[25] | 1 | /* |
---|
| 2 | *---------------------------------------------------------------------- |
---|
| 3 | * |
---|
| 4 | * tclStrToD.c -- |
---|
| 5 | * |
---|
| 6 | * This file contains a collection of procedures for managing conversions |
---|
| 7 | * to/from floating-point in Tcl. They include TclParseNumber, which |
---|
| 8 | * parses numbers from strings; TclDoubleDigits, which formats numbers |
---|
| 9 | * into strings of digits, and procedures for interconversion among |
---|
| 10 | * 'double' and 'mp_int' types. |
---|
| 11 | * |
---|
| 12 | * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved. |
---|
| 13 | * |
---|
| 14 | * See the file "license.terms" for information on usage and redistribution of |
---|
| 15 | * this file, and for a DISCLAIMER OF ALL WARRANTIES. |
---|
| 16 | * |
---|
| 17 | * RCS: @(#) $Id: tclStrToD.c,v 1.33 2008/03/13 17:14:19 dgp Exp $ |
---|
| 18 | * |
---|
| 19 | *---------------------------------------------------------------------- |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <tclInt.h> |
---|
| 23 | #include <stdio.h> |
---|
| 24 | #include <stdlib.h> |
---|
| 25 | #include <float.h> |
---|
| 26 | #include <limits.h> |
---|
| 27 | #include <math.h> |
---|
| 28 | #include <ctype.h> |
---|
| 29 | #include <tommath.h> |
---|
| 30 | |
---|
| 31 | /* |
---|
| 32 | * Define KILL_OCTAL to suppress interpretation of numbers with leading zero |
---|
| 33 | * as octal. (Ceterum censeo: numeros octonarios delendos esse.) |
---|
| 34 | */ |
---|
| 35 | |
---|
| 36 | #undef KILL_OCTAL |
---|
| 37 | |
---|
| 38 | /* |
---|
| 39 | * This code supports (at least hypothetically), IBM, Cray, VAX and IEEE-754 |
---|
| 40 | * floating point; of these, only IEEE-754 can represent NaN. IEEE-754 can be |
---|
| 41 | * uniquely determined by radix and by the widths of significand and exponent. |
---|
| 42 | */ |
---|
| 43 | |
---|
| 44 | #if (FLT_RADIX == 2) && (DBL_MANT_DIG == 53) && (DBL_MAX_EXP == 1024) |
---|
| 45 | # define IEEE_FLOATING_POINT |
---|
| 46 | #endif |
---|
| 47 | |
---|
| 48 | /* |
---|
| 49 | * gcc on x86 needs access to rounding controls, because of a questionable |
---|
| 50 | * feature where it retains intermediate results as IEEE 'long double' values |
---|
| 51 | * somewhat unpredictably. It is tempting to include fpu_control.h, but that |
---|
| 52 | * file exists only on Linux; it is missing on Cygwin and MinGW. Most gcc-isms |
---|
| 53 | * and ix86-isms are factored out here. |
---|
| 54 | */ |
---|
| 55 | |
---|
| 56 | #if defined(__GNUC__) && defined(__i386) |
---|
| 57 | typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); |
---|
| 58 | #define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw)) |
---|
| 59 | #define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw)) |
---|
| 60 | # define FPU_IEEE_ROUNDING 0x027f |
---|
| 61 | # define ADJUST_FPU_CONTROL_WORD |
---|
| 62 | #endif |
---|
| 63 | |
---|
| 64 | /* |
---|
| 65 | * HP's PA_RISC architecture uses 7ff4000000000000 to represent a quiet NaN. |
---|
| 66 | * Everyone else uses 7ff8000000000000. (Why, HP, why?) |
---|
| 67 | */ |
---|
| 68 | |
---|
| 69 | #ifdef __hppa |
---|
| 70 | # define NAN_START 0x7ff4 |
---|
| 71 | # define NAN_MASK (((Tcl_WideUInt) 1) << 50) |
---|
| 72 | #else |
---|
| 73 | # define NAN_START 0x7ff8 |
---|
| 74 | # define NAN_MASK (((Tcl_WideUInt) 1) << 51) |
---|
| 75 | #endif |
---|
| 76 | |
---|
| 77 | /* |
---|
| 78 | * Constants used by this file (most of which are only ever calculated at |
---|
| 79 | * runtime). |
---|
| 80 | */ |
---|
| 81 | |
---|
| 82 | static int maxpow10_wide; /* The powers of ten that can be represented |
---|
| 83 | * exactly as wide integers. */ |
---|
| 84 | static Tcl_WideUInt *pow10_wide; |
---|
| 85 | #define MAXPOW 22 |
---|
| 86 | static double pow10vals[MAXPOW+1]; /* The powers of ten that can be represented |
---|
| 87 | * exactly as IEEE754 doubles. */ |
---|
| 88 | static int mmaxpow; /* Largest power of ten that can be |
---|
| 89 | * represented exactly in a 'double'. */ |
---|
| 90 | static int log10_DIGIT_MAX; /* The number of decimal digits that fit in an |
---|
| 91 | * mp_digit. */ |
---|
| 92 | static int log2FLT_RADIX; /* Logarithm of the floating point radix. */ |
---|
| 93 | static int mantBits; /* Number of bits in a double's significand */ |
---|
| 94 | static mp_int pow5[9]; /* Table of powers of 5**(2**n), up to |
---|
| 95 | * 5**256 */ |
---|
| 96 | static double tiny; /* The smallest representable double */ |
---|
| 97 | static int maxDigits; /* The maximum number of digits to the left of |
---|
| 98 | * the decimal point of a double. */ |
---|
| 99 | static int minDigits; /* The maximum number of digits to the right |
---|
| 100 | * of the decimal point in a double. */ |
---|
| 101 | static int mantDIGIT; /* Number of mp_digit's needed to hold the |
---|
| 102 | * significand of a double. */ |
---|
| 103 | static const double pow_10_2_n[] = { /* Inexact higher powers of ten. */ |
---|
| 104 | 1.0, |
---|
| 105 | 100.0, |
---|
| 106 | 10000.0, |
---|
| 107 | 1.0e+8, |
---|
| 108 | 1.0e+16, |
---|
| 109 | 1.0e+32, |
---|
| 110 | 1.0e+64, |
---|
| 111 | 1.0e+128, |
---|
| 112 | 1.0e+256 |
---|
| 113 | }; |
---|
| 114 | static int n770_fp; /* Flag is 1 on Nokia N770 floating point. |
---|
| 115 | * Nokia's floating point has the words |
---|
| 116 | * reversed: if big-endian is 7654 3210, |
---|
| 117 | * and little-endian is 0123 4567, |
---|
| 118 | * then Nokia's FP is 4567 0123; |
---|
| 119 | * little-endian within the 32-bit words |
---|
| 120 | * but big-endian between them. */ |
---|
| 121 | |
---|
| 122 | /* |
---|
| 123 | * Static functions defined in this file. |
---|
| 124 | */ |
---|
| 125 | |
---|
| 126 | static double AbsoluteValue(double v, int *signum); |
---|
| 127 | static int AccumulateDecimalDigit(unsigned, int, |
---|
| 128 | Tcl_WideUInt *, mp_int *, int); |
---|
| 129 | static double BignumToBiasedFrExp(mp_int *big, int* machexp); |
---|
| 130 | static int GetIntegerTimesPower(double v, mp_int *r, int *e); |
---|
| 131 | static double MakeHighPrecisionDouble(int signum, |
---|
| 132 | mp_int *significand, int nSigDigs, int exponent); |
---|
| 133 | static double MakeLowPrecisionDouble(int signum, |
---|
| 134 | Tcl_WideUInt significand, int nSigDigs, |
---|
| 135 | int exponent); |
---|
| 136 | static double MakeNaN(int signum, Tcl_WideUInt tag); |
---|
| 137 | static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w); |
---|
| 138 | static double Pow10TimesFrExp(int exponent, double fraction, |
---|
| 139 | int *machexp); |
---|
| 140 | static double RefineApproximation(double approx, |
---|
| 141 | mp_int *exactSignificand, int exponent); |
---|
| 142 | static double SafeLdExp(double fraction, int exponent); |
---|
| 143 | |
---|
| 144 | /* |
---|
| 145 | *---------------------------------------------------------------------- |
---|
| 146 | * |
---|
| 147 | * TclParseNumber -- |
---|
| 148 | * |
---|
| 149 | * Scans bytes, interpreted as characters in Tcl's internal encoding, and |
---|
| 150 | * parses the longest prefix that is the string representation of a |
---|
| 151 | * number in a format recognized by Tcl. |
---|
| 152 | * |
---|
| 153 | * The arguments bytes, numBytes, and objPtr are the inputs which |
---|
| 154 | * determine the string to be parsed. If bytes is non-NULL, it points to |
---|
| 155 | * the first byte to be scanned. If bytes is NULL, then objPtr must be |
---|
| 156 | * non-NULL, and the string representation of objPtr will be scanned |
---|
| 157 | * (generated first, if necessary). The numBytes argument determines the |
---|
| 158 | * number of bytes to be scanned. If numBytes is negative, the first NUL |
---|
| 159 | * byte encountered will terminate the scan. If numBytes is non-negative, |
---|
| 160 | * then no more than numBytes bytes will be scanned. |
---|
| 161 | * |
---|
| 162 | * The argument flags is an input that controls the numeric formats |
---|
| 163 | * recognized by the parser. The flag bits are: |
---|
| 164 | * |
---|
| 165 | * - TCL_PARSE_INTEGER_ONLY: accept only integer values; reject |
---|
| 166 | * strings that denote floating point values (or accept only the |
---|
| 167 | * leading portion of them that are integer values). |
---|
| 168 | * - TCL_PARSE_SCAN_PREFIXES: ignore the prefixes 0b and 0o that are |
---|
| 169 | * not part of the [scan] command's vocabulary. Use only in |
---|
| 170 | * combination with TCL_PARSE_INTEGER_ONLY. |
---|
| 171 | * - TCL_PARSE_OCTAL_ONLY: parse only in the octal format, whether |
---|
| 172 | * or not a prefix is present that would lead to octal parsing. |
---|
| 173 | * Use only in combination with TCL_PARSE_INTEGER_ONLY. |
---|
| 174 | * - TCL_PARSE_HEXADECIMAL_ONLY: parse only in the hexadecimal format, |
---|
| 175 | * whether or not a prefix is present that would lead to |
---|
| 176 | * hexadecimal parsing. Use only in combination with |
---|
| 177 | * TCL_PARSE_INTEGER_ONLY. |
---|
| 178 | * - TCL_PARSE_DECIMAL_ONLY: parse only in the decimal format, no |
---|
| 179 | * matter whether a 0 prefix would normally force a different |
---|
| 180 | * base. |
---|
| 181 | * - TCL_PARSE_NO_WHITESPACE: reject any leading/trailing whitespace |
---|
| 182 | * |
---|
| 183 | * The arguments interp and expected are inputs that control error |
---|
| 184 | * message generation. If interp is NULL, no error message will be |
---|
| 185 | * generated. If interp is non-NULL, then expected must also be non-NULL. |
---|
| 186 | * When TCL_ERROR is returned, an error message will be left in the |
---|
| 187 | * result of interp, and the expected argument will appear in the error |
---|
| 188 | * message as the thing TclParseNumber expected, but failed to find in |
---|
| 189 | * the string. |
---|
| 190 | * |
---|
| 191 | * The arguments objPtr and endPtrPtr as well as the return code are the |
---|
| 192 | * outputs. |
---|
| 193 | * |
---|
| 194 | * When the parser cannot find any prefix of the string that matches a |
---|
| 195 | * format it is looking for, TCL_ERROR is returned and an error message |
---|
| 196 | * may be generated and returned as described above. The contents of |
---|
| 197 | * objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to the |
---|
| 198 | * character in the string that terminated the scan will be written to |
---|
| 199 | * *endPtrPtr. |
---|
| 200 | * |
---|
| 201 | * When the parser determines that the entire string matches a format it |
---|
| 202 | * is looking for, TCL_OK is returned, and if objPtr is non-NULL, then |
---|
| 203 | * the internal rep and Tcl_ObjType of objPtr are set to the "canonical" |
---|
| 204 | * numeric value that matches the scanned string. If endPtrPtr is not |
---|
| 205 | * NULL, a pointer to the end of the string will be written to *endPtrPtr |
---|
| 206 | * (that is, either bytes+numBytes or a pointer to a terminating NUL |
---|
| 207 | * byte). |
---|
| 208 | * |
---|
| 209 | * When the parser determines that a partial string matches a format it |
---|
| 210 | * is looking for, the value of endPtrPtr determines what happens: |
---|
| 211 | * |
---|
| 212 | * - If endPtrPtr is NULL, then TCL_ERROR is returned, with error message |
---|
| 213 | * generation as above. |
---|
| 214 | * |
---|
| 215 | * - If endPtrPtr is non-NULL, then TCL_OK is returned and objPtr |
---|
| 216 | * internals are set as above. Also, a pointer to the first |
---|
| 217 | * character following the parsed numeric string is written to |
---|
| 218 | * *endPtrPtr. |
---|
| 219 | * |
---|
| 220 | * In some cases where the string being scanned is the string rep of |
---|
| 221 | * objPtr, this routine can leave objPtr in an inconsistent state where |
---|
| 222 | * its string rep and its internal rep do not agree. In these cases the |
---|
| 223 | * internal rep will be in agreement with only some substring of the |
---|
| 224 | * string rep. This might happen if the caller passes in a non-NULL bytes |
---|
| 225 | * value that points somewhere into the string rep. It might happen if |
---|
| 226 | * the caller passes in a numBytes value that limits the scan to only a |
---|
| 227 | * prefix of the string rep. Or it might happen if a non-NULL value of |
---|
| 228 | * endPtrPtr permits a TCL_OK return from only a partial string match. It |
---|
| 229 | * is the responsibility of the caller to detect and correct such |
---|
| 230 | * inconsistencies when they can and do arise. |
---|
| 231 | * |
---|
| 232 | * Results: |
---|
| 233 | * Returns a standard Tcl result. |
---|
| 234 | * |
---|
| 235 | * Side effects: |
---|
| 236 | * The string representaton of objPtr may be generated. |
---|
| 237 | * |
---|
| 238 | * The internal representation and Tcl_ObjType of objPtr may be changed. |
---|
| 239 | * This may involve allocation and/or freeing of memory. |
---|
| 240 | * |
---|
| 241 | *---------------------------------------------------------------------- |
---|
| 242 | */ |
---|
| 243 | |
---|
| 244 | int |
---|
| 245 | TclParseNumber( |
---|
| 246 | Tcl_Interp *interp, /* Used for error reporting. May be NULL. */ |
---|
