[25] | 1 | /* |
---|
| 2 | * tclCompExpr.c -- |
---|
| 3 | * |
---|
| 4 | * This file contains the code to parse and compile Tcl expressions |
---|
| 5 | * and implementations of the Tcl commands corresponding to expression |
---|
| 6 | * operators, such as the command ::tcl::mathop::+ . |
---|
| 7 | * |
---|
| 8 | * Contributions from Don Porter, NIST, 2006-2007. (not subject to US copyright) |
---|
| 9 | * |
---|
| 10 | * See the file "license.terms" for information on usage and redistribution of |
---|
| 11 | * this file, and for a DISCLAIMER OF ALL WARRANTIES. |
---|
| 12 | * |
---|
| 13 | * RCS: @(#) $Id: tclCompExpr.c,v 1.97 2008/02/28 20:40:24 dgp Exp $ |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | #include "tclInt.h" |
---|
| 17 | #include "tclCompile.h" /* CompileEnv */ |
---|
| 18 | |
---|
| 19 | /* |
---|
| 20 | * Expression parsing takes place in the routine ParseExpr(). It takes a |
---|
| 21 | * string as input, parses that string, and generates a representation of |
---|
| 22 | * the expression in the form of a tree of operators, a list of literals, |
---|
| 23 | * a list of function names, and an array of Tcl_Token's within a Tcl_Parse |
---|
| 24 | * struct. The tree is composed of OpNodes. |
---|
| 25 | */ |
---|
| 26 | |
---|
| 27 | typedef struct OpNode { |
---|
| 28 | int left; /* "Pointer" to the left operand. */ |
---|
| 29 | int right; /* "Pointer" to the right operand. */ |
---|
| 30 | union { |
---|
| 31 | int parent; /* "Pointer" to the parent operand. */ |
---|
| 32 | int prev; /* "Pointer" joining incomplete tree stack */ |
---|
| 33 | } p; |
---|
| 34 | unsigned char lexeme; /* Code that identifies the operator. */ |
---|
| 35 | unsigned char precedence; /* Precedence of the operator */ |
---|
| 36 | unsigned char mark; /* Mark used to control traversal. */ |
---|
| 37 | unsigned char constant; /* Flag marking constant subexpressions. */ |
---|
| 38 | } OpNode; |
---|
| 39 | |
---|
| 40 | /* |
---|
| 41 | * The storage for the tree is dynamically allocated array of OpNodes. The |
---|
| 42 | * array is grown as parsing needs dictate according to a scheme similar to |
---|
| 43 | * Tcl's string growth algorithm, so that the resizing costs are O(N) and so |
---|
| 44 | * that we use at least half the memory allocated as expressions get large. |
---|
| 45 | * |
---|
| 46 | * Each OpNode in the tree represents an operator in the expression, either |
---|
| 47 | * unary or binary. When parsing is completed successfully, a binary operator |
---|
| 48 | * OpNode will have its left and right fields filled with "pointers" to its |
---|
| 49 | * left and right operands. A unary operator OpNode will have its right field |
---|
| 50 | * filled with a pointer to its single operand. When an operand is a |
---|
| 51 | * subexpression the "pointer" takes the form of the index -- a non-negative |
---|
| 52 | * integer -- into the OpNode storage array where the root of that |
---|
| 53 | * subexpression parse tree is found. |
---|
| 54 | * |
---|
| 55 | * Non-operator elements of the expression do not get stored in the OpNode |
---|
| 56 | * tree. They are stored in the other structures according to their type. |
---|
| 57 | * Literal values get appended to the literal list. Elements that denote |
---|
| 58 | * forms of quoting or substitution known to the Tcl parser get stored as |
---|
| 59 | * Tcl_Tokens. These non-operator elements of the expression are the |
---|
| 60 | * leaves of the completed parse tree. When an operand of an OpNode is |
---|
| 61 | * one of these leaf elements, the following negative integer codes are used |
---|
| 62 | * to indicate which kind of elements it is. |
---|
| 63 | */ |
---|
| 64 | |
---|
| 65 | enum OperandTypes { |
---|
| 66 | OT_LITERAL = -3, /* Operand is a literal in the literal list */ |
---|
| 67 | OT_TOKENS = -2, /* Operand is sequence of Tcl_Tokens */ |
---|
| 68 | OT_EMPTY = -1 /* "Operand" is an empty string. This is a |
---|
| 69 | * special case used only to represent the |
---|
| 70 | * EMPTY lexeme. See below. */ |
---|
| 71 | }; |
---|
| 72 | |
---|
| 73 | /* |
---|
| 74 | * Readable macros to test whether a "pointer" value points to an operator. |
---|
| 75 | * They operate on the "non-negative integer -> operator; negative integer -> |
---|
| 76 | * a non-operator OperandType" distinction. |
---|
| 77 | */ |
---|
| 78 | |
---|
| 79 | #define IsOperator(l) ((l) >= 0) |
---|
| 80 | #define NotOperator(l) ((l) < 0) |
---|
| 81 | |
---|
| 82 | /* |
---|
| 83 | * Note that it is sufficient to store in the tree just the type of leaf |
---|
| 84 | * operand, without any explicit pointer to which leaf. This is true because |
---|
| 85 | * the traversals of the completed tree we perform are known to visit |
---|
| 86 | * the leaves in the same order as the original parse. |
---|
| 87 | * |
---|
| 88 | * In a completed parse tree, those OpNodes that are themselves (roots of |
---|
| 89 | * subexpression trees that are) operands of some operator store in their |
---|
| 90 | * p.parent field a "pointer" to the OpNode of that operator. The p.parent |
---|
| 91 | * field permits a traversal of the tree within a * non-recursive routine |
---|
| 92 | * (ConvertTreeToTokens() and CompileExprTree()). This means that even |
---|
| 93 | * expression trees of great depth pose no risk of blowing the C stack. |
---|
| 94 | * |
---|
| 95 | * While the parse tree is being constructed, the same memory space is used |
---|
| 96 | * to hold the p.prev field which chains together a stack of incomplete |
---|
| 97 | * trees awaiting their right operands. |
---|
| 98 | * |
---|
| 99 | * The lexeme field is filled in with the lexeme of the operator that is |
---|
| 100 | * returned by the ParseLexeme() routine. Only lexemes for unary and |
---|
| 101 | * binary operators get stored in an OpNode. Other lexmes get different |
---|
| 102 | * treatement. |
---|
| 103 | * |
---|
| 104 | * The precedence field provides a place to store the precedence of the |
---|
| 105 | * operator, so it need not be looked up again and again. |
---|
| 106 | * |
---|
| 107 | * The mark field is use to control the traversal of the tree, so |
---|
| 108 | * that it can be done non-recursively. The mark values are: |
---|
| 109 | */ |
---|
| 110 | |
---|
| 111 | enum Marks { |
---|
| 112 | MARK_LEFT, /* Next step of traversal is to visit left subtree */ |
---|
| 113 | MARK_RIGHT, /* Next step of traversal is to visit right subtree */ |
---|
| 114 | MARK_PARENT /* Next step of traversal is to return to parent */ |
---|
| 115 | }; |
---|
| 116 | |
---|
| 117 | /* |
---|
| 118 | * The constant field is a boolean flag marking which subexpressions are |
---|
| 119 | * completely known at compile time, and are eligible for computing then |
---|
| 120 | * rather than waiting until run time. |
---|
| 121 | */ |
---|
| 122 | |
---|
| 123 | /* |
---|
| 124 | * Each lexeme belongs to one of four categories, which determine |
---|
| 125 | * its place in the parse tree. We use the two high bits of the |
---|
| 126 | * (unsigned char) value to store a NODE_TYPE code. |
---|
| 127 | */ |
---|
| 128 | |
---|
| 129 | #define NODE_TYPE 0xC0 |
---|
| 130 | |
---|
| 131 | /* |
---|
| 132 | * The four category values are LEAF, UNARY, and BINARY, explained below, |
---|
| 133 | * and "uncategorized", which is used either temporarily, until context |
---|
| 134 | * determines which of the other three categories is correct, or for |
---|
| 135 | * lexemes like INVALID, which aren't really lexemes at all, but indicators |
---|
| 136 | * of a parsing error. Note that the codes must be distinct to distinguish |
---|
| 137 | * categories, but need not take the form of a bit array. |
---|
| 138 | */ |
---|
| 139 | |
---|
