[25] | 1 | #include <tommath.h> |
---|
| 2 | #ifdef BN_MP_DIV_C |
---|
| 3 | /* LibTomMath, multiple-precision integer library -- Tom St Denis |
---|
| 4 | * |
---|
| 5 | * LibTomMath is a library that provides multiple-precision |
---|
| 6 | * integer arithmetic as well as number theoretic functionality. |
---|
| 7 | * |
---|
| 8 | * The library was designed directly after the MPI library by |
---|
| 9 | * Michael Fromberger but has been written from scratch with |
---|
| 10 | * additional optimizations in place. |
---|
| 11 | * |
---|
| 12 | * The library is free for all purposes without any express |
---|
| 13 | * guarantee it works. |
---|
| 14 | * |
---|
| 15 | * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
---|
| 16 | */ |
---|
| 17 | |
---|
| 18 | #ifdef BN_MP_DIV_SMALL |
---|
| 19 | |
---|
| 20 | /* slower bit-bang division... also smaller */ |
---|
| 21 | int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
---|
| 22 | { |
---|
| 23 | mp_int ta, tb, tq, q; |
---|
| 24 | int res, n, n2; |
---|
| 25 | |
---|
| 26 | /* is divisor zero ? */ |
---|
| 27 | if (mp_iszero (b) == 1) { |
---|
| 28 | return MP_VAL; |
---|
| 29 | } |
---|
| 30 | |
---|
| 31 | /* if a < b then q=0, r = a */ |
---|
| 32 | if (mp_cmp_mag (a, b) == MP_LT) { |
---|
| 33 | if (d != NULL) { |
---|
| 34 | res = mp_copy (a, d); |
---|
| 35 | } else { |
---|
| 36 | res = MP_OKAY; |
---|
| 37 | } |
---|
| 38 | if (c != NULL) { |
---|
| 39 | mp_zero (c); |
---|
| 40 | } |
---|
| 41 | return res; |
---|
| 42 | } |
---|
| 43 | |
---|
| 44 | /* init our temps */ |
---|
| 45 | if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { |
---|
| 46 | return res; |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | mp_set(&tq, 1); |
---|
| 51 | n = mp_count_bits(a) - mp_count_bits(b); |
---|
| 52 | if (((res = mp_abs(a, &ta)) != MP_OKAY) || |
---|
| 53 | ((res = mp_abs(b, &tb)) != MP_OKAY) || |
---|
| 54 | ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || |
---|
| 55 | ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { |
---|
| 56 | goto LBL_ERR; |
---|
| 57 | } |
---|
| 58 | |
---|
| 59 | while (n-- >= 0) { |
---|
| 60 | if (mp_cmp(&tb, &ta) != MP_GT) { |
---|
| 61 | if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || |
---|
| 62 | ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { |
---|
| 63 | goto LBL_ERR; |
---|
| 64 | } |
---|
| 65 | } |
---|
| 66 | if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || |
---|
| 67 | ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { |
---|
| 68 | goto LBL_ERR; |
---|
| 69 | } |
---|
| 70 | } |
---|
| 71 | |
---|
| 72 | /* now q == quotient and ta == remainder */ |
---|
| 73 | n = a->sign; |
---|
| 74 | n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); |
---|
| 75 | if (c != NULL) { |
---|
| 76 | mp_exch(c, &q); |
---|
| 77 | c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; |
---|
| 78 | } |
---|
| 79 | if (d != NULL) { |
---|
| 80 | mp_exch(d, &ta); |
---|
| 81 | d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; |
---|
| 82 | } |
---|
| 83 | LBL_ERR: |
---|
| 84 | mp_clear_multi(&ta, &tb, &tq, &q, NULL); |
---|
| 85 | return res; |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | #else |
---|
| 89 | |
---|
| 90 | /* integer signed division. |
---|
| 91 | * c*b + d == a [e.g. a/b, c=quotient, d=remainder] |
---|
| 92 | * HAC pp.598 Algorithm 14.20 |
---|
| 93 | * |
---|
| 94 | * Note that the description in HAC is horribly |
---|
| 95 | * incomplete. For example, it doesn't consider |
---|
| 96 | * the case where digits are removed from 'x' in |
---|
| 97 | * the inner loop. It also doesn't consider the |
---|
| 98 | * case that y has fewer than three digits, etc.. |
---|
| 99 | * |
---|
| 100 | * The overall algorithm is as described as |
---|
| 101 | * 14.20 from HAC but fixed to treat these cases. |
---|
| 102 | */ |
---|
| 103 | int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
---|
| 104 | { |
---|
| 105 | mp_int q, x, y, t1, t2; |
---|
| 106 | int res, n, t, i, norm, neg; |
---|
| 107 | |
---|
| 108 | /* is divisor zero ? */ |
---|
| 109 | if (mp_iszero (b) == 1) { |
---|
| 110 | return MP_VAL; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | /* if a < b then q=0, r = a */ |
---|
| 114 | if (mp_cmp_mag (a, b) == MP_LT) { |
---|
| 115 | if (d != NULL) { |
---|
| 116 | res = mp_copy (a, d); |
---|
| 117 | } else { |
---|
| 118 | res = MP_OKAY; |
---|
| 119 | } |
---|
| 120 | if (c != NULL) { |
---|
| 121 | mp_zero (c); |
---|
| 122 | } |
---|
| 123 | return res; |
---|
| 124 | } |
---|
| 125 | |
---|
| 126 | if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { |
---|
| 127 | return res; |
---|
| 128 | } |
---|
| 129 | q.used = a->used + 2; |
---|
| 130 | |
---|
| 131 | if ((res = mp_init (&t1)) != MP_OKAY) { |
---|
| 132 | goto LBL_Q; |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | if ((res = mp_init (&t2)) != MP_OKAY) { |
---|
| 136 | goto LBL_T1; |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | if ((res = mp_init_copy (&x, a)) != MP_OKAY) { |
---|
| 140 | goto LBL_T2; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | if ((res = mp_init_copy (&y, b)) != MP_OKAY) { |