| 247 | Tcl_Obj *objPtr, /* Object to receive the internal rep. */ |
---|
| 248 | const char *expected, /* Description of the type of number the |
---|
| 249 | * caller expects to be able to parse |
---|
| 250 | * ("integer", "boolean value", etc.). */ |
---|
| 251 | const char *bytes, /* Pointer to the start of the string to |
---|
| 252 | * scan. */ |
---|
| 253 | int numBytes, /* Maximum number of bytes to scan, see |
---|
| 254 | * above. */ |
---|
| 255 | const char **endPtrPtr, /* Place to store pointer to the character |
---|
| 256 | * that terminated the scan. */ |
---|
| 257 | int flags) /* Flags governing the parse. */ |
---|
| 258 | { |
---|
| 259 | enum State { |
---|
| 260 | INITIAL, SIGNUM, ZERO, ZERO_X, |
---|
| 261 | ZERO_O, ZERO_B, BINARY, |
---|
| 262 | HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL, |
---|
| 263 | LEADING_RADIX_POINT, FRACTION, |
---|
| 264 | EXPONENT_START, EXPONENT_SIGNUM, EXPONENT, |
---|
| 265 | sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY |
---|
| 266 | #ifdef IEEE_FLOATING_POINT |
---|
| 267 | , sN, sNA, sNAN, sNANPAREN, sNANHEX, sNANFINISH |
---|
| 268 | #endif |
---|
| 269 | } state = INITIAL; |
---|
| 270 | enum State acceptState = INITIAL; |
---|
| 271 | |
---|
| 272 | int signum = 0; /* Sign of the number being parsed */ |
---|
| 273 | Tcl_WideUInt significandWide = 0; |
---|
| 274 | /* Significand of the number being parsed (if |
---|
| 275 | * no overflow) */ |
---|
| 276 | mp_int significandBig; /* Significand of the number being parsed (if |
---|
| 277 | * it overflows significandWide) */ |
---|
| 278 | int significandOverflow = 0;/* Flag==1 iff significandBig is used */ |
---|
| 279 | Tcl_WideUInt octalSignificandWide = 0; |
---|
| 280 | /* Significand of an octal number; needed |
---|
| 281 | * because we don't know whether a number with |
---|
| 282 | * a leading zero is octal or decimal until |
---|
| 283 | * we've scanned forward to a '.' or 'e' */ |
---|
| 284 | mp_int octalSignificandBig; /* Significand of octal number once |
---|
| 285 | * octalSignificandWide overflows */ |
---|
| 286 | int octalSignificandOverflow = 0; |
---|
| 287 | /* Flag==1 if octalSignificandBig is used */ |
---|
| 288 | int numSigDigs = 0; /* Number of significant digits in the decimal |
---|
| 289 | * significand */ |
---|
| 290 | int numTrailZeros = 0; /* Number of trailing zeroes at the current |
---|
| 291 | * point in the parse. */ |
---|
| 292 | int numDigitsAfterDp = 0; /* Number of digits scanned after the decimal |
---|
| 293 | * point */ |
---|
| 294 | int exponentSignum = 0; /* Signum of the exponent of a floating point |
---|
| 295 | * number */ |
---|
| 296 | long exponent = 0; /* Exponent of a floating point number */ |
---|
| 297 | const char *p; /* Pointer to next character to scan */ |
---|
| 298 | size_t len; /* Number of characters remaining after p */ |
---|
| 299 | const char *acceptPoint; /* Pointer to position after last character in |
---|
| 300 | * an acceptable number */ |
---|
| 301 | size_t acceptLen; /* Number of characters following that |
---|
| 302 | * point. */ |
---|
| 303 | int status = TCL_OK; /* Status to return to caller */ |
---|
| 304 | char d = 0; /* Last hexadecimal digit scanned; initialized |
---|
| 305 | * to avoid a compiler warning. */ |
---|
| 306 | int shift = 0; /* Amount to shift when accumulating binary */ |
---|
| 307 | int explicitOctal = 0; |
---|
| 308 | |
---|
| 309 | #define ALL_BITS (~(Tcl_WideUInt)0) |
---|
| 310 | #define MOST_BITS (ALL_BITS >> 1) |
---|
| 311 | |
---|
| 312 | /* |
---|
| 313 | * Initialize bytes to start of the object's string rep if the caller |
---|
| 314 | * didn't pass anything else. |
---|
| 315 | */ |
---|
| 316 | |
---|
| 317 | if (bytes == NULL) { |
---|
| 318 | bytes = TclGetString(objPtr); |
---|
| 319 | } |
---|
| 320 | |
---|
| 321 | p = bytes; |
---|
| 322 | len = numBytes; |
---|
| 323 | acceptPoint = p; |
---|
| 324 | acceptLen = len; |
---|
| 325 | while (1) { |
---|
| 326 | char c = len ? *p : '\0'; |
---|
| 327 | switch (state) { |
---|
| 328 | |
---|
| 329 | case INITIAL: |
---|
| 330 | /* |
---|
| 331 | * Initial state. Acceptable characters are +, -, digits, period, |
---|
| 332 | * I, N, and whitespace. |
---|
| 333 | */ |
---|
| 334 | |
---|
| 335 | if (isspace(UCHAR(c))) { |
---|
| 336 | if (flags & TCL_PARSE_NO_WHITESPACE) { |
---|
| 337 | goto endgame; |
---|
| 338 | } |
---|
| 339 | break; |
---|
| 340 | } else if (c == '+') { |
---|
| 341 | state = SIGNUM; |
---|
| 342 | break; |
---|
| 343 | } else if (c == '-') { |
---|
| 344 | signum = 1; |
---|
| 345 | state = SIGNUM; |
---|
| 346 | break; |
---|
| 347 | } |
---|
| 348 | /* FALLTHROUGH */ |
---|
| 349 | |
---|
| 350 | case SIGNUM: |
---|
| 351 | /* |
---|
| 352 | * Scanned a leading + or -. Acceptable characters are digits, |
---|
| 353 | * period, I, and N. |
---|
| 354 | */ |
---|
| 355 | |
---|
| 356 | if (c == '0') { |
---|
| 357 | if (flags & TCL_PARSE_DECIMAL_ONLY) { |
---|
| 358 | state = DECIMAL; |
---|
| 359 | } else { |
---|
| 360 | state = ZERO; |
---|
| 361 | } |
---|
| 362 | break; |
---|
| 363 | } else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { |
---|
| 364 | goto zerox; |
---|
| 365 | } else if (flags & TCL_PARSE_OCTAL_ONLY) { |
---|
| 366 | goto zeroo; |
---|
| 367 | } else if (isdigit(UCHAR(c))) { |
---|
| 368 | significandWide = c - '0'; |
---|
| 369 | numSigDigs = 1; |
---|
| 370 | state = DECIMAL; |
---|
| 371 | break; |
---|
| 372 | } else if (flags & TCL_PARSE_INTEGER_ONLY) { |
---|
| 373 | goto endgame; |
---|
| 374 | } else if (c == '.') { |
---|
| 375 | state = LEADING_RADIX_POINT; |
---|
| 376 | break; |
---|
| 377 | } else if (c == 'I' || c == 'i') { |
---|
| 378 | state = sI; |
---|
| 379 | break; |
---|
| 380 | #ifdef IEEE_FLOATING_POINT |
---|
| 381 | } else if (c == 'N' || c == 'n') { |
---|
| 382 | state = sN; |
---|
| 383 | break; |
---|
| 384 | #endif |
---|
| 385 | } |
---|
| 386 | goto endgame; |
---|
| 387 | |
---|
| 388 | case ZERO: |
---|
| 389 | /* |
---|
| 390 | * Scanned a leading zero (perhaps with a + or -). Acceptable |
---|
| 391 | * inputs are digits, period, X, and E. If 8 or 9 is encountered, |
---|
| 392 | * the number can't be octal. This state and the OCTAL state |
---|
| 393 | * differ only in whether they recognize 'X'. |
---|
| 394 | */ |
---|
| 395 | |
---|
| 396 | acceptState = state; |
---|
| 397 | acceptPoint = p; |
---|
| 398 | acceptLen = len; |
---|
| 399 | if (c == 'x' || c == 'X') { |
---|
| 400 | state = ZERO_X; |
---|
| 401 | break; |
---|
| 402 | } |
---|
| 403 | if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { |
---|
| 404 | goto zerox; |
---|
| 405 | } |
---|
| 406 | if (flags & TCL_PARSE_SCAN_PREFIXES) { |
---|
| 407 | goto zeroo; |
---|
| 408 | } |
---|
| 409 | if (c == 'b' || c == 'B') { |
---|
| 410 | state = ZERO_B; |
---|
| 411 | break; |
---|
| 412 | } |
---|
| 413 | if (c == 'o' || c == 'O') { |
---|
| 414 | explicitOctal = 1; |
---|
| 415 | state = ZERO_O; |
---|
| 416 | break; |
---|
| 417 | } |
---|
| 418 | #ifdef KILL_OCTAL |
---|
| 419 | goto decimal; |
---|
| 420 | #endif |
---|
| 421 | /* FALLTHROUGH */ |
---|
| 422 | |
---|
| 423 | case OCTAL: |
---|
| 424 | /* |
---|
| 425 | * Scanned an optional + or -, followed by a string of octal |
---|
| 426 | * digits. Acceptable inputs are more digits, period, or E. If 8 |
---|
| 427 | * or 9 is encountered, commit to floating point. |
---|
| 428 | */ |
---|
| 429 | |
---|
| 430 | acceptState = state; |
---|
| 431 | acceptPoint = p; |
---|
| 432 | acceptLen = len; |
---|
| 433 | /* FALLTHROUGH */ |
---|
| 434 | case ZERO_O: |
---|
| 435 | zeroo: |
---|
| 436 | if (c == '0') { |
---|
| 437 | ++numTrailZeros; |
---|
| 438 | state = OCTAL; |
---|
| 439 | break; |
---|
| 440 | } else if (c >= '1' && c <= '7') { |
---|
| 441 | if (objPtr != NULL) { |
---|
| 442 | shift = 3 * (numTrailZeros + 1); |
---|
| 443 | significandOverflow = AccumulateDecimalDigit( |
---|
| 444 | (unsigned)(c-'0'), numTrailZeros, |
---|
| 445 | &significandWide, &significandBig, |
---|
| 446 | significandOverflow); |
---|
| 447 | |
---|
| 448 | if (!octalSignificandOverflow) { |
---|
| 449 | /* |
---|
| 450 | * Shifting by more bits than are in the value being |
---|
| 451 | * shifted is at least de facto nonportable. Check for |
---|
| 452 | * too large shifts first. |
---|
| 453 | */ |
---|
| 454 | |
---|
| 455 | if ((octalSignificandWide != 0) |
---|
| 456 | && (((size_t)shift >= |
---|
| 457 | CHAR_BIT*sizeof(Tcl_WideUInt)) |
---|
| 458 | || (octalSignificandWide > |
---|
| 459 | (~(Tcl_WideUInt)0 >> shift)))) { |
---|
| 460 | octalSignificandOverflow = 1; |
---|
| 461 | TclBNInitBignumFromWideUInt(&octalSignificandBig, |
---|
| 462 | octalSignificandWide); |
---|
| 463 | } |
---|
| 464 | } |
---|
| 465 | if (!octalSignificandOverflow) { |
---|
| 466 | octalSignificandWide = |
---|
| 467 | (octalSignificandWide << shift) + (c - '0'); |
---|
| 468 | } else { |
---|
| 469 | mp_mul_2d(&octalSignificandBig, shift, |
---|
| 470 | &octalSignificandBig); |
---|
| 471 | mp_add_d(&octalSignificandBig, (mp_digit)(c - '0'), |
---|
| 472 | &octalSignificandBig); |
---|
| 473 | } |
---|
| 474 | } |
---|
| 475 | if (numSigDigs != 0) { |
---|
| 476 | numSigDigs += numTrailZeros+1; |
---|
| 477 | } else { |
---|
| 478 | numSigDigs = 1; |
---|
| 479 | } |
---|
| 480 | numTrailZeros = 0; |
---|
| 481 | state = OCTAL; |
---|
| 482 | break; |
---|
| 483 | } |
---|
| 484 | /* FALLTHROUGH */ |
---|
| 485 | |
---|
| 486 | case BAD_OCTAL: |
---|
| 487 | if (explicitOctal) { |
---|
| 488 | /* |
---|
| 489 | * No forgiveness for bad digits in explicitly octal numbers. |
---|
| 490 | */ |
---|
| 491 | |
---|
| 492 | goto endgame; |
---|
| 493 | } |
---|
| 494 | if (flags & TCL_PARSE_INTEGER_ONLY) { |
---|
| 495 | /* |
---|
| 496 | * No seeking floating point when parsing only integer. |
---|
| 497 | */ |
---|
| 498 | |
---|
| 499 | goto endgame; |
---|
| 500 | } |
---|
| 501 | #ifndef KILL_OCTAL |
---|
| 502 | |
---|
| 503 | /* |
---|
| 504 | * Scanned a number with a leading zero that contains an 8, 9, |
---|
| 505 | * radix point or E. This is an invalid octal number, but might |
---|
| 506 | * still be floating point. |
---|
| 507 | */ |
---|
| 508 | |
---|
| 509 | if (c == '0') { |
---|
| 510 | ++numTrailZeros; |
---|
| 511 | state = BAD_OCTAL; |
---|
| 512 | break; |
---|
| 513 | } else if (isdigit(UCHAR(c))) { |
---|
| 514 | if (objPtr != NULL) { |
---|
| 515 | significandOverflow = AccumulateDecimalDigit( |
---|
| 516 | (unsigned)(c-'0'), numTrailZeros, |
---|
| 517 | &significandWide, &significandBig, |
---|
| 518 | significandOverflow); |
---|
| 519 | } |
---|
| 520 | if (numSigDigs != 0) { |
---|
| 521 | numSigDigs += (numTrailZeros + 1); |
---|
| 522 | } else { |
---|
| 523 | numSigDigs = 1; |
---|
| 524 | } |
---|
| 525 | numTrailZeros = 0; |
---|
| 526 | state = BAD_OCTAL; |
---|
| 527 | break; |
---|
| 528 | } else if (c == '.') { |
---|
| 529 | state = FRACTION; |
---|
| 530 | break; |
---|
| 531 | } else if (c == 'E' || c == 'e') { |
---|
| 532 | state = EXPONENT_START; |
---|
| 533 | break; |
---|
| 534 | } |
---|
| 535 | #endif |
---|
| 536 | goto endgame; |
---|
| 537 | |
---|
| 538 | /* |
---|
| 539 | * Scanned 0x. If state is HEXADECIMAL, scanned at least one |
---|
| 540 | * character following the 0x. The only acceptable inputs are |
---|
| 541 | * hexadecimal digits. |
---|
| 542 | */ |
---|
| 543 | |
---|
| 544 | case HEXADECIMAL: |
---|
| 545 | acceptState = state; |
---|
| 546 | acceptPoint = p; |
---|
| 547 | acceptLen = len; |
---|
| 548 | /* FALLTHROUGH */ |
---|
| 549 | |
---|
| 550 | case ZERO_X: |
---|
| 551 | zerox: |
---|
| 552 | if (c == '0') { |
---|
| 553 | ++numTrailZeros; |
---|
| 554 | state = HEXADECIMAL; |
---|
| 555 | break; |
---|
| 556 | } else if (isdigit(UCHAR(c))) { |
---|
| 557 | d = (c-'0'); |
---|
| 558 | } else if (c >= 'A' && c <= 'F') { |
---|
| 559 | d = (c-'A'+10); |
---|
| 560 | } else if (c >= 'a' && c <= 'f') { |
---|
| 561 | d = (c-'a'+10); |
---|
| 562 | } else { |
---|
| 563 | goto endgame; |
---|
| 564 | } |
---|
| 565 | if (objPtr != NULL) { |
---|
| 566 | shift = 4 * (numTrailZeros + 1); |
---|
| 567 | if (!significandOverflow) { |
---|
| 568 | /* |
---|
| 569 | * Shifting by more bits than are in the value being |
---|
| 570 | * shifted is at least de facto nonportable. Check for too |
---|
| 571 | * large shifts first. |
---|
| 572 | */ |
---|
| 573 | |
---|
| 574 | if (significandWide != 0 && |
---|
| 575 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
| 576 | significandWide > (~(Tcl_WideUInt)0 >> shift))) { |
---|
| 577 | significandOverflow = 1; |
---|
| 578 | TclBNInitBignumFromWideUInt(&significandBig, |
---|
| 579 | significandWide); |
---|
| 580 | } |
---|
| 581 | } |
---|
| 582 | if (!significandOverflow) { |
---|
| 583 | significandWide = (significandWide << shift) + d; |
---|
| 584 | } else { |
---|
| 585 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
| 586 | mp_add_d(&significandBig, (mp_digit) d, &significandBig); |
---|
| 587 | } |
---|
| 588 | } |
---|
| 589 | numTrailZeros = 0; |
---|
| 590 | state = HEXADECIMAL; |
---|