| 140 | #define BINARY 0x40 /* This lexeme is a binary operator. An |
---|
| 141 | * OpNode representing it should go into the |
---|
| 142 | * parse tree, and two operands should be |
---|
| 143 | * parsed for it in the expression. */ |
---|
| 144 | #define UNARY 0x80 /* This lexeme is a unary operator. An OpNode |
---|
| 145 | * representing it should go into the parse |
---|
| 146 | * tree, and one operand should be parsed for |
---|
| 147 | * it in the expression. */ |
---|
| 148 | #define LEAF 0xC0 /* This lexeme is a leaf operand in the parse |
---|
| 149 | * tree. No OpNode will be placed in the tree |
---|
| 150 | * for it. Either a literal value will be |
---|
| 151 | * appended to the list of literals in this |
---|
| 152 | * expression, or appropriate Tcl_Tokens will |
---|
| 153 | * be appended in a Tcl_Parse struct to |
---|
| 154 | * represent those leaves that require some |
---|
| 155 | * form of substitution. |
---|
| 156 | */ |
---|
| 157 | |
---|
| 158 | /* Uncategorized lexemes */ |
---|
| 159 | |
---|
| 160 | #define PLUS 1 /* Ambiguous. Resolves to UNARY_PLUS or |
---|
| 161 | * BINARY_PLUS according to context. */ |
---|
| 162 | #define MINUS 2 /* Ambiguous. Resolves to UNARY_MINUS or |
---|
| 163 | * BINARY_MINUS according to context. */ |
---|
| 164 | #define BAREWORD 3 /* Ambigous. Resolves to BOOLEAN or to |
---|
| 165 | * FUNCTION or a parse error according to |
---|
| 166 | * context and value. */ |
---|
| 167 | #define INCOMPLETE 4 /* A parse error. Used only when the single |
---|
| 168 | * "=" is encountered. */ |
---|
| 169 | #define INVALID 5 /* A parse error. Used when any punctuation |
---|
| 170 | * appears that's not a supported operator. */ |
---|
| 171 | |
---|
| 172 | /* Leaf lexemes */ |
---|
| 173 | |
---|
| 174 | #define NUMBER ( LEAF | 1) /* For literal numbers */ |
---|
| 175 | #define SCRIPT ( LEAF | 2) /* Script substitution; [foo] */ |
---|
| 176 | #define BOOLEAN ( LEAF | BAREWORD) /* For literal booleans */ |
---|
| 177 | #define BRACED ( LEAF | 4) /* Braced string; {foo bar} */ |
---|
| 178 | #define VARIABLE ( LEAF | 5) /* Variable substitution; $x */ |
---|
| 179 | #define QUOTED ( LEAF | 6) /* Quoted string; "foo $bar [soom]" */ |
---|
| 180 | #define EMPTY ( LEAF | 7) /* Used only for an empty argument |
---|
| 181 | * list to a function. Represents |
---|
| 182 | * the empty string within parens in |
---|
| 183 | * the expression: rand() */ |
---|
| 184 | |
---|
| 185 | /* Unary operator lexemes */ |
---|
| 186 | |
---|
| 187 | #define UNARY_PLUS ( UNARY | PLUS) |
---|
| 188 | #define UNARY_MINUS ( UNARY | MINUS) |
---|
| 189 | #define FUNCTION ( UNARY | BAREWORD) /* This is a bit of "creative |
---|
| 190 | * interpretation" on the part of the |
---|
| 191 | * parser. A function call is parsed |
---|
| 192 | * into the parse tree according to |
---|
| 193 | * the perspective that the function |
---|
| 194 | * name is a unary operator and its |
---|
| 195 | * argument list, enclosed in parens, |
---|
| 196 | * is its operand. The additional |
---|
| 197 | * requirements not implied generally |
---|
| 198 | * by treatment as a unary operator -- |
---|
| 199 | * for example, the requirement that |
---|
| 200 | * the operand be enclosed in parens -- |
---|
| 201 | * are hard coded in the relevant |
---|
| 202 | * portions of ParseExpr(). We trade |
---|
| 203 | * off the need to include such |
---|
| 204 | * exceptional handling in the code |
---|
| 205 | * against the need we would otherwise |
---|
| 206 | * have for more lexeme categories. */ |
---|
| 207 | #define START ( UNARY | 4) /* This lexeme isn't parsed from the |
---|
| 208 | * expression text at all. It |
---|
| 209 | * represents the start of the |
---|
| 210 | * expression and sits at the root of |
---|
| 211 | * the parse tree where it serves as |
---|
| 212 | * the start/end point of traversals. */ |
---|
| 213 | #define OPEN_PAREN ( UNARY | 5) /* Another bit of creative |
---|
| 214 | * interpretation, where we treat "(" |
---|
| 215 | * as a unary operator with the |
---|
| 216 | * sub-expression between it and its |
---|
| 217 | * matching ")" as its operand. See |
---|
| 218 | * CLOSE_PAREN below. */ |
---|
| 219 | #define NOT ( UNARY | 6) |
---|
| 220 | #define BIT_NOT ( UNARY | 7) |
---|
| 221 | |
---|
| 222 | /* Binary operator lexemes */ |
---|
| 223 | |
---|
| 224 | #define BINARY_PLUS ( BINARY | PLUS) |
---|
| 225 | #define BINARY_MINUS ( BINARY | MINUS) |
---|
| 226 | #define COMMA ( BINARY | 3) /* The "," operator is a low precedence |
---|
| 227 | * binary operator that separates the |
---|
| 228 | * arguments in a function call. The |
---|
| 229 | * additional constraint that this |
---|
| 230 | * operator can only legally appear |
---|
| 231 | * at the right places within a |
---|
| 232 | * function call argument list are |
---|
| 233 | * hard coded within ParseExpr(). */ |
---|
| 234 | #define MULT ( BINARY | 4) |
---|
| 235 | #define DIVIDE ( BINARY | 5) |
---|
| 236 | #define MOD ( BINARY | 6) |
---|
| 237 | #define LESS ( BINARY | 7) |
---|
| 238 | #define GREATER ( BINARY | 8) |
---|
| 239 | #define BIT_AND ( BINARY | 9) |
---|
| 240 | #define BIT_XOR ( BINARY | 10) |
---|
| 241 | #define BIT_OR ( BINARY | 11) |
---|
| 242 | #define QUESTION ( BINARY | 12) /* These two lexemes make up the */ |
---|
| 243 | #define COLON ( BINARY | 13) /* ternary conditional operator, |
---|
| 244 | * $x ? $y : $z . We treat them as |
---|
| 245 | * two binary operators to avoid |
---|
| 246 | * another lexeme category, and |
---|
| 247 | * code the additional constraints |
---|
| 248 | * directly in ParseExpr(). For |
---|
| 249 | * instance, the right operand of |
---|
| 250 | * a "?" operator must be a ":" |
---|
| 251 | * operator. */ |
---|
| 252 | #define LEFT_SHIFT ( BINARY | 14) |
---|
| 253 | #define RIGHT_SHIFT ( BINARY | 15) |
---|
| 254 | #define LEQ ( BINARY | 16) |
---|
| 255 | #define GEQ ( BINARY | 17) |
---|
| 256 | #define EQUAL ( BINARY | 18) |
---|
| 257 | #define NEQ ( BINARY | 19) |
---|
| 258 | #define AND ( BINARY | 20) |
---|
| 259 | #define OR ( BINARY | 21) |
---|
| 260 | #define STREQ ( BINARY | 22) |
---|
| 261 | #define STRNEQ ( BINARY | 23) |
---|
| 262 | #define EXPON ( BINARY | 24) /* Unlike the other binary operators, |
---|
| 263 | * EXPON is right associative and this |
---|
| 264 | * distinction is coded directly in |
---|
| 265 | * ParseExpr(). */ |
---|
| 266 | #define IN_LIST ( BINARY | 25) |
---|
| 267 | #define NOT_IN_LIST ( BINARY | 26) |
---|
| 268 | #define CLOSE_PAREN ( BINARY | 27) /* By categorizing the CLOSE_PAREN |
---|
| 269 | * lexeme as a BINARY operator, the |
---|
| 270 | * normal parsing rules for binary |
---|
| 271 | * operators assure that a close paren |
---|
| 272 | * will not directly follow another |
---|
| 273 | * operator, and the machinery already |
---|
| 274 | * in place to connect operands to |
---|
| 275 | * operators according to precedence |
---|
| 276 | * performs most of the work of |
---|
| 277 | * matching open and close parens for |
---|
| 278 | * us. In the end though, a close |
---|
| 279 | * paren is not really a binary |
---|
| 280 | * operator, and some special coding |
---|
| 281 | * in ParseExpr() make sure we never |
---|
| 282 | * put an actual CLOSE_PAREN node |
---|
| 283 | * in the parse tree. The |
---|
| 284 | * sub-expression between parens |
---|
| 285 | * becomes the single argument of |
---|
| 286 | * the matching OPEN_PAREN unary |
---|
| 287 | * operator. */ |
---|
| 288 | #define END ( BINARY | 28) /* This lexeme represents the end of |
---|
| 289 | * the string being parsed. Treating |
---|
| 290 | * it as a binary operator follows the |
---|
| 291 | * same logic as the CLOSE_PAREN lexeme |
---|