---|
| 144 | goto LBL_X; |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /* fix the sign */ |
---|
| 148 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
---|
| 149 | x.sign = y.sign = MP_ZPOS; |
---|
| 150 | |
---|
| 151 | /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ |
---|
| 152 | norm = mp_count_bits(&y) % DIGIT_BIT; |
---|
| 153 | if (norm < (int)(DIGIT_BIT-1)) { |
---|
| 154 | norm = (DIGIT_BIT-1) - norm; |
---|
| 155 | if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { |
---|
| 156 | goto LBL_Y; |
---|
| 157 | } |
---|
| 158 | if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { |
---|
| 159 | goto LBL_Y; |
---|
| 160 | } |
---|
| 161 | } else { |
---|
| 162 | norm = 0; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ |
---|
| 166 | n = x.used - 1; |
---|
| 167 | t = y.used - 1; |
---|
| 168 | |
---|
| 169 | /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ |
---|
| 170 | if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ |
---|
| 171 | goto LBL_Y; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | while (mp_cmp (&x, &y) != MP_LT) { |
---|
| 175 | ++(q.dp[n - t]); |
---|
| 176 | if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { |
---|
| 177 | goto LBL_Y; |
---|
| 178 | } |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | /* reset y by shifting it back down */ |
---|
| 182 | mp_rshd (&y, n - t); |
---|
| 183 | |
---|
| 184 | /* step 3. for i from n down to (t + 1) */ |
---|
| 185 | for (i = n; i >= (t + 1); i--) { |
---|
| 186 | if (i > x.used) { |
---|
| 187 | continue; |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | /* step 3.1 if xi == yt then set q{i-t-1} to b-1, |
---|
| 191 | * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ |
---|
| 192 | if (x.dp[i] == y.dp[t]) { |
---|
| 193 | q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); |
---|
| 194 | } else { |
---|
| 195 | mp_word tmp; |
---|
| 196 | tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); |
---|
| 197 | tmp |= ((mp_word) x.dp[i - 1]); |
---|
| 198 | tmp /= ((mp_word) y.dp[t]); |
---|
| 199 | if (tmp > (mp_word) MP_MASK) |
---|
| 200 | tmp = MP_MASK; |
---|
| 201 | q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | /* while (q{i-t-1} * (yt * b + y{t-1})) > |
---|
| 205 | xi * b**2 + xi-1 * b + xi-2 |
---|
| 206 | |
---|
| 207 | do q{i-t-1} -= 1; |
---|
| 208 | */ |
---|
| 209 | q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; |
---|
| 210 | do { |
---|
| 211 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; |
---|
| 212 | |
---|
| 213 | /* find left hand */ |
---|
| 214 | mp_zero (&t1); |
---|
| 215 | t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; |
---|
| 216 | t1.dp[1] = y.dp[t]; |
---|
| 217 | t1.used = 2; |
---|
| 218 | if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
---|
| 219 | goto LBL_Y; |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | /* find right hand */ |
---|
| 223 | t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; |
---|
| 224 | t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; |
---|
| 225 | t2.dp[2] = x.dp[i]; |
---|
| 226 | t2.used = 3; |
---|
| 227 | } while (mp_cmp_mag(&t1, &t2) == MP_GT); |
---|
| 228 | |
---|
| 229 | /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ |
---|
| 230 | if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
---|
| 231 | goto LBL_Y; |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
---|
| 235 | goto LBL_Y; |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { |
---|
| 239 | goto LBL_Y; |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ |
---|
| 243 | if (x.sign == MP_NEG) { |
---|
| 244 | if ((res = mp_copy (&y, &t1)) != MP_OKAY) { |
---|
| 245 | goto LBL_Y; |
---|
| 246 | } |
---|
| 247 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
---|
| 248 | goto LBL_Y; |
---|
| 249 | } |
---|
| 250 | if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { |
---|
| 251 | goto LBL_Y; |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; |
---|
| 255 | } |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | /* now q is the quotient and x is the remainder |
---|
| 259 | * [which we have to normalize] |
---|
| 260 | */ |
---|
| 261 | |
---|
| 262 | /* get sign before writing to c */ |
---|
| 263 | x.sign = x.used == 0 ? MP_ZPOS : a->sign; |
---|
| 264 | |
---|
| 265 | if (c != NULL) { |
---|
| 266 | mp_clamp (&q); |
---|
| 267 | mp_exch (&q, c); |
---|
| 268 | c->sign = neg; |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | if (d != NULL) { |
---|
| 272 | mp_div_2d (&x, norm, &x, NULL); |
---|
| 273 | mp_exch (&x, d); |
---|
| 274 | } |
---|
| 275 | |
---|
| 276 | res = MP_OKAY; |
---|
| 277 | |
---|
| 278 | LBL_Y:mp_clear (&y); |
---|
| 279 | LBL_X:mp_clear (&x); |
---|
| 280 | LBL_T2:mp_clear (&t2); |
---|
| 281 | LBL_T1:mp_clear (&t1); |
---|
| 282 | LBL_Q:mp_clear (&q); |
---|
| 283 | return res; |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | #endif |
---|
| 287 | |
---|
| 288 | #endif |
---|
| 289 | |
---|
| 290 | /* $Source: /cvsroot/tcl/libtommath/bn_mp_div.c,v $ */ |
---|
| 291 | /* $Revision: 1.4 $ */ |
---|
| 292 | /* $Date: 2006/12/01 19:45:38 $ */ |
---|