| 591 | break; |
---|
| 592 | |
---|
| 593 | case BINARY: |
---|
| 594 | acceptState = state; |
---|
| 595 | acceptPoint = p; |
---|
| 596 | acceptLen = len; |
---|
| 597 | case ZERO_B: |
---|
| 598 | if (c == '0') { |
---|
| 599 | ++numTrailZeros; |
---|
| 600 | state = BINARY; |
---|
| 601 | break; |
---|
| 602 | } else if (c != '1') { |
---|
| 603 | goto endgame; |
---|
| 604 | } |
---|
| 605 | if (objPtr != NULL) { |
---|
| 606 | shift = numTrailZeros + 1; |
---|
| 607 | if (!significandOverflow) { |
---|
| 608 | /* |
---|
| 609 | * Shifting by more bits than are in the value being |
---|
| 610 | * shifted is at least de facto nonportable. Check for too |
---|
| 611 | * large shifts first. |
---|
| 612 | */ |
---|
| 613 | |
---|
| 614 | if (significandWide != 0 && |
---|
| 615 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
| 616 | significandWide > (~(Tcl_WideUInt)0 >> shift))) { |
---|
| 617 | significandOverflow = 1; |
---|
| 618 | TclBNInitBignumFromWideUInt(&significandBig, |
---|
| 619 | significandWide); |
---|
| 620 | } |
---|
| 621 | } |
---|
| 622 | if (!significandOverflow) { |
---|
| 623 | significandWide = (significandWide << shift) + 1; |
---|
| 624 | } else { |
---|
| 625 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
| 626 | mp_add_d(&significandBig, (mp_digit) 1, &significandBig); |
---|
| 627 | } |
---|
| 628 | } |
---|
| 629 | numTrailZeros = 0; |
---|
| 630 | state = BINARY; |
---|
| 631 | break; |
---|
| 632 | |
---|
| 633 | case DECIMAL: |
---|
| 634 | /* |
---|
| 635 | * Scanned an optional + or - followed by a string of decimal |
---|
| 636 | * digits. |
---|
| 637 | */ |
---|
| 638 | |
---|
| 639 | #ifdef KILL_OCTAL |
---|
| 640 | decimal: |
---|
| 641 | #endif |
---|
| 642 | acceptState = state; |
---|
| 643 | acceptPoint = p; |
---|
| 644 | acceptLen = len; |
---|
| 645 | if (c == '0') { |
---|
| 646 | ++numTrailZeros; |
---|
| 647 | state = DECIMAL; |
---|
| 648 | break; |
---|
| 649 | } else if (isdigit(UCHAR(c))) { |
---|
| 650 | if (objPtr != NULL) { |
---|
| 651 | significandOverflow = AccumulateDecimalDigit( |
---|
| 652 | (unsigned)(c - '0'), numTrailZeros, |
---|
| 653 | &significandWide, &significandBig, |
---|
| 654 | significandOverflow); |
---|
| 655 | } |
---|
| 656 | numSigDigs += numTrailZeros+1; |
---|
| 657 | numTrailZeros = 0; |
---|
| 658 | state = DECIMAL; |
---|
| 659 | break; |
---|
| 660 | } else if (flags & TCL_PARSE_INTEGER_ONLY) { |
---|
| 661 | goto endgame; |
---|
| 662 | } else if (c == '.') { |
---|
| 663 | state = FRACTION; |
---|
| 664 | break; |
---|
| 665 | } else if (c == 'E' || c == 'e') { |
---|
| 666 | state = EXPONENT_START; |
---|
| 667 | break; |
---|
| 668 | } |
---|
| 669 | goto endgame; |
---|
| 670 | |
---|
| 671 | /* |
---|
| 672 | * Found a decimal point. If no digits have yet been scanned, E is |
---|
| 673 | * not allowed; otherwise, it introduces the exponent. If at least |
---|
| 674 | * one digit has been found, we have a possible complete number. |
---|
| 675 | */ |
---|
| 676 | |
---|
| 677 | case FRACTION: |
---|
| 678 | acceptState = state; |
---|
| 679 | acceptPoint = p; |
---|
| 680 | acceptLen = len; |
---|
| 681 | if (c == 'E' || c=='e') { |
---|
| 682 | state = EXPONENT_START; |
---|
| 683 | break; |
---|
| 684 | } |
---|
| 685 | /* FALLTHROUGH */ |
---|
| 686 | |
---|
| 687 | case LEADING_RADIX_POINT: |
---|
| 688 | if (c == '0') { |
---|
| 689 | ++numDigitsAfterDp; |
---|
| 690 | ++numTrailZeros; |
---|
| 691 | state = FRACTION; |
---|
| 692 | break; |
---|
| 693 | } else if (isdigit(UCHAR(c))) { |
---|
| 694 | ++numDigitsAfterDp; |
---|
| 695 | if (objPtr != NULL) { |
---|
| 696 | significandOverflow = AccumulateDecimalDigit( |
---|
| 697 | (unsigned)(c-'0'), numTrailZeros, |
---|
| 698 | &significandWide, &significandBig, |
---|
| 699 | significandOverflow); |
---|
| 700 | } |
---|
| 701 | if (numSigDigs != 0) { |
---|
| 702 | numSigDigs += numTrailZeros+1; |
---|
| 703 | } else { |
---|
| 704 | numSigDigs = 1; |
---|
| 705 | } |
---|
| 706 | numTrailZeros = 0; |
---|
| 707 | state = FRACTION; |
---|
| 708 | break; |
---|
| 709 | } |
---|
| 710 | goto endgame; |
---|
| 711 | |
---|
| 712 | case EXPONENT_START: |
---|
| 713 | /* |
---|
| 714 | * Scanned the E at the start of an exponent. Make sure a legal |
---|
| 715 | * character follows before using the C library strtol routine, |
---|
| 716 | * which allows whitespace. |
---|
| 717 | */ |
---|
| 718 | |
---|
| 719 | if (c == '+') { |
---|
| 720 | state = EXPONENT_SIGNUM; |
---|
| 721 | break; |
---|
| 722 | } else if (c == '-') { |
---|
| 723 | exponentSignum = 1; |
---|
| 724 | state = EXPONENT_SIGNUM; |
---|
| 725 | break; |
---|
| 726 | } |
---|
| 727 | /* FALLTHROUGH */ |
---|
| 728 | |
---|
| 729 | case EXPONENT_SIGNUM: |
---|
| 730 | /* |
---|
| 731 | * Found the E at the start of the exponent, followed by a sign |
---|
| 732 | * character. |
---|
| 733 | */ |
---|
| 734 | |
---|
| 735 | if (isdigit(UCHAR(c))) { |
---|
| 736 | exponent = c - '0'; |
---|
| 737 | state = EXPONENT; |
---|
| 738 | break; |
---|
| 739 | } |
---|
| 740 | goto endgame; |
---|
| 741 | |
---|
| 742 | case EXPONENT: |
---|
| 743 | /* |
---|
| 744 | * Found an exponent with at least one digit. Accumulate it, |
---|
| 745 | * making sure to hard-pin it to LONG_MAX on overflow. |
---|
| 746 | */ |
---|
| 747 | |
---|
| 748 | acceptState = state; |
---|
| 749 | acceptPoint = p; |
---|
| 750 | acceptLen = len; |
---|
| 751 | if (isdigit(UCHAR(c))) { |
---|
| 752 | if (exponent < (LONG_MAX - 9) / 10) { |
---|
| 753 | exponent = 10 * exponent + (c - '0'); |
---|
| 754 | } else { |
---|
| 755 | exponent = LONG_MAX; |
---|
| 756 | } |
---|
| 757 | state = EXPONENT; |
---|
| 758 | break; |
---|
| 759 | } |
---|
| 760 | goto endgame; |
---|
| 761 | |
---|
| 762 | /* |
---|
| 763 | * Parse out INFINITY by simply spelling it out. INF is accepted |
---|
| 764 | * as an abbreviation; other prefices are not. |
---|
| 765 | */ |
---|
| 766 | |
---|
| 767 | case sI: |
---|
| 768 | if (c == 'n' || c == 'N') { |
---|
| 769 | state = sIN; |
---|
| 770 | break; |
---|
| 771 | } |
---|
| 772 | goto endgame; |
---|
| 773 | case sIN: |
---|
| 774 | if (c == 'f' || c == 'F') { |
---|
| 775 | state = sINF; |
---|
| 776 | break; |
---|
| 777 | } |
---|
| 778 | goto endgame; |
---|
| 779 | case sINF: |
---|
| 780 | acceptState = state; |
---|
| 781 | acceptPoint = p; |
---|
| 782 | acceptLen = len; |
---|
| 783 | if (c == 'i' || c == 'I') { |
---|
| 784 | state = sINFI; |
---|
| 785 | break; |
---|
| 786 | } |
---|
| 787 | goto endgame; |
---|
| 788 | case sINFI: |
---|
| 789 | if (c == 'n' || c == 'N') { |
---|
| 790 | state = sINFIN; |
---|
| 791 | break; |
---|
| 792 | } |
---|
| 793 | goto endgame; |
---|
| 794 | case sINFIN: |
---|
| 795 | if (c == 'i' || c == 'I') { |
---|
| 796 | state = sINFINI; |
---|
| 797 | break; |
---|
| 798 | } |
---|
| 799 | goto endgame; |
---|
| 800 | case sINFINI: |
---|
| 801 | if (c == 't' || c == 'T') { |
---|
| 802 | state = sINFINIT; |
---|
| 803 | break; |
---|
| 804 | } |
---|
| 805 | goto endgame; |
---|
| 806 | case sINFINIT: |
---|
| 807 | if (c == 'y' || c == 'Y') { |
---|
| 808 | state = sINFINITY; |
---|
| 809 | break; |
---|
| 810 | } |
---|
| 811 | goto endgame; |
---|
| 812 | |
---|
| 813 | /* |
---|
| 814 | * Parse NaN's. |
---|
| 815 | */ |
---|
| 816 | #ifdef IEEE_FLOATING_POINT |
---|
| 817 | case sN: |
---|
| 818 | if (c == 'a' || c == 'A') { |
---|
| 819 | state = sNA; |
---|
| 820 | break; |
---|
| 821 | } |
---|
| 822 | goto endgame; |
---|
| 823 | case sNA: |
---|
| 824 | if (c == 'n' || c == 'N') { |
---|
| 825 | state = sNAN; |
---|
| 826 | break; |
---|
| 827 | } |
---|
| 828 | goto endgame; |
---|
| 829 | case sNAN: |
---|
| 830 | acceptState = state; |
---|
| 831 | acceptPoint = p; |
---|
| 832 | acceptLen = len; |
---|
| 833 | if (c == '(') { |
---|
| 834 | state = sNANPAREN; |
---|
| 835 | break; |
---|
| 836 | } |
---|
| 837 | goto endgame; |
---|
| 838 | |
---|
| 839 | /* |
---|
| 840 | * Parse NaN(hexdigits) |
---|
| 841 | */ |
---|
| 842 | case sNANHEX: |
---|
| 843 | if (c == ')') { |
---|
| 844 | state = sNANFINISH; |
---|
| 845 | break; |
---|
| 846 | } |
---|
| 847 | /* FALLTHROUGH */ |
---|
| 848 | case sNANPAREN: |
---|
| 849 | if (isspace(UCHAR(c))) { |
---|
| 850 | break; |
---|
| 851 | } |
---|
| 852 | if (numSigDigs < 13) { |
---|
| 853 | if (c >= '0' && c <= '9') { |
---|
| 854 | d = c - '0'; |
---|
| 855 | } else if (c >= 'a' && c <= 'f') { |
---|
| 856 | d = 10 + c - 'a'; |
---|
| 857 | } else if (c >= 'A' && c <= 'F') { |
---|
| 858 | d = 10 + c - 'A'; |
---|
| 859 | } |
---|
| 860 | significandWide = (significandWide << 4) + d; |
---|
| 861 | state = sNANHEX; |
---|
| 862 | break; |
---|
| 863 | } |
---|
| 864 | goto endgame; |
---|
| 865 | case sNANFINISH: |
---|
| 866 | #endif |
---|
| 867 | |
---|
| 868 | case sINFINITY: |
---|
| 869 | acceptState = state; |
---|
| 870 | acceptPoint = p; |
---|
| 871 | acceptLen = len; |
---|
| 872 | goto endgame; |
---|
| 873 | } |
---|
| 874 | ++p; |
---|
| 875 | --len; |
---|
| 876 | } |
---|
| 877 | |
---|
| 878 | endgame: |
---|
| 879 | if (acceptState == INITIAL) { |
---|
| 880 | /* |
---|
| 881 | * No numeric string at all found. |
---|
| 882 | */ |
---|
| 883 | |
---|
| 884 | status = TCL_ERROR; |
---|
| 885 | if (endPtrPtr != NULL) { |
---|
| 886 | *endPtrPtr = p; |
---|
| 887 | } |
---|
| 888 | } else { |
---|
| 889 | /* |
---|
| 890 | * Back up to the last accepting state in the lexer. |
---|
| 891 | */ |
---|
| 892 | |
---|
| 893 | p = acceptPoint; |
---|
| 894 | len = acceptLen; |
---|
| 895 | if (!(flags & TCL_PARSE_NO_WHITESPACE)) { |
---|
| 896 | /* |
---|
| 897 | * Accept trailing whitespace. |
---|
| 898 | */ |
---|
| 899 | |
---|
| 900 | while (len != 0 && isspace(UCHAR(*p))) { |
---|
| 901 | ++p; |
---|
| 902 | --len; |
---|
| 903 | } |
---|
| 904 | } |
---|
| 905 | if (endPtrPtr == NULL) { |
---|
| 906 | if ((len != 0) && ((numBytes > 0) || (*p != '\0'))) { |
---|
| 907 | status = TCL_ERROR; |
---|
| 908 | } |
---|
| 909 | } else { |
---|
| 910 | *endPtrPtr = p; |
---|
| 911 | } |
---|
| 912 | } |
---|
| 913 | |
---|
| 914 | /* |
---|
| 915 | * Generate and store the appropriate internal rep. |
---|
| 916 | */ |
---|
| 917 | |
---|
| 918 | if (status == TCL_OK && objPtr != NULL) { |
---|
| 919 | TclFreeIntRep(objPtr); |
---|
| 920 | switch (acceptState) { |
---|
| 921 | case SIGNUM: |
---|
| 922 | case BAD_OCTAL: |
---|
| 923 | case ZERO_X: |
---|
| 924 | case ZERO_O: |
---|
| 925 | case ZERO_B: |
---|
| 926 | case LEADING_RADIX_POINT: |
---|
| 927 | case EXPONENT_START: |
---|
| 928 | case EXPONENT_SIGNUM: |
---|
| 929 | case sI: |
---|
| 930 | case sIN: |
---|
| 931 | case sINFI: |
---|
| 932 | case sINFIN: |
---|
| 933 | case sINFINI: |
---|
| 934 | case sINFINIT: |
---|
| 935 | case sN: |
---|
| 936 | case sNA: |
---|
| 937 | case sNANPAREN: |
---|
| 938 | case sNANHEX: |
---|
| 939 | Tcl_Panic("TclParseNumber: bad acceptState %d parsing '%s'", |
---|
| 940 | acceptState, bytes); |
---|
| 941 | |
---|
| 942 | case BINARY: |
---|
| 943 | shift = numTrailZeros; |
---|
| 944 | if (!significandOverflow && significandWide != 0 && |
---|
| 945 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
| 946 | significandWide > (MOST_BITS + signum) >> shift)) { |
---|
| 947 | significandOverflow = 1; |
---|
| 948 | TclBNInitBignumFromWideUInt(&significandBig, significandWide); |
---|
| 949 | } |
---|
| 950 | if (shift) { |
---|
| 951 | if (!significandOverflow) { |
---|
| 952 | significandWide <<= shift; |
---|
| 953 | } else { |
---|
| 954 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
| 955 | } |
---|
| 956 | } |
---|
| 957 | goto returnInteger; |
---|
| 958 | |
---|
| 959 | case HEXADECIMAL: |
---|
| 960 | /* |
---|
| 961 | * Returning a hex integer. Final scaling step. |
---|
| 962 | */ |
---|
| 963 | |
---|
| 964 | shift = 4 * numTrailZeros; |
---|
| 965 | if (!significandOverflow && significandWide !=0 && |
---|
| 966 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
| 967 | significandWide > (MOST_BITS + signum) >> shift)) { |
---|
| 968 | significandOverflow = 1; |
---|
| 969 | TclBNInitBignumFromWideUInt(&significandBig, significandWide); |
---|
| 970 | } |
---|
| 971 | if (shift) { |
---|
| 972 | if (!significandOverflow) { |
---|
| 973 | significandWide <<= shift; |
---|
| 974 | } else { |
---|
| 975 | mp_mul_2d(&significandBig, shift, &significandBig); |
---|
| 976 | } |
---|
| 977 | } |
---|
| 978 | goto returnInteger; |
---|
| 979 | |
---|
| 980 | case OCTAL: |
---|
| 981 | /* |
---|
| 982 | * Returning an octal integer. Final scaling step |
---|
| 983 | */ |
---|
| 984 | |
---|
| 985 | shift = 3 * numTrailZeros; |
---|
| 986 | if (!octalSignificandOverflow && octalSignificandWide != 0 && |
---|
| 987 | ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || |
---|
| 988 | octalSignificandWide > (MOST_BITS + signum) >> shift)) { |
---|
| 989 | octalSignificandOverflow = 1; |
---|
| 990 | TclBNInitBignumFromWideUInt(&octalSignificandBig, |
---|
| 991 | octalSignificandWide); |
---|
| 992 | } |
---|
| 993 | if (shift) { |
---|