| 292 | * and END pairs with START, in the |
---|
| 293 | * same way that CLOSE_PAREN pairs with |
---|
| 294 | * OPEN_PAREN. */ |
---|
| 295 | /* |
---|
| 296 | * When ParseExpr() builds the parse tree it must choose which operands to |
---|
| 297 | * connect to which operators. This is done according to operator precedence. |
---|
| 298 | * The greater an operator's precedence the greater claim it has to link to |
---|
| 299 | * an available operand. The Precedence enumeration lists the precedence |
---|
| 300 | * values used by Tcl expression operators, from lowest to highest claim. |
---|
| 301 | * Each precedence level is commented with the operators that hold that |
---|
| 302 | * precedence. |
---|
| 303 | */ |
---|
| 304 | |
---|
| 305 | enum Precedence { |
---|
| 306 | PREC_END = 1, /* END */ |
---|
| 307 | PREC_START, /* START */ |
---|
| 308 | PREC_CLOSE_PAREN, /* ")" */ |
---|
| 309 | PREC_OPEN_PAREN, /* "(" */ |
---|
| 310 | PREC_COMMA, /* "," */ |
---|
| 311 | PREC_CONDITIONAL, /* "?", ":" */ |
---|
| 312 | PREC_OR, /* "||" */ |
---|
| 313 | PREC_AND, /* "&&" */ |
---|
| 314 | PREC_BIT_OR, /* "|" */ |
---|
| 315 | PREC_BIT_XOR, /* "^" */ |
---|
| 316 | PREC_BIT_AND, /* "&" */ |
---|
| 317 | PREC_EQUAL, /* "==", "!=", "eq", "ne", "in", "ni" */ |
---|
| 318 | PREC_COMPARE, /* "<", ">", "<=", ">=" */ |
---|
| 319 | PREC_SHIFT, /* "<<", ">>" */ |
---|
| 320 | PREC_ADD, /* "+", "-" */ |
---|
| 321 | PREC_MULT, /* "*", "/", "%" */ |
---|
| 322 | PREC_EXPON, /* "**" */ |
---|
| 323 | PREC_UNARY /* "+", "-", FUNCTION, "!", "~" */ |
---|
| 324 | }; |
---|
| 325 | |
---|
| 326 | /* |
---|
| 327 | * Here the same information contained in the comments above is stored |
---|
| 328 | * in inverted form, so that given a lexeme, one can quickly look up |
---|
| 329 | * its precedence value. |
---|
| 330 | */ |
---|
| 331 | |
---|
| 332 | static const unsigned char prec[] = { |
---|
| 333 | /* Non-operator lexemes */ |
---|
| 334 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 335 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 336 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 337 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 338 | 0, |
---|
| 339 | /* Binary operator lexemes */ |
---|
| 340 | PREC_ADD, /* BINARY_PLUS */ |
---|
| 341 | PREC_ADD, /* BINARY_MINUS */ |
---|
| 342 | PREC_COMMA, /* COMMA */ |
---|
| 343 | PREC_MULT, /* MULT */ |
---|
| 344 | PREC_MULT, /* DIVIDE */ |
---|
| 345 | PREC_MULT, /* MOD */ |
---|
| 346 | PREC_COMPARE, /* LESS */ |
---|
| 347 | PREC_COMPARE, /* GREATER */ |
---|
| 348 | PREC_BIT_AND, /* BIT_AND */ |
---|
| 349 | PREC_BIT_XOR, /* BIT_XOR */ |
---|
| 350 | PREC_BIT_OR, /* BIT_OR */ |
---|
| 351 | PREC_CONDITIONAL, /* QUESTION */ |
---|
| 352 | PREC_CONDITIONAL, /* COLON */ |
---|
| 353 | PREC_SHIFT, /* LEFT_SHIFT */ |
---|
| 354 | PREC_SHIFT, /* RIGHT_SHIFT */ |
---|
| 355 | PREC_COMPARE, /* LEQ */ |
---|
| 356 | PREC_COMPARE, /* GEQ */ |
---|
| 357 | PREC_EQUAL, /* EQUAL */ |
---|
| 358 | PREC_EQUAL, /* NEQ */ |
---|
| 359 | PREC_AND, /* AND */ |
---|
| 360 | PREC_OR, /* OR */ |
---|
| 361 | PREC_EQUAL, /* STREQ */ |
---|
| 362 | PREC_EQUAL, /* STRNEQ */ |
---|
| 363 | PREC_EXPON, /* EXPON */ |
---|
| 364 | PREC_EQUAL, /* IN_LIST */ |
---|
| 365 | PREC_EQUAL, /* NOT_IN_LIST */ |
---|
| 366 | PREC_CLOSE_PAREN, /* CLOSE_PAREN */ |
---|
| 367 | PREC_END, /* END */ |
---|
| 368 | /* Expansion room for more binary operators */ |
---|
| 369 | 0, 0, 0, |
---|
| 370 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 371 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 372 | 0, |
---|
| 373 | /* Unary operator lexemes */ |
---|
| 374 | PREC_UNARY, /* UNARY_PLUS */ |
---|
| 375 | PREC_UNARY, /* UNARY_MINUS */ |
---|
| 376 | PREC_UNARY, /* FUNCTION */ |
---|
| 377 | PREC_START, /* START */ |
---|
| 378 | PREC_OPEN_PAREN, /* OPEN_PAREN */ |
---|
| 379 | PREC_UNARY, /* NOT*/ |
---|
| 380 | PREC_UNARY, /* BIT_NOT*/ |
---|
| 381 | }; |
---|
| 382 | |
---|
| 383 | /* |
---|
| 384 | * A table mapping lexemes to bytecode instructions, used by CompileExprTree(). |
---|
| 385 | */ |
---|
| 386 | |
---|
| 387 | static const unsigned char instruction[] = { |
---|
| 388 | /* Non-operator lexemes */ |
---|
| 389 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 390 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 391 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 392 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 393 | 0, |
---|
| 394 | /* Binary operator lexemes */ |
---|
| 395 | INST_ADD, /* BINARY_PLUS */ |
---|
| 396 | INST_SUB, /* BINARY_MINUS */ |
---|
| 397 | 0, /* COMMA */ |
---|
| 398 | INST_MULT, /* MULT */ |
---|
| 399 | INST_DIV, /* DIVIDE */ |
---|
| 400 | INST_MOD, /* MOD */ |
---|
| 401 | INST_LT, /* LESS */ |
---|
| 402 | INST_GT, /* GREATER */ |
---|
| 403 | INST_BITAND, /* BIT_AND */ |
---|
| 404 | INST_BITXOR, /* BIT_XOR */ |
---|
| 405 | INST_BITOR, /* BIT_OR */ |
---|
| 406 | 0, /* QUESTION */ |
---|
| 407 | 0, /* COLON */ |
---|
| 408 | INST_LSHIFT, /* LEFT_SHIFT */ |
---|
| 409 | INST_RSHIFT, /* RIGHT_SHIFT */ |
---|
| 410 | INST_LE, /* LEQ */ |
---|
| 411 | INST_GE, /* GEQ */ |
---|
| 412 | INST_EQ, /* EQUAL */ |
---|
| 413 | INST_NEQ, /* NEQ */ |
---|
| 414 | 0, /* AND */ |
---|
| 415 | 0, /* OR */ |
---|
| 416 | INST_STR_EQ, /* STREQ */ |
---|
| 417 | INST_STR_NEQ, /* STRNEQ */ |
---|
| 418 | INST_EXPON, /* EXPON */ |
---|
| 419 | INST_LIST_IN, /* IN_LIST */ |
---|
| 420 | INST_LIST_NOT_IN, /* NOT_IN_LIST */ |
---|
| 421 | 0, /* CLOSE_PAREN */ |
---|
| 422 | 0, /* END */ |
---|
| 423 | /* Expansion room for more binary operators */ |
---|
| 424 | 0, 0, 0, |
---|
| 425 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 426 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
---|
| 427 | 0, |
---|
| 428 | /* Unary operator lexemes */ |
---|
| 429 | INST_UPLUS, /* UNARY_PLUS */ |
---|
| 430 | INST_UMINUS, /* UNARY_MINUS */ |
---|
| 431 | 0, /* FUNCTION */ |
---|
| 432 | 0, /* START */ |
---|
| 433 | 0, /* OPEN_PAREN */ |
---|
| 434 | INST_LNOT, /* NOT*/ |
---|
| 435 | INST_BITNOT, /* BIT_NOT*/ |
---|
| 436 | }; |
---|
| 437 | |
---|
| 438 | /* |
---|
| 439 | * A table mapping a byte value to the corresponding lexeme for use by |
---|
| 440 | * ParseLexeme(). |
---|
| 441 | */ |
---|
| 442 | |
---|
| 443 | static unsigned char Lexeme[] = { |
---|
| 444 | INVALID /* NUL */, INVALID /* SOH */, |
---|
| 445 | INVALID /* STX */, INVALID /* ETX */, |
---|
| 446 | INVALID /* EOT */, INVALID /* ENQ */, |
---|
| 447 | INVALID /* ACK */, INVALID /* BEL */, |
---|
| 448 | INVALID /* BS */, INVALID /* HT */, |
---|
| 449 | INVALID /* LF */, INVALID /* VT */, |
---|
| 450 | INVALID /* FF */, INVALID /* CR */, |
---|
| 451 | INVALID /* SO */, INVALID /* SI */, |
---|
| 452 | INVALID /* DLE */, INVALID /* DC1 */, |
---|
| 453 | INVALID /* DC2 */, INVALID /* DC3 */, |
---|
| 454 | INVALID /* DC4 */, INVALID /* NAK */, |
---|
| 455 | INVALID /* SYN */, INVALID /* ETB */, |
---|
| 456 | INVALID /* CAN */, INVALID /* EM */, |
---|
| 457 | INVALID /* SUB */, INVALID /* ESC */, |
---|
| 458 | INVALID /* FS */, INVALID /* GS */, |
---|
| 459 | INVALID /* RS */, INVALID /* US */, |
---|
| 460 | INVALID /* SPACE */, 0 /* ! or != */, |
---|
| 461 | QUOTED /* " */, INVALID /* # */, |
---|
| 462 | VARIABLE /* $ */, MOD /* % */, |
---|
| 463 | 0 /* & or && */, INVALID /* ' */, |
---|
| 464 | OPEN_PAREN /* ( */, CLOSE_PAREN /* ) */, |
---|
| 465 | 0 /* * or ** */, PLUS /* + */, |
---|
| 466 | COMMA /* , */, MINUS /* - */, |
---|
| 467 | 0 /* . */, DIVIDE /* / */, |
---|
| 468 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0-9 */ |
---|
| 469 | COLON /* : */, INVALID /* ; */, |
---|
| 470 | 0 /* < or << or <= */, |
---|
| 471 | 0 /* == or INVALID */, |
