; |
---|
226 | t2.used = 3; |
---|
227 | } while (mp_cmp_mag(&t1, &t2) == MP_GT); |
---|
228 | |
---|
229 | /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ |
---|
230 | if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
---|
231 | goto LBL_Y; |
---|
232 | } |
---|
233 | |
---|
234 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
---|
235 | goto LBL_Y; |
---|
236 | } |
---|
237 | |
---|
238 | if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { |
---|
239 | goto LBL_Y; |
---|
240 | } |
---|
241 | |
---|
242 | /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ |
---|
243 | if (x.sign == MP_NEG) { |
---|
244 | if ((res = mp_copy (&y, &t1)) != MP_OKAY) { |
---|
245 | goto LBL_Y; |
---|
246 | } |
---|
247 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
---|
248 | goto LBL_Y; |
---|
249 | } |
---|
250 | if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { |
---|
251 | goto LBL_Y; |
---|
252 | } |
---|
253 | |
---|
254 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; |
---|
255 | } |
---|
256 | } |
---|
257 | |
---|
258 | /* now q is the quotient and x is the remainder |
---|
259 | * [which we have to normalize] |
---|
260 | */ |
---|
261 | |
---|
262 | /* get sign before writing to c */ |
---|
263 | x.sign = x.used == 0 ? MP_ZPOS : a->sign; |
---|
264 | |
---|
265 | if (c != NULL) { |
---|
266 | mp_clamp (&q); |
---|
267 | mp_exch (&q, c); |
---|
268 | c->sign = neg; |
---|
269 | } |
---|
270 | |
---|
271 | if (d != NULL) { |
---|
272 | mp_div_2d (&x, norm, &x, NULL); |
---|
273 | mp_exch (&x, d); |
---|
274 | } |
---|
275 | |
---|
276 | res = MP_OKAY; |
---|
277 | |
---|
278 | LBL_Y:mp_clear (&y); |
---|
279 | LBL_X:mp_clear (&x); |
---|
280 | LBL_T2:mp_clear (&t2); |
---|
281 | LBL_T1:mp_clear (&t1); |
---|
282 | LBL_Q:mp_clear (&q); |
---|
283 | return res; |
---|
284 | } |
---|
285 | |
---|
286 | #endif |
---|
287 | |
---|
288 | #endif |
---|
289 | |
---|
290 | /* $Source: /cvsroot/tcl/libtommath/bn_mp_div.c,v $ */ |
---|
291 | /* $Revision: 1.4 $ */ |
---|
292 | /* $Date: 2006/12/01 19:45:38 $ */ |
---|