| 994 | if (!octalSignificandOverflow) { |
---|
| 995 | octalSignificandWide <<= shift; |
---|
| 996 | } else { |
---|
| 997 | mp_mul_2d(&octalSignificandBig, shift, |
---|
| 998 | &octalSignificandBig); |
---|
| 999 | } |
---|
| 1000 | } |
---|
| 1001 | if (!octalSignificandOverflow) { |
---|
| 1002 | if (octalSignificandWide > |
---|
| 1003 | (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { |
---|
| 1004 | #ifndef NO_WIDE_TYPE |
---|
| 1005 | if (octalSignificandWide <= (MOST_BITS + signum)) { |
---|
| 1006 | objPtr->typePtr = &tclWideIntType; |
---|
| 1007 | if (signum) { |
---|
| 1008 | objPtr->internalRep.wideValue = |
---|
| 1009 | - (Tcl_WideInt) octalSignificandWide; |
---|
| 1010 | } else { |
---|
| 1011 | objPtr->internalRep.wideValue = |
---|
| 1012 | (Tcl_WideInt) octalSignificandWide; |
---|
| 1013 | } |
---|
| 1014 | break; |
---|
| 1015 | } |
---|
| 1016 | #endif |
---|
| 1017 | TclBNInitBignumFromWideUInt(&octalSignificandBig, |
---|
| 1018 | octalSignificandWide); |
---|
| 1019 | octalSignificandOverflow = 1; |
---|
| 1020 | } else { |
---|
| 1021 | objPtr->typePtr = &tclIntType; |
---|
| 1022 | if (signum) { |
---|
| 1023 | objPtr->internalRep.longValue = |
---|
| 1024 | - (long) octalSignificandWide; |
---|
| 1025 | } else { |
---|
| 1026 | objPtr->internalRep.longValue = |
---|
| 1027 | (long) octalSignificandWide; |
---|
| 1028 | } |
---|
| 1029 | } |
---|
| 1030 | } |
---|
| 1031 | if (octalSignificandOverflow) { |
---|
| 1032 | if (signum) { |
---|
| 1033 | mp_neg(&octalSignificandBig, &octalSignificandBig); |
---|
| 1034 | } |
---|
| 1035 | TclSetBignumIntRep(objPtr, &octalSignificandBig); |
---|
| 1036 | } |
---|
| 1037 | break; |
---|
| 1038 | |
---|
| 1039 | case ZERO: |
---|
| 1040 | case DECIMAL: |
---|
| 1041 | significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1, |
---|
| 1042 | &significandWide, &significandBig, significandOverflow); |
---|
| 1043 | if (!significandOverflow && (significandWide > MOST_BITS+signum)) { |
---|
| 1044 | significandOverflow = 1; |
---|
| 1045 | TclBNInitBignumFromWideUInt(&significandBig, significandWide); |
---|
| 1046 | } |
---|
| 1047 | returnInteger: |
---|
| 1048 | if (!significandOverflow) { |
---|
| 1049 | if (significandWide > |
---|
| 1050 | (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { |
---|
| 1051 | #ifndef NO_WIDE_TYPE |
---|
| 1052 | if (significandWide <= MOST_BITS+signum) { |
---|
| 1053 | objPtr->typePtr = &tclWideIntType; |
---|
| 1054 | if (signum) { |
---|
| 1055 | objPtr->internalRep.wideValue = |
---|
| 1056 | - (Tcl_WideInt) significandWide; |
---|
| 1057 | } else { |
---|
| 1058 | objPtr->internalRep.wideValue = |
---|
| 1059 | (Tcl_WideInt) significandWide; |
---|
| 1060 | } |
---|
| 1061 | break; |
---|
| 1062 | } |
---|
| 1063 | #endif |
---|
| 1064 | TclBNInitBignumFromWideUInt(&significandBig, |
---|
| 1065 | significandWide); |
---|
| 1066 | significandOverflow = 1; |
---|
| 1067 | } else { |
---|
| 1068 | objPtr->typePtr = &tclIntType; |
---|
| 1069 | if (signum) { |
---|
| 1070 | objPtr->internalRep.longValue = |
---|
| 1071 | - (long) significandWide; |
---|
| 1072 | } else { |
---|
| 1073 | objPtr->internalRep.longValue = |
---|
| 1074 | (long) significandWide; |
---|
| 1075 | } |
---|
| 1076 | } |
---|
| 1077 | } |
---|
| 1078 | if (significandOverflow) { |
---|
| 1079 | if (signum) { |
---|
| 1080 | mp_neg(&significandBig, &significandBig); |
---|
| 1081 | } |
---|
| 1082 | TclSetBignumIntRep(objPtr, &significandBig); |
---|
| 1083 | } |
---|
| 1084 | break; |
---|
| 1085 | |
---|
| 1086 | case FRACTION: |
---|
| 1087 | case EXPONENT: |
---|
| 1088 | |
---|
| 1089 | /* |
---|
| 1090 | * Here, we're parsing a floating-point number. 'significandWide' |
---|
| 1091 | * or 'significandBig' contains the exact significand, according |
---|
| 1092 | * to whether 'significandOverflow' is set. The desired floating |
---|
| 1093 | * point value is significand * 10**k, where |
---|
| 1094 | * k = numTrailZeros+exponent-numDigitsAfterDp. |
---|
| 1095 | */ |
---|
| 1096 | |
---|
| 1097 | objPtr->typePtr = &tclDoubleType; |
---|
| 1098 | if (exponentSignum) { |
---|
| 1099 | exponent = - exponent; |
---|
| 1100 | } |
---|
| 1101 | if (!significandOverflow) { |
---|
| 1102 | objPtr->internalRep.doubleValue = MakeLowPrecisionDouble( |
---|
| 1103 | signum, significandWide, numSigDigs, |
---|
| 1104 | (numTrailZeros + exponent - numDigitsAfterDp)); |
---|
| 1105 | } else { |
---|
| 1106 | objPtr->internalRep.doubleValue = MakeHighPrecisionDouble( |
---|
| 1107 | signum, &significandBig, numSigDigs, |
---|
| 1108 | (numTrailZeros + exponent - numDigitsAfterDp)); |
---|
| 1109 | } |
---|
| 1110 | break; |
---|
| 1111 | |
---|
| 1112 | case sINF: |
---|
| 1113 | case sINFINITY: |
---|
| 1114 | if (signum) { |
---|
| 1115 | objPtr->internalRep.doubleValue = -HUGE_VAL; |
---|
| 1116 | } else { |
---|
| 1117 | objPtr->internalRep.doubleValue = HUGE_VAL; |
---|
| 1118 | } |
---|
| 1119 | objPtr->typePtr = &tclDoubleType; |
---|
| 1120 | break; |
---|
| 1121 | |
---|
| 1122 | case sNAN: |
---|
| 1123 | case sNANFINISH: |
---|
| 1124 | objPtr->internalRep.doubleValue = MakeNaN(signum, significandWide); |
---|
| 1125 | objPtr->typePtr = &tclDoubleType; |
---|
| 1126 | break; |
---|
| 1127 | |
---|
| 1128 | case INITIAL: |
---|
| 1129 | /* This case only to silence compiler warning */ |
---|
| 1130 | Tcl_Panic("TclParseNumber: state INITIAL can't happen here"); |
---|
| 1131 | } |
---|
| 1132 | } |
---|
| 1133 | |
---|
| 1134 | /* |
---|
| 1135 | * Format an error message when an invalid number is encountered. |
---|
| 1136 | */ |
---|
| 1137 | |
---|
| 1138 | if (status != TCL_OK) { |
---|
| 1139 | if (interp != NULL) { |
---|
| 1140 | Tcl_Obj *msg; |
---|
| 1141 | |
---|
| 1142 | TclNewLiteralStringObj(msg, "expected "); |
---|
| 1143 | Tcl_AppendToObj(msg, expected, -1); |
---|
| 1144 | Tcl_AppendToObj(msg, " but got \"", -1); |
---|
| 1145 | Tcl_AppendLimitedToObj(msg, bytes, numBytes, 50, ""); |
---|
| 1146 | Tcl_AppendToObj(msg, "\"", -1); |
---|
| 1147 | if (state == BAD_OCTAL) { |
---|
| 1148 | Tcl_AppendToObj(msg, " (looks like invalid octal number)", -1); |
---|
| 1149 | } |
---|
| 1150 | Tcl_SetObjResult(interp, msg); |
---|
| 1151 | } |
---|
| 1152 | } |
---|
| 1153 | |
---|
| 1154 | /* |
---|
| 1155 | * Free memory. |
---|
| 1156 | */ |
---|
| 1157 | |
---|
| 1158 | if (octalSignificandOverflow) { |
---|
| 1159 | mp_clear(&octalSignificandBig); |
---|
| 1160 | } |
---|
| 1161 | if (significandOverflow) { |
---|
| 1162 | mp_clear(&significandBig); |
---|
| 1163 | } |
---|
| 1164 | return status; |
---|
| 1165 | } |
---|
| 1166 | |
---|
| 1167 | /* |
---|
| 1168 | *---------------------------------------------------------------------- |
---|
| 1169 | * |
---|
| 1170 | * AccumulateDecimalDigit -- |
---|
| 1171 | * |
---|
| 1172 | * Consume a decimal digit in a number being scanned. |
---|
| 1173 | * |
---|
| 1174 | * Results: |
---|
| 1175 | * Returns 1 if the number has overflowed to a bignum, 0 if it still fits |
---|
| 1176 | * in a wide integer. |
---|
| 1177 | * |
---|
| 1178 | * Side effects: |
---|
| 1179 | * Updates either the wide or bignum representation. |
---|
| 1180 | * |
---|
| 1181 | *---------------------------------------------------------------------- |
---|
| 1182 | */ |
---|
| 1183 | |
---|
| 1184 | static int |
---|
| 1185 | AccumulateDecimalDigit( |
---|
| 1186 | unsigned digit, /* Digit being scanned. */ |
---|
| 1187 | int numZeros, /* Count of zero digits preceding the digit |
---|
| 1188 | * being scanned. */ |
---|
| 1189 | Tcl_WideUInt *wideRepPtr, /* Representation of the partial number as a |
---|
| 1190 | * wide integer. */ |
---|
| 1191 | mp_int *bignumRepPtr, /* Representation of the partial number as a |
---|
| 1192 | * bignum. */ |
---|
| 1193 | int bignumFlag) /* Flag == 1 if the number overflowed previous |
---|
| 1194 | * to this digit. */ |
---|
| 1195 | { |
---|
| 1196 | int i, n; |
---|
| 1197 | Tcl_WideUInt w; |
---|
| 1198 | |
---|
| 1199 | /* |
---|
| 1200 | * Try wide multiplication first |
---|
| 1201 | */ |
---|
| 1202 | |
---|
| 1203 | if (!bignumFlag) { |
---|
| 1204 | w = *wideRepPtr; |
---|
| 1205 | if (w == 0) { |
---|
| 1206 | /* |
---|
| 1207 | * There's no need to multiply if the multiplicand is zero. |
---|
| 1208 | */ |
---|
| 1209 | |
---|
| 1210 | *wideRepPtr = digit; |
---|
| 1211 | return 0; |
---|
| 1212 | } else if (numZeros >= maxpow10_wide |
---|
| 1213 | || w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) { |
---|
| 1214 | /* |
---|
| 1215 | * Wide multiplication will overflow. Expand the |
---|
| 1216 | * number to a bignum and fall through into the bignum case. |
---|
| 1217 | */ |
---|
| 1218 | |
---|
| 1219 | TclBNInitBignumFromWideUInt (bignumRepPtr, w); |
---|
| 1220 | } else { |
---|
| 1221 | /* |
---|
| 1222 | * Wide multiplication. |
---|
| 1223 | */ |
---|
| 1224 | *wideRepPtr = w * pow10_wide[numZeros+1] + digit; |
---|
| 1225 | return 0; |
---|
| 1226 | } |
---|
| 1227 | } |
---|
| 1228 | |
---|
| 1229 | /* |
---|
| 1230 | * Bignum multiplication. |
---|
| 1231 | */ |
---|
| 1232 | |
---|
| 1233 | if (numZeros < log10_DIGIT_MAX) { |
---|
| 1234 | /* |
---|
| 1235 | * Up to about 8 zeros - single digit multiplication. |
---|
| 1236 | */ |
---|
| 1237 | |
---|
| 1238 | mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[numZeros+1], |
---|
| 1239 | bignumRepPtr); |
---|
| 1240 | mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); |
---|
| 1241 | } else { |
---|
| 1242 | /* |
---|
| 1243 | * More than single digit multiplication. Multiply by the appropriate |
---|
| 1244 | * small powers of 5, and then shift. Large strings of zeroes are |
---|
| 1245 | * eaten 256 at a time; this is less efficient than it could be, but |
---|
| 1246 | * seems implausible. We presume that DIGIT_BIT is at least 27. The |
---|
| 1247 | * first multiplication, by up to 10**7, is done with a one-DIGIT |
---|
| 1248 | * multiply (this presumes that DIGIT_BIT >= 24). |
---|
| 1249 | */ |
---|
| 1250 | |
---|
| 1251 | n = numZeros + 1; |
---|
| 1252 | mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[n&0x7], bignumRepPtr); |
---|
| 1253 | for (i=3; i<=7; ++i) { |
---|
| 1254 | if (n & (1 << i)) { |
---|
| 1255 | mp_mul(bignumRepPtr, pow5+i, bignumRepPtr); |
---|
| 1256 | } |
---|
| 1257 | } |
---|
| 1258 | while (n >= 256) { |
---|
| 1259 | mp_mul(bignumRepPtr, pow5+8, bignumRepPtr); |
---|
| 1260 | n -= 256; |
---|
| 1261 | } |
---|
| 1262 | mp_mul_2d(bignumRepPtr, (int)(numZeros+1)&~0x7, bignumRepPtr); |
---|
| 1263 | mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); |
---|
| 1264 | } |
---|
| 1265 | |
---|
| 1266 | return 1; |
---|
| 1267 | } |
---|
| 1268 | |
---|
| 1269 | /* |
---|
| 1270 | *---------------------------------------------------------------------- |
---|
| 1271 | * |
---|
| 1272 | * MakeLowPrecisionDouble -- |
---|
| 1273 | * |
---|
| 1274 | * Makes the double precision number, signum*significand*10**exponent. |
---|
| 1275 | * |
---|
| 1276 | * Results: |
---|
| 1277 | * Returns the constructed number. |
---|
| 1278 | * |
---|
| 1279 | * Common cases, where there are few enough digits that the number can be |
---|
| 1280 | * represented with at most roundoff, are handled specially here. If the |
---|
| 1281 | * number requires more than one rounded operation to compute, the code |
---|
| 1282 | * promotes the significand to a bignum and calls MakeHighPrecisionDouble |
---|
| 1283 | * to do it instead. |
---|
| 1284 | * |
---|
| 1285 | *---------------------------------------------------------------------- |
---|
| 1286 | */ |
---|
| 1287 | |
---|
| 1288 | static double |
---|
| 1289 | MakeLowPrecisionDouble( |
---|
| 1290 | int signum, /* 1 if the number is negative, 0 otherwise */ |
---|
| 1291 | Tcl_WideUInt significand, /* Significand of the number */ |
---|
| 1292 | int numSigDigs, /* Number of digits in the significand */ |
---|
| 1293 | int exponent) /* Power of ten */ |
---|
| 1294 | { |
---|
| 1295 | double retval; /* Value of the number */ |
---|
| 1296 | mp_int significandBig; /* Significand expressed as a bignum */ |
---|
| 1297 | |
---|
| 1298 | /* |
---|
| 1299 | * With gcc on x86, the floating point rounding mode is double-extended. |
---|
| 1300 | * This causes the result of double-precision calculations to be rounded |
---|
| 1301 | * twice: once to the precision of double-extended and then again to the |
---|
| 1302 | * precision of double. Double-rounding introduces gratuitous errors of 1 |
---|
| 1303 | * ulp, so we need to change rounding mode to 53-bits. |
---|
| 1304 | */ |
---|
| 1305 | |
---|
| 1306 | #if defined(__GNUC__) && defined(__i386) |
---|
| 1307 | fpu_control_t roundTo53Bits = 0x027f; |
---|
| 1308 | fpu_control_t oldRoundingMode; |
---|
| 1309 | _FPU_GETCW(oldRoundingMode); |
---|
| 1310 | _FPU_SETCW(roundTo53Bits); |
---|
| 1311 | #endif |
---|
| 1312 | |
---|
| 1313 | /* |
---|
| 1314 | * Test for the easy cases. |
---|
| 1315 | */ |
---|
| 1316 | |
---|
| 1317 | if (numSigDigs <= DBL_DIG) { |
---|
| 1318 | if (exponent >= 0) { |
---|
| 1319 | if (exponent <= mmaxpow) { |
---|
| 1320 | /* |