---|
| 472 | 0 /* > or >> or >= */, |
---|
| 473 | QUESTION /* ? */, INVALID /* @ */, |
---|
| 474 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* A-M */ |
---|
| 475 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* N-Z */ |
---|
| 476 | SCRIPT /* [ */, INVALID /* \ */, |
---|
| 477 | INVALID /* ] */, BIT_XOR /* ^ */, |
---|
| 478 | INVALID /* _ */, INVALID /* ` */, |
---|
| 479 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* a-m */ |
---|
| 480 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* n-z */ |
---|
| 481 | BRACED /* { */, 0 /* | or || */, |
---|
| 482 | INVALID /* } */, BIT_NOT /* ~ */, |
---|
| 483 | INVALID /* DEL */ |
---|
| 484 | }; |
---|
| 485 | |
---|
| 486 | /* |
---|
| 487 | * The JumpList struct is used to create a stack of data needed for the |
---|
| 488 | * TclEmitForwardJump() and TclFixupForwardJump() calls that are performed |
---|
| 489 | * when compiling the short-circuiting operators QUESTION/COLON, AND, and OR. |
---|
| 490 | * Keeping a stack permits the CompileExprTree() routine to be non-recursive. |
---|
| 491 | */ |
---|
| 492 | |
---|
| 493 | typedef struct JumpList { |
---|
| 494 | JumpFixup jump; /* Pass this argument to matching calls of |
---|
| 495 | * TclEmitForwardJump() and |
---|
| 496 | * TclFixupForwardJump(). */ |
---|
| 497 | int depth; /* Remember the currStackDepth of the |
---|
| 498 | * CompileEnv here. */ |
---|
| 499 | int offset; /* Data used to compute jump lengths to pass |
---|
| 500 | * to TclFixupForwardJump() */ |
---|
| 501 | int convert; /* Temporary storage used to compute whether |
---|
| 502 | * numeric conversion will be needed following |
---|
| 503 | * the operator we're compiling. */ |
---|
| 504 | struct JumpList *next; /* Point to next item on the stack */ |
---|
| 505 | } JumpList; |
---|
| 506 | |
---|
| 507 | /* |
---|
| 508 | * Declarations for local functions to this file: |
---|
| 509 | */ |
---|
| 510 | |
---|
| 511 | static void CompileExprTree(Tcl_Interp *interp, OpNode *nodes, |
---|
| 512 | int index, Tcl_Obj *const **litObjvPtr, |
---|
| 513 | Tcl_Obj *const *funcObjv, Tcl_Token *tokenPtr, |
---|
| 514 | CompileEnv *envPtr, int optimize); |
---|
| 515 | static void ConvertTreeToTokens(const char *start, int numBytes, |
---|
| 516 | OpNode *nodes, Tcl_Token *tokenPtr, |
---|
| 517 | Tcl_Parse *parsePtr); |
---|
| 518 | static int ExecConstantExprTree(Tcl_Interp *interp, OpNode *nodes, |
---|
| 519 | int index, Tcl_Obj * const **litObjvPtr); |
---|
| 520 | static int ParseExpr(Tcl_Interp *interp, const char *start, |
---|
| 521 | int numBytes, OpNode **opTreePtr, |
---|
| 522 | Tcl_Obj *litList, Tcl_Obj *funcList, |
---|
| 523 | Tcl_Parse *parsePtr, int parseOnly); |
---|
| 524 | static int ParseLexeme(const char *start, int numBytes, |
---|
| 525 | unsigned char *lexemePtr, Tcl_Obj **literalPtr); |
---|
| 526 | |
---|
| 527 | |
---|
| 528 | /* |
---|
| 529 | *---------------------------------------------------------------------- |
---|
| 530 | * |
---|
| 531 | * ParseExpr -- |
---|
| 532 | * |
---|
| 533 | * Given a string, the numBytes bytes starting at start, this function |
---|
| 534 | * parses it as a Tcl expression and constructs a tree representing |
---|
| 535 | * the structure of the expression. The caller must pass in empty |
---|
| 536 | * lists as the funcList and litList arguments. The elements of the |
---|
| 537 | * parsed expression are returned to the caller as that tree, a list of |
---|
| 538 | * literal values, a list of function names, and in Tcl_Tokens |
---|
| 539 | * added to a Tcl_Parse struct passed in by the caller. |
---|
| 540 | * |
---|
| 541 | * Results: |
---|
| 542 | * If the string is successfully parsed as a valid Tcl expression, TCL_OK |
---|
| 543 | * is returned, and data about the expression structure is written to |
---|
| 544 | * the last four arguments. If the string cannot be parsed as a valid |
---|
| 545 | * Tcl expression, TCL_ERROR is returned, and if interp is non-NULL, an |
---|
| 546 | * error message is written to interp. |
---|
| 547 | * |
---|
| 548 | * Side effects: |
---|
| 549 | * Memory will be allocated. If TCL_OK is returned, the caller must |
---|
| 550 | * clean up the returned data structures. The (OpNode *) value written |
---|
| 551 | * to opTreePtr should be passed to ckfree() and the parsePtr argument |
---|
| 552 | * should be passed to Tcl_FreeParse(). The elements appended to the |
---|
| 553 | * litList and funcList will automatically be freed whenever the |
---|
| 554 | * refcount on those lists indicates they can be freed. |
---|
| 555 | * |
---|
| 556 | *---------------------------------------------------------------------- |
---|
| 557 | */ |
---|
| 558 | |
---|
| 559 | static int |
---|
| 560 | ParseExpr( |
---|
| 561 | Tcl_Interp *interp, /* Used for error reporting. */ |
---|
| 562 | const char *start, /* Start of source string to parse. */ |
---|
| 563 | int numBytes, /* Number of bytes in string. */ |
---|
| 564 | OpNode **opTreePtr, /* Points to space where a pointer to the |
---|
| 565 | * allocated OpNode tree should go. */ |
---|
| 566 | Tcl_Obj *litList, /* List to append literals to. */ |
---|
| 567 | Tcl_Obj *funcList, /* List to append function names to. */ |
---|
| 568 | Tcl_Parse *parsePtr, /* Structure to fill with tokens representing |
---|
| 569 | * those operands that require run time |
---|
| 570 | * substitutions. */ |
---|
| 571 | int parseOnly) /* A boolean indicating whether the caller's |
---|
| 572 | * aim is just a parse, or whether it will go |
---|
| 573 | * on to compile the expression. Different |
---|
| 574 | * optimizations are appropriate for the |
---|
| 575 | * two scenarios. */ |
---|
| 576 | { |
---|
| 577 | OpNode *nodes = NULL; /* Pointer to the OpNode storage array where |
---|
| 578 | * we build the parse tree. */ |
---|
| 579 | int nodesAvailable = 64; /* Initial size of the storage array. This |
---|
| 580 | * value establishes a minimum tree memory cost |
---|
| 581 | * of only about 1 kibyte, and is large enough |
---|
| 582 | * for most expressions to parse with no need |
---|
| 583 | * for array growth and reallocation. */ |
---|
| 584 | int nodesUsed = 0; /* Number of OpNodes filled. */ |
---|
| 585 | int scanned = 0; /* Capture number of byte scanned by |
---|
| 586 | * parsing routines. */ |
---|
| 587 | int lastParsed; /* Stores info about what the lexeme parsed |
---|
| 588 | * the previous pass through the parsing loop |
---|
| 589 | * was. If it was an operator, lastParsed is |
---|
| 590 | * the index of the OpNode for that operator. |
---|
| 591 | * If it was not an operator, lastParsed holds |
---|
| 592 | * an OperandTypes value encoding what we |
---|
| 593 | * need to know about it. */ |
---|
| 594 | int incomplete; /* Index of the most recent incomplete tree |
---|
| 595 | * in the OpNode array. Heads a stack of |
---|
| 596 | * incomplete trees linked by p.prev. */ |
---|
| 597 | int complete = OT_EMPTY; /* "Index" of the complete tree (that is, a |
---|
| 598 | * complete subexpression) determined at the |
---|
| 599 | * moment. OT_EMPTY is a nonsense value |
---|
| 600 | * used only to silence compiler warnings. |
---|
| 601 | * During a parse, complete will always hold |
---|
| 602 | * an index or an OperandTypes value pointing |
---|
| 603 | * to an actual leaf at the time the complete |
---|
| 604 | * tree is needed. */ |
---|
| 605 | |
---|
| 606 | /* These variables control generation of the error message. */ |
---|
| 607 | Tcl_Obj *msg = NULL; /* The error message. */ |
---|
| 608 | Tcl_Obj *post = NULL; /* In a few cases, an additional postscript |
---|
| 609 | * for the error message, supplying more |
---|
| 610 | * information after the error msg and |
---|