---|
| 1321 | * The significand is an exact integer, and so is |
---|
| 1322 | * 10**exponent. The product will be correct to within 1/2 ulp |
---|
| 1323 | * without special handling. |
---|
| 1324 | */ |
---|
| 1325 | |
---|
| 1326 | retval = (double)(Tcl_WideInt)significand * pow10vals[ exponent ]; |
---|
| 1327 | goto returnValue; |
---|
| 1328 | } else { |
---|
| 1329 | int diff = DBL_DIG - numSigDigs; |
---|
| 1330 | if (exponent-diff <= mmaxpow) { |
---|
| 1331 | /* |
---|
| 1332 | * 10**exponent is not an exact integer, but |
---|
| 1333 | * 10**(exponent-diff) is exact, and so is |
---|
| 1334 | * significand*10**diff, so we can still compute the value |
---|
| 1335 | * with only one roundoff. |
---|
| 1336 | */ |
---|
| 1337 | |
---|
| 1338 | volatile double factor = |
---|
| 1339 | (double)(Tcl_WideInt)significand * pow10vals[diff]; |
---|
| 1340 | retval = factor * pow10vals[exponent-diff]; |
---|
| 1341 | goto returnValue; |
---|
| 1342 | } |
---|
| 1343 | } |
---|
| 1344 | } else { |
---|
| 1345 | if (exponent >= -mmaxpow) { |
---|
| 1346 | /* |
---|
| 1347 | * 10**-exponent is an exact integer, and so is the |
---|
| 1348 | * significand. Compute the result by one division, again with |
---|
| 1349 | * only one rounding. |
---|
| 1350 | */ |
---|
| 1351 | |
---|
| 1352 | retval = (double)(Tcl_WideInt)significand / pow10vals[-exponent]; |
---|
| 1353 | goto returnValue; |
---|
| 1354 | } |
---|
| 1355 | } |
---|
| 1356 | } |
---|
| 1357 | |
---|
| 1358 | /* |
---|
| 1359 | * All the easy cases have failed. Promote ths significand to bignum and |
---|
| 1360 | * call MakeHighPrecisionDouble to do it the hard way. |
---|
| 1361 | */ |
---|
| 1362 | |
---|
| 1363 | TclBNInitBignumFromWideUInt(&significandBig, significand); |
---|
| 1364 | retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs, |
---|
| 1365 | exponent); |
---|
| 1366 | mp_clear(&significandBig); |
---|
| 1367 | |
---|
| 1368 | /* |
---|
| 1369 | * Come here to return the computed value. |
---|
| 1370 | */ |
---|
| 1371 | |
---|
| 1372 | returnValue: |
---|
| 1373 | if (signum) { |
---|
| 1374 | retval = -retval; |
---|
| 1375 | } |
---|
| 1376 | |
---|
| 1377 | /* |
---|
| 1378 | * On gcc on x86, restore the floating point mode word. |
---|
| 1379 | */ |
---|
| 1380 | |
---|
| 1381 | #if defined(__GNUC__) && defined(__i386) |
---|
| 1382 | _FPU_SETCW(oldRoundingMode); |
---|
| 1383 | #endif |
---|
| 1384 | |
---|
| 1385 | return retval; |
---|
| 1386 | } |
---|
| 1387 | |
---|
| 1388 | /* |
---|
| 1389 | *---------------------------------------------------------------------- |
---|
| 1390 | * |
---|
| 1391 | * MakeHighPrecisionDouble -- |
---|
| 1392 | * |
---|
| 1393 | * Makes the double precision number, signum*significand*10**exponent. |
---|
| 1394 | * |
---|
| 1395 | * Results: |
---|
| 1396 | * Returns the constructed number. |
---|
| 1397 | * |
---|
| 1398 | * MakeHighPrecisionDouble is used when arbitrary-precision arithmetic is |
---|
| 1399 | * needed to ensure correct rounding. It begins by calculating a |
---|
| 1400 | * low-precision approximation to the desired number, and then refines |
---|
| 1401 | * the answer in high precision. |
---|
| 1402 | * |
---|
| 1403 | *---------------------------------------------------------------------- |
---|
| 1404 | */ |
---|
| 1405 | |
---|
| 1406 | static double |
---|
| 1407 | MakeHighPrecisionDouble( |
---|
| 1408 | int signum, /* 1=negative, 0=nonnegative */ |
---|
| 1409 | mp_int *significand, /* Exact significand of the number */ |
---|
| 1410 | int numSigDigs, /* Number of significant digits */ |
---|
| 1411 | int exponent) /* Power of 10 by which to multiply */ |
---|
| 1412 | { |
---|
| 1413 | double retval; |
---|
| 1414 | int machexp; /* Machine exponent of a power of 10 */ |
---|
| 1415 | |
---|
| 1416 | /* |
---|
| 1417 | * With gcc on x86, the floating point rounding mode is double-extended. |
---|
| 1418 | * This causes the result of double-precision calculations to be rounded |
---|
| 1419 | * twice: once to the precision of double-extended and then again to the |
---|
| 1420 | * precision of double. Double-rounding introduces gratuitous errors of 1 |
---|
| 1421 | * ulp, so we need to change rounding mode to 53-bits. |
---|
| 1422 | */ |
---|
| 1423 | |
---|
| 1424 | #if defined(__GNUC__) && defined(__i386) |
---|
| 1425 | fpu_control_t roundTo53Bits = 0x027f; |
---|
| 1426 | fpu_control_t oldRoundingMode; |
---|
| 1427 | _FPU_GETCW(oldRoundingMode); |
---|
| 1428 | _FPU_SETCW(roundTo53Bits); |
---|
| 1429 | #endif |
---|
| 1430 | |
---|
| 1431 | /* |
---|
| 1432 | * Quick checks for over/underflow. |
---|
| 1433 | */ |
---|
| 1434 | |
---|
| 1435 | if (numSigDigs+exponent-1 > maxDigits) { |
---|
| 1436 | retval = HUGE_VAL; |
---|
| 1437 | goto returnValue; |
---|
| 1438 | } |
---|
| 1439 | if (numSigDigs+exponent-1 < minDigits) { |
---|
| 1440 | retval = 0; |
---|
| 1441 | goto returnValue; |
---|
| 1442 | } |
---|
| 1443 | |
---|
| 1444 | /* |
---|
| 1445 | * Develop a first approximation to the significand. It is tempting simply |
---|
| 1446 | * to force bignum to double, but that will overflow on input numbers like |
---|
| 1447 | * 1.[string repeat 0 1000]1; while this is a not terribly likely |
---|
| 1448 | * scenario, we still have to deal with it. Use fraction and exponent |
---|
| 1449 | * instead. Once we have the significand, multiply by 10**exponent. Test |
---|
| 1450 | * for overflow. Convert back to a double, and test for underflow. |
---|
| 1451 | */ |
---|
| 1452 | |
---|
| 1453 | retval = BignumToBiasedFrExp(significand, &machexp); |
---|
| 1454 | retval = Pow10TimesFrExp(exponent, retval, &machexp); |
---|
| 1455 | if (machexp > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
| 1456 | retval = HUGE_VAL; |
---|
| 1457 | goto returnValue; |
---|
| 1458 | } |
---|
| 1459 | retval = SafeLdExp(retval, machexp); |
---|
| 1460 | if (retval < tiny) { |
---|
| 1461 | retval = tiny; |
---|
| 1462 | } |
---|
| 1463 | |
---|
| 1464 | /* |
---|
| 1465 | * Refine the result twice. (The second refinement should be necessary |
---|
| 1466 | * only if the best approximation is a power of 2 minus 1/2 ulp). |
---|
| 1467 | */ |
---|
| 1468 | |
---|
| 1469 | retval = RefineApproximation(retval, significand, exponent); |
---|
| 1470 | retval = RefineApproximation(retval, significand, exponent); |
---|
| 1471 | |
---|
| 1472 | /* |
---|
| 1473 | * Come here to return the computed value. |
---|
| 1474 | */ |
---|
| 1475 | |
---|
| 1476 | returnValue: |
---|
| 1477 | if (signum) { |
---|
| 1478 | retval = -retval; |
---|
| 1479 | } |
---|
| 1480 | |
---|
| 1481 | /* |
---|
| 1482 | * On gcc on x86, restore the floating point mode word. |
---|
| 1483 | */ |
---|
| 1484 | |
---|
| 1485 | #if defined(__GNUC__) && defined(__i386) |
---|
| 1486 | _FPU_SETCW(oldRoundingMode); |
---|
| 1487 | #endif |
---|
| 1488 | return retval; |
---|
| 1489 | } |
---|
| 1490 | |
---|
| 1491 | /* |
---|
| 1492 | *---------------------------------------------------------------------- |
---|
| 1493 | * |
---|
| 1494 | * MakeNaN -- |
---|
| 1495 | * |
---|
| 1496 | * Makes a "Not a Number" given a set of bits to put in the tag bits |
---|
| 1497 | * |
---|
| 1498 | * Note that a signalling NaN is never returned. |
---|
| 1499 | * |
---|
| 1500 | *---------------------------------------------------------------------- |
---|
| 1501 | */ |
---|
| 1502 | |
---|
| 1503 | #ifdef IEEE_FLOATING_POINT |
---|
| 1504 | static double |
---|
| 1505 | MakeNaN( |
---|
| 1506 | int signum, /* Sign bit (1=negative, 0=nonnegative */ |
---|
| 1507 | Tcl_WideUInt tags) /* Tag bits to put in the NaN */ |
---|
| 1508 | { |
---|
| 1509 | union { |
---|
| 1510 | Tcl_WideUInt iv; |
---|
| 1511 | double dv; |
---|
| 1512 | } theNaN; |
---|
| 1513 | |
---|
| 1514 | theNaN.iv = tags; |
---|
| 1515 | theNaN.iv &= (((Tcl_WideUInt) 1) << 51) - 1; |
---|
| 1516 | if (signum) { |
---|
| 1517 | theNaN.iv |= ((Tcl_WideUInt) (0x8000 | NAN_START)) << 48; |
---|
| 1518 | } else { |
---|
| 1519 | theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48; |
---|
| 1520 | } |
---|
| 1521 | if (n770_fp) { |
---|
| 1522 | theNaN.iv = Nokia770Twiddle(theNaN.iv); |
---|
| 1523 | } |
---|
| 1524 | return theNaN.dv; |
---|
| 1525 | } |
---|
| 1526 | #endif |
---|
| 1527 | |
---|
| 1528 | /* |
---|
| 1529 | *---------------------------------------------------------------------- |
---|
| 1530 | * |
---|
| 1531 | * RefineApproximation -- |
---|
| 1532 | * |
---|
| 1533 | * Given a poor approximation to a floating point number, returns a |
---|
| 1534 | * better one. (The better approximation is correct to within 1 ulp, and |
---|
| 1535 | * is entirely correct if the poor approximation is correct to 1 ulp.) |
---|
| 1536 | * |
---|
| 1537 | * Results: |
---|
| 1538 | * Returns the improved result. |
---|
| 1539 | * |
---|
| 1540 | *---------------------------------------------------------------------- |
---|
| 1541 | */ |
---|
| 1542 | |
---|
| 1543 | static double |
---|
| 1544 | RefineApproximation( |
---|
| 1545 | double approxResult, /* Approximate result of conversion */ |
---|
| 1546 | mp_int *exactSignificand, /* Integer significand */ |
---|
| 1547 | int exponent) /* Power of 10 to multiply by significand */ |
---|
| 1548 | { |
---|
| 1549 | int M2, M5; /* Powers of 2 and of 5 needed to put the |
---|
| 1550 | * decimal and binary numbers over a common |
---|
| 1551 | * denominator. */ |
---|
| 1552 | double significand; /* Sigificand of the binary number */ |
---|
| 1553 | int binExponent; /* Exponent of the binary number */ |
---|
| 1554 | int msb; /* Most significant bit position of an |
---|
| 1555 | * intermediate result */ |
---|
| 1556 | int nDigits; /* Number of mp_digit's in an intermediate |
---|
| 1557 | * result */ |
---|
| 1558 | mp_int twoMv; /* Approx binary value expressed as an exact |
---|
| 1559 | * integer scaled by the multiplier 2M */ |
---|
| 1560 | mp_int twoMd; /* Exact decimal value expressed as an exact |
---|
| 1561 | * integer scaled by the multiplier 2M */ |
---|
| 1562 | int scale; /* Scale factor for M */ |
---|
| 1563 | int multiplier; /* Power of two to scale M */ |
---|
| 1564 | double num, den; /* Numerator and denominator of the correction |
---|
| 1565 | * term */ |
---|
| 1566 | double quot; /* Correction term */ |
---|
| 1567 | double minincr; /* Lower bound on the absolute value of the |
---|
| 1568 | * correction term. */ |
---|
| 1569 | int i; |
---|
| 1570 | |
---|
| 1571 | /* |
---|
| 1572 | * The first approximation is always low. If we find that it's HUGE_VAL, |
---|
| 1573 | * we're done. |
---|
| 1574 | */ |
---|
| 1575 | |
---|
| 1576 | if (approxResult == HUGE_VAL) { |
---|
| 1577 | return approxResult; |
---|
| 1578 | } |
---|
| 1579 | |
---|
| 1580 | /* |
---|
| 1581 | * Find a common denominator for the decimal and binary fractions. The |
---|
| 1582 | * common denominator will be 2**M2 + 5**M5. |
---|
| 1583 | */ |
---|
| 1584 | |
---|
| 1585 | significand = frexp(approxResult, &binExponent); |
---|
| 1586 | i = mantBits - binExponent; |
---|
| 1587 | if (i < 0) { |
---|
| 1588 | M2 = 0; |
---|
| 1589 | } else { |
---|
| 1590 | M2 = i; |
---|
| 1591 | } |
---|
| 1592 | if (exponent > 0) { |
---|
| 1593 | M5 = 0; |
---|
| 1594 | } else { |
---|
| 1595 | M5 = -exponent; |
---|
| 1596 | if ((M5-1) > M2) { |
---|
| 1597 | M2 = M5-1; |
---|
| 1598 | } |
---|
| 1599 | } |
---|
| 1600 | |
---|
| 1601 | /* |
---|
| 1602 | * The floating point number is significand*2**binExponent. Compute the |
---|
| 1603 | * large integer significand*2**(binExponent+M2+1). The 2**-1 bit of the |
---|
| 1604 | * significand (the most significant) corresponds to the |
---|
| 1605 | * 2**(binExponent+M2 + 1) bit of 2*M2*v. Allocate enough digits to hold |
---|
| 1606 | * that quantity, then convert the significand to a large integer, scaled |
---|
| 1607 | * appropriately. Then multiply by the appropriate power of 5. |
---|
| 1608 | */ |
---|
| 1609 | |
---|
| 1610 | msb = binExponent + M2; /* 1008 */ |
---|
| 1611 | nDigits = msb / DIGIT_BIT + 1; |
---|
| 1612 | mp_init_size(&twoMv, nDigits); |
---|
| 1613 | i = (msb % DIGIT_BIT + 1); |
---|
| 1614 | twoMv.used = nDigits; |
---|
| 1615 | significand *= SafeLdExp(1.0, i); |
---|
| 1616 | while (--nDigits >= 0) { |
---|
| 1617 | twoMv.dp[nDigits] = (mp_digit) significand; |
---|
| 1618 | significand -= (mp_digit) significand; |
---|
| 1619 | significand = SafeLdExp(significand, DIGIT_BIT); |
---|
| 1620 | } |
---|
| 1621 | for (i = 0; i <= 8; ++i) { |
---|
| 1622 | if (M5 & (1 << i)) { |
---|
| 1623 | mp_mul(&twoMv, pow5+i, &twoMv); |
---|
| 1624 | } |
---|
| 1625 | } |
---|
| 1626 | |
---|
| 1627 | /* |
---|
| 1628 | * Collect the decimal significand as a high precision integer. The least |
---|
| 1629 | * significant bit corresponds to bit M2+exponent+1 so it will need to be |
---|
| 1630 | * shifted left by that many bits after being multiplied by |
---|
| 1631 | * 5**(M5+exponent). |
---|
| 1632 | */ |
---|
| 1633 | |
---|
| 1634 | mp_init_copy(&twoMd, exactSignificand); |
---|
| 1635 | for (i=0; i<=8; ++i) { |
---|
| 1636 | if ((M5+exponent) & (1 << i)) { |
---|
| 1637 | mp_mul(&twoMd, pow5+i, &twoMd); |
---|
| 1638 | } |
---|
| 1639 | } |
---|
| 1640 | mp_mul_2d(&twoMd, M2+exponent+1, &twoMd); |
---|
| 1641 | mp_sub(&twoMd, &twoMv, &twoMd); |
---|
| 1642 | |
---|
| 1643 | /* |
---|
| 1644 | * The result, 2Mv-2Md, needs to be divided by 2M to yield a correction |
---|
| 1645 | * term. Because 2M may well overflow a double, we need to scale the |
---|
| 1646 | * denominator by a factor of 2**binExponent-mantBits |
---|
| 1647 | */ |
---|
| 1648 | |
---|
| 1649 | scale = binExponent - mantBits - 1; |
---|
| 1650 | |
---|
| 1651 | mp_set(&twoMv, 1); |
---|
| 1652 | for (i=0; i<=8; ++i) { |
---|
| 1653 | if (M5 & (1 << i)) { |
---|
| 1654 | mp_mul(&twoMv, pow5+i, &twoMv); |
---|
| 1655 | } |
---|
| 1656 | } |
---|
| 1657 | multiplier = M2 + scale + 1; |
---|
| 1658 | if (multiplier > 0) { |
---|
| 1659 | mp_mul_2d(&twoMv, multiplier, &twoMv); |
---|
| 1660 | } else if (multiplier < 0) { |
---|
| 1661 | mp_div_2d(&twoMv, -multiplier, &twoMv, NULL); |
---|
| 1662 | } |
---|
| 1663 | |
---|
| 1664 | /* |
---|
| 1665 | * If the result is less than unity, the error is less than 1/2 unit in |
---|
| 1666 | * the last place, so there's no correction to make. |
---|
| 1667 | */ |
---|
| 1668 | |
---|
| 1669 | if (mp_cmp_mag(&twoMd, &twoMv) == MP_LT) { |
---|
| 1670 | mp_clear(&twoMd); |
---|
| 1671 | mp_clear(&twoMv); |
---|
| 1672 | return approxResult; |
---|
| 1673 | } |
---|
| 1674 | |
---|
| 1675 | /* |
---|
| 1676 | * Convert the numerator and denominator of the corrector term accurately |
---|
| 1677 | * to floating point numbers. |
---|
| 1678 | */ |
---|
| 1679 | |
---|
| 1680 | num = TclBignumToDouble(&twoMd); |
---|
| 1681 | den = TclBignumToDouble(&twoMv); |
---|
| 1682 | |
---|
| 1683 | quot = SafeLdExp(num/den, scale); |
---|
| 1684 | minincr = SafeLdExp(1.0, binExponent-mantBits); |
---|
| 1685 | |
---|
| 1686 | if (quot<0. && quot>-minincr) { |
---|
| 1687 | quot = -minincr; |
---|
| 1688 | } else if (quot>0. && quot<minincr) { |
---|
| 1689 | quot = minincr; |
---|
| 1690 | } |
---|
| 1691 | |
---|
| 1692 | mp_clear(&twoMd); |
---|
| 1693 | mp_clear(&twoMv); |
---|
| 1694 | |
---|
| 1695 | return approxResult + quot; |
---|
| 1696 | } |
---|
| 1697 | |
---|
| 1698 | /* |
---|
| 1699 | *---------------------------------------------------------------------- |
---|
| 1700 | * |
---|
| 1701 | * TclDoubleDigits -- |
---|
| 1702 | * |
---|
| 1703 | * Converts a double to a string of digits. |
---|
| 1704 | * |
---|
| 1705 | * Results: |
---|
| 1706 | * Returns the position of the character in the string after which the |
---|
| 1707 | * decimal point should appear. Since the string contains only |
---|
| 1708 | * significant digits, the position may be less than zero or greater than |
---|
| 1709 | * the length of the string. |
---|
| 1710 | * |
---|
| 1711 | * Side effects: |
---|
| 1712 | * Stores the digits in the given buffer and sets 'signum' according to |
---|
| 1713 | * the sign of the number. |
---|
| 1714 | * |
---|
| 1715 | *---------------------------------------------------------------------- |
---|
| 1716 | |
---|
| 1717 | */ |
---|
| 1718 | |
---|
| 1719 | int |
---|
| 1720 | TclDoubleDigits( |
---|
| 1721 | char *buffer, /* Buffer in which to store the result, must |
---|
| 1722 | * have at least 18 chars */ |
---|
| 1723 | double v, /* Number to convert. Must be finite, and not |
---|
| 1724 | * NaN */ |
---|
| 1725 | int *signum) /* Output: 1 if the number is negative. |
---|
| 1726 | * Should handle -0 correctly on the IEEE |
---|
| 1727 | * architecture. */ |
---|
| 1728 | { |
---|
| 1729 | int e; /* Power of FLT_RADIX that satisfies |
---|
| 1730 | * v = f * FLT_RADIX**e */ |
---|
| 1731 | int lowOK, highOK; |
---|
| 1732 | mp_int r; /* Scaled significand. */ |
---|
| 1733 | mp_int s; /* Divisor such that v = r / s */ |
---|
| 1734 | int smallestSig; /* Flag == 1 iff v's significand is the |
---|
| 1735 | * smallest that can be represented. */ |
---|
| 1736 | mp_int mplus; /* Scaled epsilon: (r + 2* mplus) == v(+) |
---|
| 1737 | * where v(+) is the floating point successor |
---|
| 1738 | * of v. */ |
---|
| 1739 | mp_int mminus; /* Scaled epsilon: (r - 2*mminus) == v(-) |
---|
| 1740 | * where v(-) is the floating point |
---|
| 1741 | * predecessor of v. */ |
---|
| 1742 | mp_int temp; |
---|
| 1743 | int rfac2 = 0; /* Powers of 2 and 5 by which large */ |
---|
| 1744 | int rfac5 = 0; /* integers should be scaled. */ |
---|
| 1745 | int sfac2 = 0; |
---|
| 1746 | int sfac5 = 0; |
---|
| 1747 | int mplusfac2 = 0; |
---|
| 1748 | int mminusfac2 = 0; |
---|
| 1749 | char c; |
---|
| 1750 | int i, k, n; |
---|
| 1751 | |
---|
| 1752 | /* |
---|
| 1753 | * Split the number into absolute value and signum. |
---|
| 1754 | */ |
---|
| 1755 | |
---|
| 1756 | v = AbsoluteValue(v, signum); |
---|
| 1757 | |
---|
| 1758 | /* |
---|
| 1759 | * Handle zero specially. |
---|
| 1760 | */ |
---|
| 1761 | |
---|
| 1762 | if (v == 0.0) { |
---|
| 1763 | *buffer++ = '0'; |
---|
| 1764 | *buffer++ = '\0'; |
---|
| 1765 | return 1; |
---|
| 1766 | } |
---|
| 1767 | |
---|
| 1768 | /* |
---|
| 1769 | * Find a large integer r, and integer e, such that |
---|
| 1770 | * v = r * FLT_RADIX**e |
---|
| 1771 | * and r is as small as possible. Also determine whether the significand |
---|
| 1772 | * is the smallest possible. |
---|
| 1773 | */ |
---|
| 1774 | |
---|
| 1775 | smallestSig = GetIntegerTimesPower(v, &r, &e); |
---|
| 1776 | |
---|
| 1777 | lowOK = highOK = (mp_iseven(&r)); |
---|
| 1778 | |
---|
| 1779 | /* |
---|
| 1780 | * We are going to want to develop integers r, s, mplus, and mminus such |
---|
| 1781 | * that v = r / s, v(+)-v / 2 = mplus / s; v-v(-) / 2 = mminus / s and |
---|
| 1782 | * then scale either s or r, mplus, mminus by an appropriate power of ten. |
---|
| 1783 | * |
---|
| 1784 | * We actually do this by keeping track of the powers of 2 and 5 by which |
---|
| 1785 | * f is multiplied to yield v and by which 1 is multiplied to yield s, |
---|
| 1786 | * mplus, and mminus. |
---|
| 1787 | */ |
---|
| 1788 | |
---|
| 1789 | if (e >= 0) { |
---|
| 1790 | int bits = e * log2FLT_RADIX; |
---|
| 1791 | |
---|
| 1792 | if (!smallestSig) { |
---|
| 1793 | /* |
---|
| 1794 | * Normal case, m+ and m- are both FLT_RADIX**e |
---|
| 1795 | */ |
---|
| 1796 | |
---|
| 1797 | rfac2 = bits + 1; |
---|
| 1798 | sfac2 = 1; |
---|
| 1799 | mplusfac2 = bits; |
---|
| 1800 | mminusfac2 = bits; |
---|
| 1801 | } else { |
---|
| 1802 | /* |
---|
| 1803 | * If f is equal to the smallest significand, then we need another |
---|
| 1804 | * factor of FLT_RADIX in s to cope with stepping to the next |
---|
| 1805 | * smaller exponent when going to e's predecessor. |
---|
| 1806 | */ |
---|
| 1807 | |
---|
| 1808 | rfac2 = bits + log2FLT_RADIX + 1; |
---|
| 1809 | sfac2 = 1 + log2FLT_RADIX; |
---|
| 1810 | mplusfac2 = bits + log2FLT_RADIX; |
---|
| 1811 | mminusfac2 = bits; |
---|
| 1812 | } |
---|
| 1813 | } else { |
---|
| 1814 | /* |
---|
| 1815 | * v has digits after the binary point |
---|
| 1816 | */ |
---|
| 1817 | |
---|
| 1818 | if (e <= DBL_MIN_EXP-DBL_MANT_DIG || !smallestSig) { |
---|
| 1819 | /* |
---|
| 1820 | * Either f isn't the smallest significand or e is the smallest |
---|
| 1821 | * exponent. mplus and mminus will both be 1. |
---|
| 1822 | */ |
---|
| 1823 | |
---|
| 1824 | rfac2 = 1; |
---|
| 1825 | sfac2 = 1 - e * log2FLT_RADIX; |
---|
| 1826 | mplusfac2 = 0; |
---|
| 1827 | mminusfac2 = 0; |
---|
| 1828 | } else { |
---|
| 1829 | /* |
---|
| 1830 | * f is the smallest significand, but e is not the smallest |
---|
| 1831 | * exponent. We need to scale by FLT_RADIX again to cope with the |
---|
| 1832 | * fact that v's predecessor has a smaller exponent. |
---|
| 1833 | */ |
---|
| 1834 | |
---|
| 1835 | rfac2 = 1 + log2FLT_RADIX; |
---|
| 1836 | sfac2 = 1 + log2FLT_RADIX * (1 - e); |
---|
| 1837 | mplusfac2 = FLT_RADIX; |
---|
| 1838 | mminusfac2 = 0; |
---|
| 1839 | } |
---|
| 1840 | } |
---|
| 1841 | |
---|
| 1842 | /* |
---|
| 1843 | * Estimate the highest power of ten that will be needed to hold the |
---|
| 1844 | * result. |
---|
| 1845 | */ |
---|
| 1846 | |
---|
| 1847 | k = (int) ceil(log(v) / log(10.)); |
---|
| 1848 | if (k >= 0) { |
---|
| 1849 | sfac2 += k; |
---|
| 1850 | sfac5 = k; |
---|
| 1851 | } else { |
---|
| 1852 | rfac2 -= k; |
---|
| 1853 | mplusfac2 -= k; |
---|
| 1854 | mminusfac2 -= k; |
---|
| 1855 | rfac5 = -k; |
---|
| 1856 | } |
---|
| 1857 | |
---|
| 1858 | /* |
---|
| 1859 | * Scale r, s, mplus, mminus by the appropriate powers of 2 and 5. |
---|
| 1860 | */ |
---|
| 1861 | |
---|
| 1862 | mp_init_set(&mplus, 1); |
---|
| 1863 | for (i=0 ; i<=8 ; ++i) { |
---|
| 1864 | if (rfac5 & (1 << i)) { |
---|
| 1865 | mp_mul(&mplus, pow5+i, &mplus); |
---|
| 1866 | } |
---|
| 1867 | } |
---|
| 1868 | mp_mul(&r, &mplus, &r); |
---|
| 1869 | mp_mul_2d(&r, rfac2, &r); |
---|
| 1870 | mp_init_copy(&mminus, &mplus); |
---|
| 1871 | mp_mul_2d(&mplus, mplusfac2, &mplus); |
---|
| 1872 | mp_mul_2d(&mminus, mminusfac2, &mminus); |
---|
| 1873 | mp_init_set(&s, 1); |
---|
| 1874 | for (i=0 ; i<=8 ; ++i) { |
---|
| 1875 | if (sfac5 & (1 << i)) { |
---|
| 1876 | mp_mul(&s, pow5+i, &s); |
---|
| 1877 | } |
---|
| 1878 | } |
---|
| 1879 | mp_mul_2d(&s, sfac2, &s); |
---|
| 1880 | |
---|
| 1881 | /* |
---|
| 1882 | * It is possible for k to be off by one because we used an inexact |
---|
| 1883 | * logarithm. |
---|
| 1884 | */ |
---|
| 1885 | |
---|
| 1886 | mp_init(&temp); |
---|
| 1887 | mp_add(&r, &mplus, &temp); |
---|
| 1888 | i = mp_cmp_mag(&temp, &s); |
---|
| 1889 | if (i>0 || (highOK && i==0)) { |
---|
| 1890 | mp_mul_d(&s, 10, &s); |
---|
| 1891 | ++k; |
---|
| 1892 | } else { |
---|
| 1893 | mp_mul_d(&temp, 10, &temp); |
---|
| 1894 | i = mp_cmp_mag(&temp, &s); |
---|
| 1895 | if (i<0 || (highOK && i==0)) { |
---|
| 1896 | mp_mul_d(&r, 10, &r); |
---|
| 1897 | mp_mul_d(&mplus, 10, &mplus); |
---|
| 1898 | mp_mul_d(&mminus, 10, &mminus); |
---|
| 1899 | --k; |
---|
| 1900 | } |
---|
| 1901 | } |
---|
| 1902 | |
---|
| 1903 | /* |
---|
| 1904 | * At this point, k contains the power of ten by which we're scaling the |
---|
| 1905 | * result. r/s is at least 1/10 and strictly less than ten, and v = r/s * |
---|
| 1906 | * 10**k. mplus and mminus give the rounding limits. |
---|
| 1907 | */ |
---|
| 1908 | |
---|
| 1909 | for (;;) { |
---|
| 1910 | int tc1, tc2; |
---|
| 1911 | |
---|
| 1912 | mp_mul_d(&r, 10, &r); |
---|
| 1913 | mp_div(&r, &s, &temp, &r); /* temp = 10r / s; r = 10r mod s */ |
---|
| 1914 | i = temp.dp[0]; |
---|
| 1915 | mp_mul_d(&mplus, 10, &mplus); |
---|
| 1916 | mp_mul_d(&mminus, 10, &mminus); |
---|
| 1917 | tc1 = mp_cmp_mag(&r, &mminus); |
---|
| 1918 | if (lowOK) { |
---|
| 1919 | tc1 = (tc1 <= 0); |
---|
| 1920 | } else { |
---|
| 1921 | tc1 = (tc1 < 0); |
---|
| 1922 | } |
---|
| 1923 | mp_add(&r, &mplus, &temp); |
---|
| 1924 | tc2 = mp_cmp_mag(&temp, &s); |
---|
| 1925 | if (highOK) { |
---|
| 1926 | tc2 = (tc2 >= 0); |
---|
| 1927 | } else { |
---|
| 1928 | tc2= (tc2 > 0); |
---|
| 1929 | } |
---|
| 1930 | if (!tc1) { |
---|
| 1931 | if (!tc2) { |
---|
| 1932 | *buffer++ = '0' + i; |
---|
| 1933 | } else { |
---|
| 1934 | c = (char) (i + '1'); |
---|
| 1935 | break; |
---|
| 1936 | } |
---|
| 1937 | } else { |
---|
| 1938 | if (!tc2) { |
---|
| 1939 | c = (char) (i + '0'); |
---|
| 1940 | } else { |
---|
| 1941 | mp_mul_2d(&r, 1, &r); |
---|
| 1942 | n = mp_cmp_mag(&r, &s); |
---|
| 1943 | if (n < 0) { |
---|
| 1944 | c = (char) (i + '0'); |
---|
| 1945 | } else { |
---|
| 1946 | c = (char) (i + '1'); |
---|
| 1947 | } |
---|
| 1948 | } |
---|
| 1949 | break; |
---|
| 1950 | } |
---|
| 1951 | }; |
---|
| 1952 | *buffer++ = c; |
---|
| 1953 | *buffer++ = '\0'; |
---|
| 1954 | |
---|
| 1955 | /* |
---|
| 1956 | * Free memory, and return. |
---|
| 1957 | */ |
---|
| 1958 | |
---|
| 1959 | mp_clear_multi(&r, &s, &mplus, &mminus, &temp, NULL); |
---|
| 1960 | return k; |
---|
| 1961 | } |
---|
| 1962 | |
---|
| 1963 | /* |
---|
| 1964 | *---------------------------------------------------------------------- |
---|
| 1965 | * |
---|
| 1966 | * AbsoluteValue -- |
---|
| 1967 | * |
---|
| 1968 | * Splits a 'double' into its absolute value and sign. |
---|
| 1969 | * |
---|
| 1970 | * Results: |
---|
| 1971 | * Returns the absolute value. |
---|
| 1972 | * |
---|
| 1973 | * Side effects: |
---|
| 1974 | * Stores the signum in '*signum'. |
---|
| 1975 | * |
---|
| 1976 | *---------------------------------------------------------------------- |
---|
| 1977 | */ |
---|
| 1978 | |
---|
| 1979 | static double |
---|
| 1980 | AbsoluteValue( |
---|
| 1981 | double v, /* Number to split */ |
---|
| 1982 | int *signum) /* (Output) Sign of the number 1=-, 0=+ */ |
---|
| 1983 | { |
---|
| 1984 | /* |
---|
| 1985 | * Take the absolute value of the number, and report the number's sign. |
---|
| 1986 | * Take special steps to preserve signed zeroes in IEEE floating point. |
---|
| 1987 | * (We can't use fpclassify, because that's a C9x feature and we still |
---|
| 1988 | * have to build on C89 compilers.) |