| 611 | * location have been reported. */ |
---|
| 612 | const char *mark = "_@_"; /* In the portion of the complete error message |
---|
| 613 | * where the error location is reported, this |
---|
| 614 | * "mark" substring is inserted into the |
---|
| 615 | * string being parsed to aid in pinpointing |
---|
| 616 | * the location of the syntax error in the |
---|
| 617 | * expression. */ |
---|
| 618 | int insertMark = 0; /* A boolean controlling whether the "mark" |
---|
| 619 | * should be inserted. */ |
---|
| 620 | const int limit = 25; /* Portions of the error message are |
---|
| 621 | * constructed out of substrings of the |
---|
| 622 | * original expression. In order to keep the |
---|
| 623 | * error message readable, we impose this limit |
---|
| 624 | * on the substring size we extract. */ |
---|
| 625 | |
---|
| 626 | TclParseInit(interp, start, numBytes, parsePtr); |
---|
| 627 | |
---|
| 628 | nodes = (OpNode *) attemptckalloc(nodesAvailable * sizeof(OpNode)); |
---|
| 629 | if (nodes == NULL) { |
---|
| 630 | TclNewLiteralStringObj(msg, "not enough memory to parse expression"); |
---|
| 631 | goto error; |
---|
| 632 | } |
---|
| 633 | |
---|
| 634 | /* Initialize the parse tree with the special "START" node. */ |
---|
| 635 | nodes->lexeme = START; |
---|
| 636 | nodes->precedence = prec[START]; |
---|
| 637 | nodes->mark = MARK_RIGHT; |
---|
| 638 | nodes->constant = 1; |
---|
| 639 | incomplete = lastParsed = nodesUsed; |
---|
| 640 | nodesUsed++; |
---|
| 641 | |
---|
| 642 | /* |
---|
| 643 | * Main parsing loop parses one lexeme per iteration. We exit the |
---|
| 644 | * loop only when there's a syntax error with a "goto error" which |
---|
| 645 | * takes us to the error handling code following the loop, or when |
---|
| 646 | * we've successfully completed the parse and we return to the caller. |
---|
| 647 | */ |
---|
| 648 | |
---|
| 649 | while (1) { |
---|
| 650 | OpNode *nodePtr; /* Points to the OpNode we may fill this |
---|
| 651 | * pass through the loop. */ |
---|
| 652 | unsigned char lexeme; /* The lexeme we parse this iteration. */ |
---|
| 653 | Tcl_Obj *literal; /* Filled by the ParseLexeme() call when |
---|
| 654 | * a literal is parsed that has a Tcl_Obj |
---|
| 655 | * rep worth preserving. */ |
---|
| 656 | const char *lastStart = start - scanned; |
---|
| 657 | /* Compute where the lexeme parsed the |
---|
| 658 | * previous pass through the loop began. |
---|
| 659 | * This is helpful for detecting invalid |
---|
| 660 | * octals and providing more complete error |
---|
| 661 | * messages. */ |
---|
| 662 | |
---|
| 663 | /* |
---|
| 664 | * Each pass through this loop adds up to one more OpNode. Allocate |
---|
| 665 | * space for one if required. |
---|
| 666 | */ |
---|
| 667 | |
---|
| 668 | if (nodesUsed >= nodesAvailable) { |
---|
| 669 | int size = nodesUsed * 2; |
---|
| 670 | OpNode *newPtr; |
---|
| 671 | |
---|
| 672 | do { |
---|
| 673 | newPtr = (OpNode *) attemptckrealloc((char *) nodes, |
---|
| 674 | (unsigned int) size * sizeof(OpNode)); |
---|
| 675 | } while ((newPtr == NULL) |
---|
| 676 | && ((size -= (size - nodesUsed) / 2) > nodesUsed)); |
---|
| 677 | if (newPtr == NULL) { |
---|
| 678 | TclNewLiteralStringObj(msg, |
---|
| 679 | "not enough memory to parse expression"); |
---|
| 680 | goto error; |
---|
| 681 | } |
---|
| 682 | nodesAvailable = size; |
---|
| 683 | nodes = newPtr; |
---|
| 684 | } |
---|
| 685 | nodePtr = nodes + nodesUsed; |
---|
| 686 | |
---|
| 687 | /* Skip white space between lexemes. */ |
---|
| 688 | scanned = TclParseAllWhiteSpace(start, numBytes); |
---|
| 689 | start += scanned; |
---|
| 690 | numBytes -= scanned; |
---|
| 691 | |
---|
| 692 | scanned = ParseLexeme(start, numBytes, &lexeme, &literal); |
---|
| 693 | |
---|
| 694 | /* Use context to categorize the lexemes that are ambiguous. */ |
---|
| 695 | if ((NODE_TYPE & lexeme) == 0) { |
---|
| 696 | switch (lexeme) { |
---|
| 697 | case INVALID: |
---|
| 698 | msg = Tcl_ObjPrintf( |
---|
| 699 | "invalid character \"%.*s\"", scanned, start); |
---|
| 700 | goto error; |
---|
| 701 | case INCOMPLETE: |
---|
| 702 | msg = Tcl_ObjPrintf( |
---|
| 703 | "incomplete operator \"%.*s\"", scanned, start); |
---|
| 704 | goto error; |
---|
| 705 | case BAREWORD: |
---|
| 706 | |
---|
| 707 | /* |
---|
| 708 | * Most barewords in an expression are a syntax error. |
---|
| 709 | * The exceptions are that when a bareword is followed by |
---|
| 710 | * an open paren, it might be a function call, and when the |
---|
| 711 | * bareword is a legal literal boolean value, we accept that |
---|
| 712 | * as well. |
---|
| 713 | */ |
---|
| 714 | |
---|
| 715 | if (start[scanned+TclParseAllWhiteSpace( |
---|
| 716 | start+scanned, numBytes-scanned)] == '(') { |
---|
| 717 | lexeme = FUNCTION; |
---|
| 718 | |
---|
| 719 | /* |
---|
| 720 | * When we compile the expression we'll need the function |
---|
| 721 | * name, and there's no place in the parse tree to store |
---|
| 722 | * it, so we keep a separate list of all the function |
---|
| 723 | * names we've parsed in the order we found them. |
---|
| 724 | */ |
---|
| 725 | |
---|
| 726 | Tcl_ListObjAppendElement(NULL, funcList, literal); |
---|
| 727 | } else { |
---|
| 728 | int b; |
---|
| 729 | if (Tcl_GetBooleanFromObj(NULL, literal, &b) == TCL_OK) { |
---|
| 730 | lexeme = BOOLEAN; |
---|
| 731 | } else { |
---|
| 732 | Tcl_DecrRefCount(literal); |
---|
| 733 | msg = Tcl_ObjPrintf( |
---|
| 734 | "invalid bareword \"%.*s%s\"", |
---|
| 735 | (scanned < limit) ? scanned : limit - 3, start, |
---|
| 736 | (scanned < limit) ? "" : "..."); |
---|
| 737 | post = Tcl_ObjPrintf( |
---|
| 738 | "should be \"$%.*s%s\" or \"{%.*s%s}\"", |
---|
| 739 | (scanned < limit) ? scanned : limit - 3, |
---|
| 740 | start, (scanned < limit) ? "" : "...", |
---|
| 741 | (scanned < limit) ? scanned : limit - 3, |
---|
| 742 | start, (scanned < limit) ? "" : "..."); |
---|
| 743 | Tcl_AppendPrintfToObj(post, |
---|
| 744 | " or \"%.*s%s(...)\" or ...", |
---|
| 745 | (scanned < limit) ? scanned : limit - 3, |
---|
| 746 | start, (scanned < limit) ? "" : "..."); |
---|
| 747 | if (NotOperator(lastParsed)) { |
---|
| 748 | if ((lastStart[0] == '0') |
---|
| 749 | && ((lastStart[1] == 'o') |
---|
| 750 | || (lastStart[1] == 'O')) |
---|
| 751 | && (lastStart[2] >= '0') |
---|
| 752 | && (lastStart[2] <= '9')) { |
---|
| 753 | const char *end = lastStart + 2; |
---|
| 754 | Tcl_Obj* copy; |
---|
| 755 | while (isdigit(*end)) { |
---|
| 756 | end++; |
---|
| 757 | } |
---|
| 758 | copy = Tcl_NewStringObj(lastStart, |
---|
| 759 | end - lastStart); |
---|
| 760 | if (TclCheckBadOctal(NULL, |
---|
| 761 | Tcl_GetString(copy))) { |
---|
| 762 | Tcl_AppendToObj(post, |
---|
| 763 | "(invalid octal number?)", -1); |
---|
| 764 | } |
---|
| 765 | Tcl_DecrRefCount(copy); |
---|
| 766 | } |
---|
| 767 | scanned = 0; |
---|
| 768 | insertMark = 1; |
---|
| 769 | parsePtr->errorType = TCL_PARSE_BAD_NUMBER; |
---|
| 770 | } |
---|
| 771 | goto error; |
---|
| 772 | } |
---|
| 773 | } |
---|
| 774 | break; |
---|
| 775 | case PLUS: |
---|
| 776 | case MINUS: |
---|
| 777 | if (IsOperator(lastParsed)) { |
---|
| 778 | |
---|
| 779 | /* |
---|
| 780 | * A "+" or "-" coming just after another operator |
---|
| 781 | * must be interpreted as a unary operator. |
---|
| 782 | */ |
---|
| 783 | |
---|
| 784 | lexeme |= UNARY; |
---|
| 785 | } else { |
---|
| 786 | lexeme |= BINARY; |
---|
| 787 | } |
---|
| 788 | } |
---|
| 789 | } /* Uncategorized lexemes */ |
---|
| 790 | |
---|
| 791 | /* Handle lexeme based on its category. */ |
---|
| 792 | switch (NODE_TYPE & lexeme) { |
---|
| 793 | |
---|
| 794 | /* |
---|
| 795 | * Each LEAF results in either a literal getting appended to the |