---|
| 1989 | */ |
---|
| 1990 | |
---|
| 1991 | #ifndef IEEE_FLOATING_POINT |
---|
| 1992 | if (v >= 0.0) { |
---|
| 1993 | *signum = 0; |
---|
| 1994 | } else { |
---|
| 1995 | *signum = 1; |
---|
| 1996 | v = -v; |
---|
| 1997 | } |
---|
| 1998 | #else |
---|
| 1999 | union { |
---|
| 2000 | Tcl_WideUInt iv; |
---|
| 2001 | double dv; |
---|
| 2002 | } bitwhack; |
---|
| 2003 | bitwhack.dv = v; |
---|
| 2004 | if (n770_fp) { |
---|
| 2005 | bitwhack.iv = Nokia770Twiddle(bitwhack.iv); |
---|
| 2006 | } |
---|
| 2007 | if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { |
---|
| 2008 | *signum = 1; |
---|
| 2009 | bitwhack.iv &= ~((Tcl_WideUInt) 1 << 63); |
---|
| 2010 | if (n770_fp) { |
---|
| 2011 | bitwhack.iv = Nokia770Twiddle(bitwhack.iv); |
---|
| 2012 | } |
---|
| 2013 | v = bitwhack.dv; |
---|
| 2014 | } else { |
---|
| 2015 | *signum = 0; |
---|
| 2016 | } |
---|
| 2017 | #endif |
---|
| 2018 | return v; |
---|
| 2019 | } |
---|
| 2020 | |
---|
| 2021 | /* |
---|
| 2022 | *---------------------------------------------------------------------- |
---|
| 2023 | * |
---|
| 2024 | * GetIntegerTimesPower -- |
---|
| 2025 | * |
---|
| 2026 | * Converts a floating point number to an exact integer times a power of |
---|
| 2027 | * the floating point radix. |
---|
| 2028 | * |
---|
| 2029 | * Results: |
---|
| 2030 | * Returns 1 if it converted the smallest significand, 0 otherwise. |
---|
| 2031 | * |
---|
| 2032 | * Side effects: |
---|
| 2033 | * Initializes the integer value (does not just assign it), and stores |
---|
| 2034 | * the exponent. |
---|
| 2035 | * |
---|
| 2036 | *---------------------------------------------------------------------- |
---|
| 2037 | */ |
---|
| 2038 | |
---|
| 2039 | static int |
---|
| 2040 | GetIntegerTimesPower( |
---|
| 2041 | double v, /* Value to convert */ |
---|
| 2042 | mp_int *rPtr, /* (Output) Integer value */ |
---|
| 2043 | int *ePtr) /* (Output) Power of FLT_RADIX by which r must |
---|
| 2044 | * be multiplied to yield v*/ |
---|
| 2045 | { |
---|
| 2046 | double a, f; |
---|
| 2047 | int e, i, n; |
---|
| 2048 | |
---|
| 2049 | /* |
---|
| 2050 | * Develop f and e such that v = f * FLT_RADIX**e, with |
---|
| 2051 | * 1.0/FLT_RADIX <= f < 1. |
---|
| 2052 | */ |
---|
| 2053 | |
---|
| 2054 | f = frexp(v, &e); |
---|
| 2055 | #if FLT_RADIX > 2 |
---|
| 2056 | n = e % log2FLT_RADIX; |
---|
| 2057 | if (n > 0) { |
---|
| 2058 | n -= log2FLT_RADIX; |
---|
| 2059 | e += 1; |
---|
| 2060 | f *= ldexp(1.0, n); |
---|
| 2061 | } |
---|
| 2062 | e = (e - n) / log2FLT_RADIX; |
---|
| 2063 | #endif |
---|
| 2064 | if (f == 1.0) { |
---|
| 2065 | f = 1.0 / FLT_RADIX; |
---|
| 2066 | e += 1; |
---|
| 2067 | } |
---|
| 2068 | |
---|
| 2069 | /* |
---|
| 2070 | * If the original number was denormalized, adjust e and f to be denormal |
---|
| 2071 | * as well. |
---|
| 2072 | */ |
---|
| 2073 | |
---|
| 2074 | if (e < DBL_MIN_EXP) { |
---|
| 2075 | n = mantBits + (e - DBL_MIN_EXP)*log2FLT_RADIX; |
---|
| 2076 | f = ldexp(f, (e - DBL_MIN_EXP)*log2FLT_RADIX); |
---|
| 2077 | e = DBL_MIN_EXP; |
---|
| 2078 | n = (n + DIGIT_BIT - 1) / DIGIT_BIT; |
---|
| 2079 | } else { |
---|
| 2080 | n = mantDIGIT; |
---|
| 2081 | } |
---|
| 2082 | |
---|
| 2083 | /* |
---|
| 2084 | * Now extract the base-2**DIGIT_BIT digits of f into a multi-precision |
---|
| 2085 | * integer r. Preserve the invariant v = r * 2**rfac2 * FLT_RADIX**e by |
---|
| 2086 | * adjusting e. |
---|
| 2087 | */ |
---|
| 2088 | |
---|
| 2089 | a = f; |
---|
| 2090 | n = mantDIGIT; |
---|
| 2091 | mp_init_size(rPtr, n); |
---|
| 2092 | rPtr->used = n; |
---|
| 2093 | rPtr->sign = MP_ZPOS; |
---|
| 2094 | i = (mantBits % DIGIT_BIT); |
---|
| 2095 | if (i == 0) { |
---|
| 2096 | i = DIGIT_BIT; |
---|
| 2097 | } |
---|
| 2098 | while (n > 0) { |
---|
| 2099 | a *= ldexp(1.0, i); |
---|
| 2100 | i = DIGIT_BIT; |
---|
| 2101 | rPtr->dp[--n] = (mp_digit) a; |
---|
| 2102 | a -= (mp_digit) a; |
---|
| 2103 | } |
---|
| 2104 | *ePtr = e - DBL_MANT_DIG; |
---|
| 2105 | return (f == 1.0 / FLT_RADIX); |
---|
| 2106 | } |
---|
| 2107 | |
---|
| 2108 | /* |
---|
| 2109 | *---------------------------------------------------------------------- |
---|
| 2110 | * |
---|
| 2111 | * TclInitDoubleConversion -- |
---|
| 2112 | * |
---|
| 2113 | * Initializes constants that are needed for conversions to and from |
---|
| 2114 | * 'double' |
---|
| 2115 | * |
---|
| 2116 | * Results: |
---|
| 2117 | * None. |
---|
| 2118 | * |
---|
| 2119 | * Side effects: |
---|
| 2120 | * The log base 2 of the floating point radix, the number of bits in a |
---|
| 2121 | * double mantissa, and a table of the powers of five and ten are |
---|
| 2122 | * computed and stored. |
---|
| 2123 | * |
---|
| 2124 | *---------------------------------------------------------------------- |
---|
| 2125 | */ |
---|
| 2126 | |
---|
| 2127 | void |
---|
| 2128 | TclInitDoubleConversion(void) |
---|
| 2129 | { |
---|
| 2130 | int i; |
---|
| 2131 | int x; |
---|
| 2132 | Tcl_WideUInt u; |
---|
| 2133 | double d; |
---|
| 2134 | |
---|
| 2135 | #ifdef IEEE_FLOATING_POINT |
---|
| 2136 | union { |
---|
| 2137 | double dv; |
---|
| 2138 | Tcl_WideUInt iv; |
---|
| 2139 | } bitwhack; |
---|
| 2140 | #endif |
---|
| 2141 | |
---|
| 2142 | /* |
---|
| 2143 | * Initialize table of powers of 10 expressed as wide integers. |
---|
| 2144 | */ |
---|
| 2145 | |
---|
| 2146 | maxpow10_wide = (int) |
---|
| 2147 | floor(sizeof(Tcl_WideUInt) * CHAR_BIT * log(2.) / log(10.)); |
---|
| 2148 | pow10_wide = (Tcl_WideUInt *) |
---|
| 2149 | ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt)); |
---|
| 2150 | u = 1; |
---|
| 2151 | for (i = 0; i < maxpow10_wide; ++i) { |
---|
| 2152 | pow10_wide[i] = u; |
---|
| 2153 | u *= 10; |
---|
| 2154 | } |
---|
| 2155 | pow10_wide[i] = u; |
---|
| 2156 | |
---|
| 2157 | /* |
---|
| 2158 | * Determine how many bits of precision a double has, and how many |
---|
| 2159 | * decimal digits that represents. |
---|
| 2160 | */ |
---|
| 2161 | |
---|
| 2162 | if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) { |
---|
| 2163 | Tcl_Panic("This code doesn't work on a decimal machine!"); |
---|
| 2164 | } |
---|
| 2165 | --log2FLT_RADIX; |
---|
| 2166 | mantBits = DBL_MANT_DIG * log2FLT_RADIX; |
---|
| 2167 | d = 1.0; |
---|
| 2168 | |
---|
| 2169 | /* |
---|
| 2170 | * Initialize a table of powers of ten that can be exactly represented |
---|
| 2171 | * in a double. |
---|
| 2172 | */ |
---|
| 2173 | |
---|
| 2174 | x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0)); |
---|
| 2175 | if (x < MAXPOW) { |
---|
| 2176 | mmaxpow = x; |
---|
| 2177 | } else { |
---|
| 2178 | mmaxpow = MAXPOW; |
---|
| 2179 | } |
---|
| 2180 | for (i=0 ; i<=mmaxpow ; ++i) { |
---|
| 2181 | pow10vals[i] = d; |
---|
| 2182 | d *= 10.0; |
---|
| 2183 | } |
---|
| 2184 | |
---|
| 2185 | /* |
---|
| 2186 | * Initialize a table of large powers of five. |
---|
| 2187 | */ |
---|
| 2188 | |
---|
| 2189 | for (i=0; i<9; ++i) { |
---|
| 2190 | mp_init(pow5 + i); |
---|
| 2191 | } |
---|
| 2192 | mp_set(pow5, 5); |
---|
| 2193 | for (i=0; i<8; ++i) { |
---|
| 2194 | mp_sqr(pow5+i, pow5+i+1); |
---|
| 2195 | } |
---|
| 2196 | |
---|
| 2197 | /* |
---|
| 2198 | * Determine the number of decimal digits to the left and right of the |
---|
| 2199 | * decimal point in the largest and smallest double, the smallest double |
---|
| 2200 | * that differs from zero, and the number of mp_digits needed to represent |
---|
| 2201 | * the significand of a double. |
---|
| 2202 | */ |
---|
| 2203 | |
---|
| 2204 | tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits); |
---|
| 2205 | maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX) |
---|
| 2206 | + 0.5 * log(10.)) / log(10.)); |
---|
| 2207 | minDigits = (int) floor((DBL_MIN_EXP - DBL_MANT_DIG) |
---|
| 2208 | * log((double) FLT_RADIX) / log(10.)); |
---|
| 2209 | mantDIGIT = (mantBits + DIGIT_BIT-1) / DIGIT_BIT; |
---|
| 2210 | log10_DIGIT_MAX = (int) floor(DIGIT_BIT * log(2.) / log(10.)); |
---|
| 2211 | |
---|
| 2212 | /* |
---|
| 2213 | * Nokia 770's software-emulated floating point is "middle endian": the |
---|
| 2214 | * bytes within a 32-bit word are little-endian (like the native |
---|
| 2215 | * integers), but the two words of a 'double' are presented most |
---|
| 2216 | * significant word first. |
---|
| 2217 | */ |
---|
| 2218 | |
---|
| 2219 | #ifdef IEEE_FLOATING_POINT |
---|
| 2220 | bitwhack.dv = 1.000000238418579; |
---|
| 2221 | /* 3ff0 0000 4000 0000 */ |
---|
| 2222 | if ((bitwhack.iv >> 32) == 0x3ff00000) { |
---|
| 2223 | n770_fp = 0; |
---|
| 2224 | } else if ((bitwhack.iv & 0xffffffff) == 0x3ff00000) { |
---|
| 2225 | n770_fp = 1; |
---|
| 2226 | } else { |
---|
| 2227 | Tcl_Panic("unknown floating point word order on this machine"); |
---|
| 2228 | } |
---|
| 2229 | #endif |
---|
| 2230 | } |
---|
| 2231 | |
---|
| 2232 | /* |
---|
| 2233 | *---------------------------------------------------------------------- |
---|
| 2234 | * |
---|
| 2235 | * TclFinalizeDoubleConversion -- |
---|
| 2236 | * |
---|
| 2237 | * Cleans up this file on exit. |
---|
| 2238 | * |
---|
| 2239 | * Results: |
---|
| 2240 | * None |
---|
| 2241 | * |
---|
| 2242 | * Side effects: |
---|
| 2243 | * Memory allocated by TclInitDoubleConversion is freed. |
---|
| 2244 | * |
---|
| 2245 | *---------------------------------------------------------------------- |
---|
| 2246 | */ |
---|
| 2247 | |
---|
| 2248 | void |
---|
| 2249 | TclFinalizeDoubleConversion(void) |
---|
| 2250 | { |
---|
| 2251 | int i; |
---|
| 2252 | |
---|
| 2253 | Tcl_Free((char *) pow10_wide); |
---|
| 2254 | for (i=0; i<9; ++i) { |
---|
| 2255 | mp_clear(pow5 + i); |
---|
| 2256 | } |
---|
| 2257 | } |
---|
| 2258 | |
---|
| 2259 | /* |
---|
| 2260 | *---------------------------------------------------------------------- |
---|
| 2261 | * |
---|
| 2262 | * Tcl_InitBignumFromDouble -- |
---|
| 2263 | * |
---|
| 2264 | * Extracts the integer part of a double and converts it to an arbitrary |
---|
| 2265 | * precision integer. |
---|
| 2266 | * |
---|
| 2267 | * Results: |
---|
| 2268 | * None. |
---|
| 2269 | * |
---|
| 2270 | * Side effects: |
---|
| 2271 | * Initializes the bignum supplied, and stores the converted number in |
---|
| 2272 | * it. |
---|
| 2273 | * |
---|
| 2274 | *---------------------------------------------------------------------- |
---|
| 2275 | */ |
---|
| 2276 | |
---|
| 2277 | int |
---|
| 2278 | Tcl_InitBignumFromDouble( |
---|
| 2279 | Tcl_Interp *interp, /* For error message */ |
---|
| 2280 | double d, /* Number to convert */ |
---|
| 2281 | mp_int *b) /* Place to store the result */ |
---|
| 2282 | { |
---|
| 2283 | double fract; |
---|
| 2284 | int expt; |
---|
| 2285 | |
---|
| 2286 | /* |
---|
| 2287 | * Infinite values can't convert to bignum. |
---|
| 2288 | */ |
---|
| 2289 | |
---|
| 2290 | if (TclIsInfinite(d)) { |
---|
| 2291 | if (interp != NULL) { |
---|
| 2292 | const char *s = "integer value too large to represent"; |
---|
| 2293 | |
---|
| 2294 | Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1)); |
---|
| 2295 | Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", s, NULL); |
---|
| 2296 | } |
---|
| 2297 | return TCL_ERROR; |
---|
| 2298 | } |
---|
| 2299 | |
---|
| 2300 | fract = frexp(d,&expt); |
---|
| 2301 | if (expt <= 0) { |
---|
| 2302 | mp_init(b); |
---|
| 2303 | mp_zero(b); |
---|
| 2304 | } else { |
---|
| 2305 | Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits); |
---|
| 2306 | int shift = expt - mantBits; |
---|
| 2307 | |
---|
| 2308 | TclBNInitBignumFromWideInt(b, w); |
---|
| 2309 | if (shift < 0) { |
---|
| 2310 | mp_div_2d(b, -shift, b, NULL); |
---|
| 2311 | } else if (shift > 0) { |
---|
| 2312 | mp_mul_2d(b, shift, b); |
---|
| 2313 | } |
---|
| 2314 | } |
---|
| 2315 | return TCL_OK; |
---|
| 2316 | } |
---|
| 2317 | |
---|
| 2318 | /* |
---|
| 2319 | *---------------------------------------------------------------------- |
---|
| 2320 | * |
---|
| 2321 | * TclBignumToDouble -- |
---|
| 2322 | * |
---|
| 2323 | * Convert an arbitrary-precision integer to a native floating point |
---|
| 2324 | * number. |
---|
| 2325 | * |
---|
| 2326 | * Results: |
---|
| 2327 | * Returns the converted number. Sets errno to ERANGE if the number is |
---|
| 2328 | * too large to convert. |
---|
| 2329 | * |
---|
| 2330 | *---------------------------------------------------------------------- |
---|
| 2331 | */ |
---|
| 2332 | |
---|
| 2333 | double |
---|
| 2334 | TclBignumToDouble( |
---|
| 2335 | mp_int *a) /* Integer to convert. */ |
---|
| 2336 | { |
---|
| 2337 | mp_int b; |
---|
| 2338 | int bits, shift, i; |
---|
| 2339 | double r; |
---|
| 2340 | |
---|
| 2341 | /* |
---|
| 2342 | * Determine how many bits we need, and extract that many from the input. |
---|
| 2343 | * Round to nearest unit in the last place. |
---|
| 2344 | */ |
---|
| 2345 | |
---|
| 2346 | bits = mp_count_bits(a); |
---|
| 2347 | if (bits > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
| 2348 | errno = ERANGE; |
---|
| 2349 | if (a->sign == MP_ZPOS) { |
---|
| 2350 | return HUGE_VAL; |