---|
| 796 | * litList, or a sequence of Tcl_Tokens representing a Tcl word |
---|
| 797 | * getting appended to the parsePtr->tokens. No OpNode is filled |
---|
| 798 | * for this lexeme. |
---|
| 799 | */ |
---|
| 800 | |
---|
| 801 | case LEAF: { |
---|
| 802 | Tcl_Token *tokenPtr; |
---|
| 803 | const char *end = start; |
---|
| 804 | int wordIndex; |
---|
| 805 | int code = TCL_OK; |
---|
| 806 | |
---|
| 807 | /* |
---|
| 808 | * A leaf operand appearing just after something that's not an |
---|
| 809 | * operator is a syntax error. |
---|
| 810 | */ |
---|
| 811 | |
---|
| 812 | if (NotOperator(lastParsed)) { |
---|
| 813 | msg = Tcl_ObjPrintf("missing operator at %s", mark); |
---|
| 814 | if (lastStart[0] == '0') { |
---|
| 815 | Tcl_Obj *copy = Tcl_NewStringObj(lastStart, |
---|
| 816 | start + scanned - lastStart); |
---|
| 817 | if (TclCheckBadOctal(NULL, Tcl_GetString(copy))) { |
---|
| 818 | TclNewLiteralStringObj(post, |
---|
| 819 | "looks like invalid octal number"); |
---|
| 820 | } |
---|
| 821 | Tcl_DecrRefCount(copy); |
---|
| 822 | } |
---|
| 823 | scanned = 0; |
---|
| 824 | insertMark = 1; |
---|
| 825 | parsePtr->errorType = TCL_PARSE_BAD_NUMBER; |
---|
| 826 | |
---|
| 827 | /* Free any literal to avoid a memleak. */ |
---|
| 828 | if ((lexeme == NUMBER) || (lexeme == BOOLEAN)) { |
---|
| 829 | Tcl_DecrRefCount(literal); |
---|
| 830 | } |
---|
| 831 | goto error; |
---|
| 832 | } |
---|
| 833 | |
---|
| 834 | switch (lexeme) { |
---|
| 835 | case NUMBER: |
---|
| 836 | case BOOLEAN: |
---|
| 837 | /* |
---|
| 838 | * TODO: Consider using a dict or hash to collapse all |
---|
| 839 | * duplicate literals into a single representative value. |
---|
| 840 | * (Like what is done with [split $s {}]). |
---|
| 841 | * Pro: ~75% memory saving on expressions like |
---|
| 842 | * {1+1+1+1+1+.....+1} (Convert "pointer + Tcl_Obj" cost |
---|
| 843 | * to "pointer" cost only) |
---|
| 844 | * Con: Cost of the dict store/retrieve on every literal |
---|
| 845 | * in every expression when expressions like the above |
---|
| 846 | * tend to be uncommon. |
---|
| 847 | * The memory savings is temporary; Compiling to bytecode |
---|
| 848 | * will collapse things as literals are registered |
---|
| 849 | * anyway, so the savings applies only to the time |
---|
| 850 | * between parsing and compiling. Possibly important |
---|
| 851 | * due to high-water mark nature of memory allocation. |
---|
| 852 | */ |
---|
| 853 | Tcl_ListObjAppendElement(NULL, litList, literal); |
---|
| 854 | complete = lastParsed = OT_LITERAL; |
---|
| 855 | start += scanned; |
---|
| 856 | numBytes -= scanned; |
---|
| 857 | continue; |
---|
| 858 | |
---|
| 859 | default: |
---|
| 860 | break; |
---|
| 861 | } |
---|
| 862 | |
---|
| 863 | /* |
---|
| 864 | * Remaining LEAF cases may involve filling Tcl_Tokens, so |
---|
| 865 | * make room for at least 2 more tokens. |
---|
| 866 | */ |
---|
| 867 | |
---|
| 868 | TclGrowParseTokenArray(parsePtr, 2); |
---|
| 869 | wordIndex = parsePtr->numTokens; |
---|
| 870 | tokenPtr = parsePtr->tokenPtr + wordIndex; |
---|
| 871 | tokenPtr->type = TCL_TOKEN_WORD; |
---|
| 872 | tokenPtr->start = start; |
---|
| 873 | parsePtr->numTokens++; |
---|
| 874 | |
---|
| 875 | switch (lexeme) { |
---|
| 876 | case QUOTED: |
---|
| 877 | code = Tcl_ParseQuotedString(NULL, start, numBytes, |
---|
| 878 | parsePtr, 1, &end); |
---|
| 879 | scanned = end - start; |
---|
| 880 | break; |
---|
| 881 | |
---|
| 882 | case BRACED: |
---|
| 883 | code = Tcl_ParseBraces(NULL, start, numBytes, |
---|
| 884 | parsePtr, 1, &end); |
---|
| 885 | scanned = end - start; |
---|
| 886 | break; |
---|
| 887 | |
---|
| 888 | case VARIABLE: |
---|
| 889 | code = Tcl_ParseVarName(NULL, start, numBytes, parsePtr, 1); |
---|
| 890 | |
---|
| 891 | /* |
---|
| 892 | * Handle the quirk that Tcl_ParseVarName reports a successful |
---|
| 893 | * parse even when it gets only a "$" with no variable name. |
---|
| 894 | */ |
---|
| 895 | |
---|
| 896 | tokenPtr = parsePtr->tokenPtr + wordIndex + 1; |
---|
| 897 | if (code == TCL_OK && tokenPtr->type != TCL_TOKEN_VARIABLE) { |
---|
| 898 | TclNewLiteralStringObj(msg, "invalid character \"$\""); |
---|
| 899 | goto error; |
---|
| 900 | } |
---|
| 901 | scanned = tokenPtr->size; |
---|
| 902 | break; |
---|
| 903 | |
---|
| 904 | case SCRIPT: { |
---|
| 905 | Tcl_Parse *nestedPtr = |
---|
| 906 | (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); |
---|
| 907 | |
---|
| 908 | tokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; |
---|
| 909 | tokenPtr->type = TCL_TOKEN_COMMAND; |
---|
| 910 | tokenPtr->start = start; |
---|
| 911 | tokenPtr->numComponents = 0; |
---|
| 912 | |
---|
| 913 | end = start + numBytes; |
---|
| 914 | start++; |
---|
| 915 | while (1) { |
---|
| 916 | code = Tcl_ParseCommand(interp, start, (end - start), 1, |
---|
| 917 | nestedPtr); |
---|
| 918 | if (code != TCL_OK) { |
---|
| 919 | parsePtr->term = nestedPtr->term; |
---|
| 920 | parsePtr->errorType = nestedPtr->errorType; |
---|
| 921 | parsePtr->incomplete = nestedPtr->incomplete; |
---|
| 922 | break; |
---|
| 923 | } |
---|
| 924 | start = (nestedPtr->commandStart + nestedPtr->commandSize); |
---|
| 925 | Tcl_FreeParse(nestedPtr); |
---|
| 926 | if ((nestedPtr->term < end) && (*(nestedPtr->term) == ']') |
---|
| 927 | && !(nestedPtr->incomplete)) { |
---|
| 928 | break; |
---|
| 929 | } |
---|
| 930 | |
---|
| 931 | if (start == end) { |
---|
| 932 | TclNewLiteralStringObj(msg, "missing close-bracket"); |
---|
| 933 | parsePtr->term = tokenPtr->start; |
---|
| 934 | parsePtr->errorType = TCL_PARSE_MISSING_BRACKET; |
---|
| 935 | parsePtr->incomplete = 1; |
---|
| 936 | code = TCL_ERROR; |
---|
| 937 | break; |
---|
| 938 | } |
---|
| 939 | } |
---|
| 940 | TclStackFree(interp, nestedPtr); |
---|
| 941 | end = start; |
---|
| 942 | start = tokenPtr->start; |
---|
| 943 | scanned = end - start; |
---|
| 944 | tokenPtr->size = scanned; |
---|
| 945 | parsePtr->numTokens++; |
---|
| 946 | break; |
---|
| 947 | } |
---|
| 948 | } |
---|
| 949 | if (code != TCL_OK) { |
---|
| 950 | |
---|
| 951 | /* |
---|
| 952 | * Here we handle all the syntax errors generated by |
---|
| 953 | * the Tcl_Token generating parsing routines called in the |
---|
| 954 | * switch just above. If the value of parsePtr->incomplete |
---|
| 955 | * is 1, then the error was an unbalanced '[', '(', '{', |
---|
| 956 | * or '"' and parsePtr->term is pointing to that unbalanced |
---|
| 957 | * character. If the value of parsePtr->incomplete is 0, |
---|
| 958 | * then the error is one of lacking whitespace following a |
---|
| 959 | * quoted word, for example: expr {[an error {foo}bar]}, |
---|
| 960 | * and parsePtr->term points to where the whitespace is |
---|
| 961 | * missing. We reset our values of start and scanned so that |
---|
| 962 | * when our error message is constructed, the location of |
---|
| 963 | * the syntax error is sure to appear in it, even if the |
---|
| 964 | * quoted expression is truncated. |
---|
| 965 | */ |
---|
| 966 | |
---|
| 967 | start = parsePtr->term; |
---|
| 968 | scanned = parsePtr->incomplete; |
---|
| 969 | goto error; |
---|
| 970 | } |
---|
| 971 | |
---|
| 972 | tokenPtr = parsePtr->tokenPtr + wordIndex; |
---|
| 973 | tokenPtr->size = scanned; |
---|
| 974 | tokenPtr->numComponents = parsePtr->numTokens - wordIndex - 1; |
---|
| 975 | if (!parseOnly && ((lexeme == QUOTED) || (lexeme == BRACED))) { |
---|
| 976 | |
---|
| 977 | /* |
---|
| 978 | * When this expression is destined to be compiled, and a |
---|
| 979 | * braced or quoted word within an expression is known at |
---|
| 980 | * compile time (no runtime substitutions in it), we can |
---|
| 981 | * store it as a literal rather than in its tokenized form. |
---|
| 982 | * This is an advantage since the compiled bytecode is going |
---|
| 983 | * to need the argument in Tcl_Obj form eventually, so it's |
---|
| 984 | * just as well to get there now. Another advantage is that |
---|
| 985 | * with this conversion, larger constant expressions might |
---|
| 986 | * be grown and optimized. |
---|
| 987 | * |
---|
| 988 | * On the contrary, if the end goal of this parse is to |
---|
| 989 | * fill a Tcl_Parse for a caller of Tcl_ParseExpr(), then it's |
---|
| 990 | * wasteful to convert to a literal only to convert back again |
---|
| 991 | * later. |
---|
| 992 | */ |
---|
| 993 | |
---|
| 994 | literal = Tcl_NewObj(); |
---|
| 995 | if (TclWordKnownAtCompileTime(tokenPtr, literal)) { |
---|
| 996 | Tcl_ListObjAppendElement(NULL, litList, literal); |
---|
| 997 | complete = lastParsed = OT_LITERAL; |
---|
| 998 | parsePtr->numTokens = wordIndex; |
---|
| 999 | break; |
---|
| 1000 | } |
---|
| 1001 | Tcl_DecrRefCount(literal); |
---|
| 1002 | } |
---|
| 1003 | complete = lastParsed = OT_TOKENS; |
---|
| 1004 | break; |
---|
| 1005 | } /* case LEAF */ |
---|
| 1006 | |
---|
| 1007 | case UNARY: |
---|
| 1008 | |
---|
| 1009 | /* |
---|
| 1010 | * A unary operator appearing just after something that's not an |
---|
| 1011 | * operator is a syntax error -- something trying to be the left |
---|
| 1012 | * operand of an operator that doesn't take one. |
---|
| 1013 | */ |
---|
| 1014 | |
---|
| 1015 | if (NotOperator(lastParsed)) { |
---|
| 1016 | msg = Tcl_ObjPrintf("missing operator at %s", mark); |
---|
| 1017 | scanned = 0; |
---|
| 1018 | insertMark = 1; |
---|
| 1019 | goto error; |
---|
| 1020 | } |
---|
| 1021 | |
---|
| 1022 | /* Create an OpNode for the unary operator */ |
---|
| 1023 | nodePtr->lexeme = lexeme; |
---|
| 1024 | nodePtr->precedence = prec[lexeme]; |
---|
| 1025 | nodePtr->mark = MARK_RIGHT; |
---|
| 1026 | |
---|
| 1027 | /* |
---|
| 1028 | * A FUNCTION cannot be a constant expression, because Tcl allows |
---|
| 1029 | * functions to return variable results with the same arguments; |
---|
| 1030 | * for example, rand(). Other unary operators can root a constant |
---|
| 1031 | * expression, so long as the argument is a constant expression. |
---|
| 1032 | */ |
---|
| 1033 | |
---|
| 1034 | nodePtr->constant = (lexeme != FUNCTION); |
---|
| 1035 | |
---|
| 1036 | /* |
---|
| 1037 | * This unary operator is a new incomplete tree, so push it |
---|
| 1038 | * onto our stack of incomplete trees. Also remember it as |
---|
| 1039 | * the last lexeme we parsed. |
---|
| 1040 | */ |
---|
| 1041 | |
---|
| 1042 | nodePtr->p.prev = incomplete; |
---|
| 1043 | incomplete = lastParsed = nodesUsed; |
---|
| 1044 | nodesUsed++; |
---|
| 1045 | break; |
---|
| 1046 | |
---|
| 1047 | case BINARY: { |
---|
| 1048 | OpNode *incompletePtr; |
---|
| 1049 | unsigned char precedence = prec[lexeme]; |
---|
| 1050 | |
---|
| 1051 | /* |
---|
| 1052 | * A binary operator appearing just after another operator is a |
---|
| 1053 | * syntax error -- one of the two operators is missing an operand. |
---|
| 1054 | */ |
---|
| 1055 | |
---|
| 1056 | if (IsOperator(lastParsed)) { |
---|
| 1057 | if ((lexeme == CLOSE_PAREN) |
---|
| 1058 | && (nodePtr[-1].lexeme == OPEN_PAREN)) { |
---|
| 1059 | if (nodePtr[-2].lexeme == FUNCTION) { |
---|
| 1060 | |
---|
| 1061 | /* |
---|
| 1062 | * Normally, "()" is a syntax error, but as a special |
---|
| 1063 | * case accept it as an argument list for a function. |
---|
| 1064 | * Treat this as a special LEAF lexeme, and restart |
---|
| 1065 | * the parsing loop with zero characters scanned. |
---|
| 1066 | * We'll parse the ")" again the next time through, |
---|
| 1067 | * but with the OT_EMPTY leaf as the subexpression |
---|
| 1068 | * between the parens. |
---|
| 1069 | */ |
---|
| 1070 | |
---|
| 1071 | scanned = 0; |
---|
| 1072 | complete = lastParsed = OT_EMPTY; |
---|
| 1073 | break; |
---|
| 1074 | } |
---|
| 1075 | msg = Tcl_ObjPrintf("empty subexpression at %s", mark); |
---|
| 1076 | scanned = 0; |
---|
| 1077 | insertMark = 1; |
---|
| 1078 | goto error; |
---|
| 1079 | } |
---|
| 1080 | |
---|
| 1081 | if (nodePtr[-1].precedence > precedence) { |
---|
| 1082 | if (nodePtr[-1].lexeme == OPEN_PAREN) { |
---|
| 1083 | TclNewLiteralStringObj(msg, "unbalanced open paren"); |
---|
| 1084 | parsePtr->errorType = TCL_PARSE_MISSING_PAREN; |
---|
| 1085 | } else if (nodePtr[-1].lexeme == COMMA) { |
---|
| 1086 | msg = Tcl_ObjPrintf( |
---|
| 1087 | "missing function argument at %s", mark); |
---|
| 1088 | scanned = 0; |
---|
| 1089 | insertMark = 1; |
---|
| 1090 | } else if (nodePtr[-1].lexeme == START) { |
---|
| 1091 | TclNewLiteralStringObj(msg, "empty expression"); |
---|
| 1092 | } |
---|
| 1093 | } else { |
---|
| 1094 | if (lexeme == CLOSE_PAREN) { |
---|
| 1095 | TclNewLiteralStringObj(msg, "unbalanced close paren"); |
---|
| 1096 | } else if ((lexeme == COMMA) |
---|
| 1097 | && (nodePtr[-1].lexeme == OPEN_PAREN) |
---|
| 1098 | && (nodePtr[-2].lexeme == FUNCTION)) { |
---|
| 1099 | msg = Tcl_ObjPrintf( |
---|
| 1100 | "missing function argument at %s", mark); |
---|
| 1101 | scanned = 0; |
---|
| 1102 | insertMark = 1; |
---|
| 1103 | } |
---|
| 1104 | } |
---|
| 1105 | if (msg == NULL) { |
---|
| 1106 | msg = Tcl_ObjPrintf("missing operand at %s", mark); |
---|
| 1107 | scanned = 0; |
---|
| 1108 | insertMark = 1; |
---|
| 1109 | } |
---|
| 1110 | goto error; |
---|
| 1111 | } |
---|
| 1112 | |
---|
| 1113 | /* |
---|
| 1114 | * Here is where the tree comes together. At this point, we |
---|
| 1115 | * have a stack of incomplete trees corresponding to |
---|
| 1116 | * substrings that are incomplete expressions, followed by |
---|
| 1117 | * a complete tree corresponding to a substring that is itself |
---|
| 1118 | * a complete expression, followed by the binary operator we have |
---|
| 1119 | * just parsed. The incomplete trees can each be completed by |
---|
| 1120 | * adding a right operand. |
---|
| 1121 | * |
---|
| 1122 | * To illustrate with an example, when we parse the expression |
---|
| 1123 | * "1+2*3-4" and we reach this point having just parsed the "-" |
---|
| 1124 | * operator, we have these incomplete trees: START, "1+", and |
---|
| 1125 | * "2*". Next we have the complete subexpression "3". Last is |
---|
| 1126 | * the "-" we've just parsed. |
---|
| 1127 | * |
---|
| 1128 | * The next step is to join our complete tree to an operator. |
---|
| 1129 | * The choice is governed by the precedence and associativity |
---|
| 1130 | * of the competing operators. If we connect it as the right |
---|
| 1131 | * operand of our most recent incomplete tree, we get a new |
---|
| 1132 | * complete tree, and we can repeat the process. The while |
---|
| 1133 | * loop following repeats this until precedence indicates it |
---|
| 1134 | * is time to join the complete tree as the left operand of |
---|
| 1135 | * the just parsed binary operator. |
---|
| 1136 | * |
---|
| 1137 | * Continuing the example, the first pass through the loop |
---|
| 1138 | * will join "3" to "2*"; the next pass will join "2*3" to |
---|
| 1139 | * "1+". Then we'll exit the loop and join "1+2*3" to "-". |
---|
| 1140 | * When we return to parse another lexeme, our stack of |
---|
| 1141 | * incomplete trees is START and "1+2*3-". |
---|
| 1142 | */ |
---|
| 1143 | |
---|
| 1144 | while (1) { |
---|
| 1145 | incompletePtr = nodes + incomplete; |
---|
| 1146 | |
---|
| 1147 | if (incompletePtr->precedence < precedence) { |
---|
| 1148 | break; |
---|
| 1149 | } |
---|
| 1150 | |
---|
| 1151 | if (incompletePtr->precedence == precedence) { |
---|
| 1152 | |
---|