---|
| 2351 | } else { |
---|
| 2352 | return -HUGE_VAL; |
---|
| 2353 | } |
---|
| 2354 | } |
---|
| 2355 | shift = mantBits + 1 - bits; |
---|
| 2356 | mp_init(&b); |
---|
| 2357 | if (shift > 0) { |
---|
| 2358 | mp_mul_2d(a, shift, &b); |
---|
| 2359 | } else if (shift < 0) { |
---|
| 2360 | mp_div_2d(a, -shift, &b, NULL); |
---|
| 2361 | } else { |
---|
| 2362 | mp_copy(a, &b); |
---|
| 2363 | } |
---|
| 2364 | mp_add_d(&b, 1, &b); |
---|
| 2365 | mp_div_2d(&b, 1, &b, NULL); |
---|
| 2366 | |
---|
| 2367 | /* |
---|
| 2368 | * Accumulate the result, one mp_digit at a time. |
---|
| 2369 | */ |
---|
| 2370 | |
---|
| 2371 | r = 0.0; |
---|
| 2372 | for (i=b.used-1 ; i>=0 ; --i) { |
---|
| 2373 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
| 2374 | } |
---|
| 2375 | mp_clear(&b); |
---|
| 2376 | |
---|
| 2377 | /* |
---|
| 2378 | * Scale the result to the correct number of bits. |
---|
| 2379 | */ |
---|
| 2380 | |
---|
| 2381 | r = ldexp(r, bits - mantBits); |
---|
| 2382 | |
---|
| 2383 | /* |
---|
| 2384 | * Return the result with the appropriate sign. |
---|
| 2385 | */ |
---|
| 2386 | |
---|
| 2387 | if (a->sign == MP_ZPOS) { |
---|
| 2388 | return r; |
---|
| 2389 | } else { |
---|
| 2390 | return -r; |
---|
| 2391 | } |
---|
| 2392 | } |
---|
| 2393 | |
---|
| 2394 | double |
---|
| 2395 | TclCeil( |
---|
| 2396 | mp_int *a) /* Integer to convert. */ |
---|
| 2397 | { |
---|
| 2398 | double r = 0.0; |
---|
| 2399 | mp_int b; |
---|
| 2400 | |
---|
| 2401 | mp_init(&b); |
---|
| 2402 | if (mp_cmp_d(a, 0) == MP_LT) { |
---|
| 2403 | mp_neg(a, &b); |
---|
| 2404 | r = -TclFloor(&b); |
---|
| 2405 | } else { |
---|
| 2406 | int bits = mp_count_bits(a); |
---|
| 2407 | |
---|
| 2408 | if (bits > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
| 2409 | r = HUGE_VAL; |
---|
| 2410 | } else { |
---|
| 2411 | int i, exact = 1, shift = mantBits - bits; |
---|
| 2412 | |
---|
| 2413 | if (shift > 0) { |
---|
| 2414 | mp_mul_2d(a, shift, &b); |
---|
| 2415 | } else if (shift < 0) { |
---|
| 2416 | mp_int d; |
---|
| 2417 | mp_init(&d); |
---|
| 2418 | mp_div_2d(a, -shift, &b, &d); |
---|
| 2419 | exact = mp_iszero(&d); |
---|
| 2420 | mp_clear(&d); |
---|
| 2421 | } else { |
---|
| 2422 | mp_copy(a, &b); |
---|
| 2423 | } |
---|
| 2424 | if (!exact) { |
---|
| 2425 | mp_add_d(&b, 1, &b); |
---|
| 2426 | } |
---|
| 2427 | for (i=b.used-1 ; i>=0 ; --i) { |
---|
| 2428 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
| 2429 | } |
---|
| 2430 | r = ldexp(r, bits - mantBits); |
---|
| 2431 | } |
---|
| 2432 | } |
---|
| 2433 | mp_clear(&b); |
---|
| 2434 | return r; |
---|
| 2435 | } |
---|
| 2436 | |
---|
| 2437 | double |
---|
| 2438 | TclFloor( |
---|
| 2439 | mp_int *a) /* Integer to convert. */ |
---|
| 2440 | { |
---|
| 2441 | double r = 0.0; |
---|
| 2442 | mp_int b; |
---|
| 2443 | |
---|
| 2444 | mp_init(&b); |
---|
| 2445 | if (mp_cmp_d(a, 0) == MP_LT) { |
---|
| 2446 | mp_neg(a, &b); |
---|
| 2447 | r = -TclCeil(&b); |
---|
| 2448 | } else { |
---|
| 2449 | int bits = mp_count_bits(a); |
---|
| 2450 | |
---|
| 2451 | if (bits > DBL_MAX_EXP*log2FLT_RADIX) { |
---|
| 2452 | r = DBL_MAX; |
---|
| 2453 | } else { |
---|
| 2454 | int i, shift = mantBits - bits; |
---|
| 2455 | |
---|
| 2456 | if (shift > 0) { |
---|
| 2457 | mp_mul_2d(a, shift, &b); |
---|
| 2458 | } else if (shift < 0) { |
---|
| 2459 | mp_div_2d(a, -shift, &b, NULL); |
---|
| 2460 | } else { |
---|
| 2461 | mp_copy(a, &b); |
---|
| 2462 | } |
---|
| 2463 | for (i=b.used-1 ; i>=0 ; --i) { |
---|
| 2464 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
| 2465 | } |
---|
| 2466 | r = ldexp(r, bits - mantBits); |
---|
| 2467 | } |
---|
| 2468 | } |
---|
| 2469 | mp_clear(&b); |
---|
| 2470 | return r; |
---|
| 2471 | } |
---|
| 2472 | |
---|
| 2473 | /* |
---|
| 2474 | *---------------------------------------------------------------------- |
---|
| 2475 | * |
---|
| 2476 | * BignumToBiasedFrExp -- |
---|
| 2477 | * |
---|
| 2478 | * Convert an arbitrary-precision integer to a native floating point |
---|
| 2479 | * number in the range [0.5,1) times a power of two. NOTE: Intentionally |
---|
| 2480 | * converts to a number that's a few ulp too small, so that |
---|
| 2481 | * RefineApproximation will not overflow near the high end of the |
---|
| 2482 | * machine's arithmetic range. |
---|
| 2483 | * |
---|
| 2484 | * Results: |
---|
| 2485 | * Returns the converted number. |
---|
| 2486 | * |
---|
| 2487 | * Side effects: |
---|
| 2488 | * Stores the exponent of two in 'machexp'. |
---|
| 2489 | * |
---|
| 2490 | *---------------------------------------------------------------------- |
---|
| 2491 | */ |
---|
| 2492 | |
---|
| 2493 | static double |
---|
| 2494 | BignumToBiasedFrExp( |
---|
| 2495 | mp_int *a, /* Integer to convert */ |
---|
| 2496 | int *machexp) /* Power of two */ |
---|
| 2497 | { |
---|
| 2498 | mp_int b; |
---|
| 2499 | int bits; |
---|
| 2500 | int shift; |
---|
| 2501 | int i; |
---|
| 2502 | double r; |
---|
| 2503 | |
---|
| 2504 | /* |
---|
| 2505 | * Determine how many bits we need, and extract that many from the input. |
---|
| 2506 | * Round to nearest unit in the last place. |
---|
| 2507 | */ |
---|
| 2508 | |
---|
| 2509 | bits = mp_count_bits(a); |
---|
| 2510 | shift = mantBits - 2 - bits; |
---|
| 2511 | mp_init(&b); |
---|
| 2512 | if (shift > 0) { |
---|
| 2513 | mp_mul_2d(a, shift, &b); |
---|
| 2514 | } else if (shift < 0) { |
---|
| 2515 | mp_div_2d(a, -shift, &b, NULL); |
---|
| 2516 | } else { |
---|
| 2517 | mp_copy(a, &b); |
---|
| 2518 | } |
---|
| 2519 | |
---|
| 2520 | /* |
---|
| 2521 | * Accumulate the result, one mp_digit at a time. |
---|
| 2522 | */ |
---|
| 2523 | |
---|
| 2524 | r = 0.0; |
---|
| 2525 | for (i=b.used-1; i>=0; --i) { |
---|
| 2526 | r = ldexp(r, DIGIT_BIT) + b.dp[i]; |
---|
| 2527 | } |
---|
| 2528 | mp_clear(&b); |
---|
| 2529 | |
---|
| 2530 | /* |
---|
| 2531 | * Return the result with the appropriate sign. |
---|
| 2532 | */ |
---|
| 2533 | |
---|
| 2534 | *machexp = bits - mantBits + 2; |
---|
| 2535 | return ((a->sign == MP_ZPOS) ? r : -r); |
---|
| 2536 | } |
---|
| 2537 | |
---|
| 2538 | /* |
---|
| 2539 | *---------------------------------------------------------------------- |
---|
| 2540 | * |
---|
| 2541 | * Pow10TimesFrExp -- |
---|
| 2542 | * |
---|
| 2543 | * Multiply a power of ten by a number expressed as fraction and |
---|
| 2544 | * exponent. |
---|
| 2545 | * |
---|
| 2546 | * Results: |
---|
| 2547 | * Returns the significand of the result. |
---|
| 2548 | * |
---|
| 2549 | * Side effects: |
---|
| 2550 | * Overwrites the 'machexp' parameter with the exponent of the result. |
---|
| 2551 | * |
---|
| 2552 | * Assumes that 'exponent' is such that 10**exponent would be a double, even |
---|
| 2553 | * though 'fraction*10**(machexp+exponent)' might overflow. |
---|
| 2554 | * |
---|
| 2555 | *---------------------------------------------------------------------- |
---|
| 2556 | */ |
---|
| 2557 | |
---|
| 2558 | static double |
---|
| 2559 | Pow10TimesFrExp( |
---|
| 2560 | int exponent, /* Power of 10 to multiply by */ |
---|
| 2561 | double fraction, /* Significand of multiplicand */ |
---|
| 2562 | int *machexp) /* On input, exponent of multiplicand. On |
---|
| 2563 | * output, exponent of result. */ |
---|
| 2564 | { |
---|
| 2565 | int i, j; |
---|
| 2566 | int expt = *machexp; |
---|
| 2567 | double retval = fraction; |
---|
| 2568 | |
---|
| 2569 | if (exponent > 0) { |
---|
| 2570 | /* |
---|
| 2571 | * Multiply by 10**exponent |
---|
| 2572 | */ |
---|
| 2573 | |
---|
| 2574 | retval = frexp(retval * pow10vals[exponent&0xf], &j); |
---|
| 2575 | expt += j; |
---|
| 2576 | for (i=4; i<9; ++i) { |
---|
| 2577 | if (exponent & (1<<i)) { |
---|
| 2578 | retval = frexp(retval * pow_10_2_n[i], &j); |
---|
| 2579 | expt += j; |
---|
| 2580 | } |
---|
| 2581 | } |
---|
| 2582 | } else if (exponent < 0) { |
---|
| 2583 | /* |
---|
| 2584 | * Divide by 10**-exponent |
---|
| 2585 | */ |
---|
| 2586 | |
---|
| 2587 | retval = frexp(retval / pow10vals[(-exponent) & 0xf], &j); |
---|
| 2588 | expt += j; |
---|
| 2589 | for (i=4; i<9; ++i) { |
---|
| 2590 | if ((-exponent) & (1<<i)) { |
---|
| 2591 | retval = frexp(retval / pow_10_2_n[i], &j); |
---|
| 2592 | expt += j; |
---|
| 2593 | } |
---|
| 2594 | } |
---|
| 2595 | } |
---|
| 2596 | |
---|
| 2597 | *machexp = expt; |
---|
| 2598 | return retval; |
---|
| 2599 | } |
---|
| 2600 | |
---|
| 2601 | /* |
---|
| 2602 | *---------------------------------------------------------------------- |
---|
| 2603 | * |
---|
| 2604 | * SafeLdExp -- |
---|
| 2605 | * |
---|
| 2606 | * Do an 'ldexp' operation, but handle denormals gracefully. |
---|
| 2607 | * |
---|
| 2608 | * Results: |
---|
| 2609 | * Returns the appropriately scaled value. |
---|
| 2610 | * |
---|
| 2611 | * On some platforms, 'ldexp' fails when presented with a number too |
---|
| 2612 | * small to represent as a normalized double. This routine does 'ldexp' |
---|
| 2613 | * in two steps for those numbers, to return correctly denormalized |
---|
| 2614 | * values. |
---|
| 2615 | * |
---|
| 2616 | *---------------------------------------------------------------------- |
---|
| 2617 | */ |
---|
| 2618 | |
---|
| 2619 | static double |
---|
| 2620 | SafeLdExp( |
---|
| 2621 | double fract, |
---|
| 2622 | int expt) |
---|
| 2623 | { |
---|
| 2624 | int minexpt = DBL_MIN_EXP * log2FLT_RADIX; |
---|
| 2625 | volatile double a, b, retval; |
---|
| 2626 | |
---|
| 2627 | if (expt < minexpt) { |
---|
| 2628 | a = ldexp(fract, expt - mantBits - minexpt); |
---|
| 2629 | b = ldexp(1.0, mantBits + minexpt); |
---|
| 2630 | retval = a * b; |
---|
| 2631 | } else { |
---|
| 2632 | retval = ldexp(fract, expt); |
---|
| 2633 | } |
---|
| 2634 | return retval; |
---|
| 2635 | } |
---|
| 2636 | |
---|
| 2637 | /* |
---|
| 2638 | *---------------------------------------------------------------------- |
---|
| 2639 | * |
---|
| 2640 | * TclFormatNaN -- |
---|
| 2641 | * |
---|
| 2642 | * Makes the string representation of a "Not a Number" |
---|
| 2643 | * |
---|
| 2644 | * Results: |
---|
| 2645 | * None. |
---|
| 2646 | * |
---|
| 2647 | * Side effects: |
---|
| 2648 | * Stores the string representation in the supplied buffer, which must be |
---|
| 2649 | * at least TCL_DOUBLE_SPACE characters. |
---|
| 2650 | * |
---|
| 2651 | *---------------------------------------------------------------------- |
---|
| 2652 | */ |
---|
| 2653 | |
---|
| 2654 | void |
---|
| 2655 | TclFormatNaN( |
---|
| 2656 | double value, /* The Not-a-Number to format. */ |
---|
| 2657 | char *buffer) /* String representation. */ |
---|
| 2658 | { |
---|
| 2659 | #ifndef IEEE_FLOATING_POINT |
---|
| 2660 | strcpy(buffer, "NaN"); |
---|
| 2661 | return; |
---|
| 2662 | #else |
---|
| 2663 | union { |
---|
| 2664 | double dv; |
---|
| 2665 | Tcl_WideUInt iv; |
---|
| 2666 | } bitwhack; |
---|
| 2667 | |
---|
| 2668 | bitwhack.dv = value; |
---|
| 2669 | if (n770_fp) { |
---|
| 2670 | bitwhack.iv = Nokia770Twiddle(bitwhack.iv); |
---|
| 2671 | } |
---|
| 2672 | if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { |
---|
| 2673 | bitwhack.iv &= ~ ((Tcl_WideUInt) 1 << 63); |
---|
| 2674 | *buffer++ = '-'; |
---|
| 2675 | } |
---|
| 2676 | *buffer++ = 'N'; |
---|
| 2677 | *buffer++ = 'a'; |
---|
| 2678 | *buffer++ = 'N'; |
---|
| 2679 | bitwhack.iv &= (((Tcl_WideUInt) 1) << 51) - 1; |
---|
| 2680 | if (bitwhack.iv != 0) { |
---|
| 2681 | sprintf(buffer, "(%" TCL_LL_MODIFIER "x)", bitwhack.iv); |
---|
| 2682 | } else { |
---|
| 2683 | *buffer = '\0'; |
---|
| 2684 | } |
---|
| 2685 | #endif /* IEEE_FLOATING_POINT */ |
---|
| 2686 | } |
---|
| 2687 | |
---|
| 2688 | /* |
---|
| 2689 | *---------------------------------------------------------------------- |
---|
| 2690 | * |
---|
| 2691 | * Nokia770Twiddle -- |
---|
| 2692 | * |
---|
| 2693 | * Transpose the two words of a number for Nokia 770 floating |
---|
| 2694 | * point handling. |
---|
| 2695 | * |
---|
| 2696 | *---------------------------------------------------------------------- |
---|
| 2697 | */ |
---|
| 2698 | |
---|
| 2699 | static Tcl_WideUInt |
---|
| 2700 | Nokia770Twiddle( |
---|
| 2701 | Tcl_WideUInt w) /* Number to transpose */ |
---|
| 2702 | { |
---|
| 2703 | return (((w >> 32) & 0xffffffff) | (w << 32)); |
---|
| 2704 | } |
---|
| 2705 | |
---|
| 2706 | /* |
---|
| 2707 | *---------------------------------------------------------------------- |
---|
| 2708 | * |
---|
| 2709 | * TclNokia770Doubles -- |
---|
| 2710 | * |
---|
| 2711 | * Transpose the two words of a number for Nokia 770 floating |
---|
| 2712 | * point handling. |
---|
| 2713 | * |
---|
| 2714 | *---------------------------------------------------------------------- |
---|
| 2715 | */ |
---|
| 2716 | |
---|
| 2717 | int |
---|
| 2718 | TclNokia770Doubles(void) |
---|
| 2719 | { |
---|
| 2720 | return n770_fp; |
---|
| 2721 | } |
---|
| 2722 | |
---|
| 2723 | /* |
---|
| 2724 | * Local Variables: |
---|
| 2725 | * mode: c |
---|
| 2726 | * c-basic-offset: 4 |
---|
| 2727 | * fill-column: 78 |
---|
| 2728 | * End: |
---|
| 2729 | */ |
---|