| 1153 | /* Right association rules for exponentiation. */ |
---|
| 1154 | if (lexeme == EXPON) { |
---|
| 1155 | break; |
---|
| 1156 | } |
---|
| 1157 | |
---|
| 1158 | /* |
---|
| 1159 | * Special association rules for the conditional operators. |
---|
| 1160 | * The "?" and ":" operators have equal precedence, but |
---|
| 1161 | * must be linked up in sensible pairs. |
---|
| 1162 | */ |
---|
| 1163 | |
---|
| 1164 | if ((incompletePtr->lexeme == QUESTION) |
---|
| 1165 | && (NotOperator(complete) |
---|
| 1166 | || (nodes[complete].lexeme != COLON))) { |
---|
| 1167 | break; |
---|
| 1168 | } |
---|
| 1169 | if ((incompletePtr->lexeme == COLON) |
---|
| 1170 | && (lexeme == QUESTION)) { |
---|
| 1171 | break; |
---|
| 1172 | } |
---|
| 1173 | } |
---|
| 1174 | |
---|
| 1175 | /* Some special syntax checks... */ |
---|
| 1176 | |
---|
| 1177 | /* Parens must balance */ |
---|
| 1178 | if ((incompletePtr->lexeme == OPEN_PAREN) |
---|
| 1179 | && (lexeme != CLOSE_PAREN)) { |
---|
| 1180 | TclNewLiteralStringObj(msg, "unbalanced open paren"); |
---|
| 1181 | parsePtr->errorType = TCL_PARSE_MISSING_PAREN; |
---|
| 1182 | goto error; |
---|
| 1183 | } |
---|
| 1184 | |
---|
| 1185 | /* Right operand of "?" must be ":" */ |
---|
| 1186 | if ((incompletePtr->lexeme == QUESTION) |
---|
| 1187 | && (NotOperator(complete) |
---|
| 1188 | || (nodes[complete].lexeme != COLON))) { |
---|
| 1189 | msg = Tcl_ObjPrintf( |
---|
| 1190 | "missing operator \":\" at %s", mark); |
---|
| 1191 | scanned = 0; |
---|
| 1192 | insertMark = 1; |
---|
| 1193 | goto error; |
---|
| 1194 | } |
---|
| 1195 | |
---|
| 1196 | /* Operator ":" may only be right operand of "?" */ |
---|
| 1197 | if (IsOperator(complete) |
---|
| 1198 | && (nodes[complete].lexeme == COLON) |
---|
| 1199 | && (incompletePtr->lexeme != QUESTION)) { |
---|
| 1200 | TclNewLiteralStringObj(msg, |
---|
| 1201 | "unexpected operator \":\" " |
---|
| 1202 | "without preceding \"?\""); |
---|
| 1203 | goto error; |
---|
| 1204 | } |
---|
| 1205 | |
---|
| 1206 | /* |
---|
| 1207 | * Attach complete tree as right operand of most recent |
---|
| 1208 | * incomplete tree. |
---|
| 1209 | */ |
---|
| 1210 | |
---|
| 1211 | incompletePtr->right = complete; |
---|
| 1212 | if (IsOperator(complete)) { |
---|
| 1213 | nodes[complete].p.parent = incomplete; |
---|
| 1214 | incompletePtr->constant = incompletePtr->constant |
---|
| 1215 | && nodes[complete].constant; |
---|
| 1216 | } else { |
---|
| 1217 | incompletePtr->constant = incompletePtr->constant |
---|
| 1218 | && (complete == OT_LITERAL); |
---|
| 1219 | } |
---|
| 1220 | |
---|
| 1221 | /* |
---|
| 1222 | * The QUESTION/COLON and FUNCTION/OPEN_PAREN combinations each |
---|
| 1223 | * make up a single operator. Force them to agree whether they |
---|
| 1224 | * have a constant expression. |
---|
| 1225 | */ |
---|
| 1226 | |
---|
| 1227 | if ((incompletePtr->lexeme == QUESTION) |
---|
| 1228 | || (incompletePtr->lexeme == FUNCTION)) { |
---|
| 1229 | nodes[complete].constant = incompletePtr->constant; |
---|
| 1230 | } |
---|
| 1231 | |
---|
| 1232 | if (incompletePtr->lexeme == START) { |
---|
| 1233 | |
---|
| 1234 | /* |
---|
| 1235 | * Completing the START tree indicates we're done. |
---|
| 1236 | * Transfer the parse tree to the caller and return. |
---|
| 1237 | */ |
---|
| 1238 | |
---|
| 1239 | *opTreePtr = nodes; |
---|
| 1240 | return TCL_OK; |
---|
| 1241 | } |
---|
| 1242 | |
---|
| 1243 | /* |
---|
| 1244 | * With a right operand attached, last incomplete tree has |
---|
| 1245 | * become the complete tree. Pop it from the incomplete |
---|
| 1246 | * tree stack. |
---|
| 1247 | */ |
---|
| 1248 | |
---|
| 1249 | complete = incomplete; |
---|
| 1250 | incomplete = incompletePtr->p.prev; |
---|
| 1251 | |
---|
| 1252 | /* CLOSE_PAREN can only close one OPEN_PAREN. */ |
---|
| 1253 | if (incompletePtr->lexeme == OPEN_PAREN) { |
---|
| 1254 | break; |
---|
| 1255 | } |
---|
| 1256 | } |
---|
| 1257 | |
---|
| 1258 | /* More syntax checks... */ |
---|
| 1259 | |
---|
| 1260 | /* Parens must balance. */ |
---|
| 1261 | if (lexeme == CLOSE_PAREN) { |
---|
| 1262 | if (incompletePtr->lexeme != OPEN_PAREN) { |
---|
| 1263 | TclNewLiteralStringObj(msg, "unbalanced close paren"); |
---|
| 1264 | goto error; |
---|
| 1265 | } |
---|
| 1266 | } |
---|
| 1267 | |
---|
| 1268 | /* Commas must appear only in function argument lists. */ |
---|
| 1269 | if (lexeme == COMMA) { |
---|
| 1270 | if ((incompletePtr->lexeme != OPEN_PAREN) |
---|
| 1271 | || (incompletePtr[-1].lexeme != FUNCTION)) { |
---|
| 1272 | TclNewLiteralStringObj(msg, |
---|
| 1273 | "unexpected \",\" outside function argument list"); |
---|
| 1274 | goto error; |
---|
| 1275 | } |
---|
| 1276 | } |
---|
| 1277 | |
---|
| 1278 | /* Operator ":" may only be right operand of "?" */ |
---|
| 1279 | if (IsOperator(complete) && (nodes[complete].lexeme == COLON)) { |
---|
| 1280 | TclNewLiteralStringObj(msg, |
---|
| 1281 | "unexpected operator \":\" without preceding \"?\""); |
---|
| 1282 | goto error; |
---|
| 1283 | } |
---|
| 1284 | |
---|
| 1285 | /* Create no node for a CLOSE_PAREN lexeme. */ |
---|
| 1286 | if (lexeme == CLOSE_PAREN) { |
---|
| 1287 | break; |
---|
| 1288 | } |
---|
| 1289 | |
---|
| 1290 | /* Link complete tree as left operand of new node. */ |
---|
| 1291 | nodePtr->lexeme = lexeme; |
---|
| 1292 | nodePtr->precedence = precedence; |
---|
| 1293 | nodePtr->mark = MARK_LEFT; |
---|
| 1294 | nodePtr->left = complete; |
---|
| 1295 | |
---|
| 1296 | /* |
---|
| 1297 | * The COMMA operator cannot be optimized, since the function |
---|
| 1298 | * needs all of its arguments, and optimization would reduce |
---|
| 1299 | * the number. Other binary operators root constant expressions |
---|
| 1300 | * when both arguments are constant expressions. |
---|
| 1301 | */ |
---|
| 1302 | |
---|
| 1303 | nodePtr->constant = (lexeme != COMMA); |
---|
| 1304 | |
---|
| 1305 | if (IsOperator(complete)) { |
---|
| 1306 | nodes[complete].p.parent = nodesUsed; |
---|
| 1307 | nodePtr->constant = nodePtr->constant |
---|
| 1308 | && nodes[complete].constant; |
---|
| 1309 | } else { |
---|
| 1310 | nodePtr->constant = nodePtr->constant |
---|
| 1311 | && (complete == OT_LITERAL); |
---|
| 1312 | } |
---|
| 1313 | |
---|
| 1314 | /* |
---|
| 1315 | * With a left operand attached and a right operand missing, |
---|
| 1316 | * the just-parsed binary operator is root of a new incomplete |
---|
| 1317 | * tree. Push it onto the stack of incomplete trees. |
---|
| 1318 | */ |
---|
| 1319 | |
---|
| 1320 | nodePtr->p.prev = incomplete; |
---|
| 1321 | incomplete = lastParsed = nodesUsed; |
---|
| 1322 | nodesUsed++; |
---|
| 1323 | break; |
---|
| 1324 | } /* case BINARY */ |
---|
| 1325 | } /* lexeme handler */ |
---|
| 1326 | |
---|
| 1327 | /* Advance past the just-parsed lexeme */ |
---|
| 1328 | start += scanned; |
---|
| 1329 | numBytes -= scanned; |
---|
| 1330 | } /* main parsing loop */ |
---|
| 1331 | |
---|
| 1332 | error: |
---|
| 1333 | |
---|
| 1334 | /* |
---|
| 1335 | * We only get here if there's been an error. |
---|
| 1336 | * Any errors that didn't get a suitable parsePtr->errorType, |
---|
| 1337 | * get recorded as syntax errors. |
---|
| 1338 | */ |
---|
| 1339 | |
---|
| 1340 | if (parsePtr->errorType == TCL_PARSE_SUCCESS) { |
---|
| 1341 | parsePtr->errorType = TCL_PARSE_SYNTAX; |
---|
| 1342 | } |
---|
| 1343 | |
---|
| 1344 | /* Free any partial parse tree we've built. */ |
---|
| 1345 | if (nodes != NULL) { |
---|
| 1346 | ckfree((char*) nodes); |
---|
| 1347 | } |
---|
| 1348 | |
---|
| 1349 | if (interp == NULL) { |
---|
| 1350 | |
---|
| 1351 | /* Nowhere to report an error message, so just free it */ |
---|
| 1352 | if (msg) { |
---|
| 1353 | Tcl_DecrRefCount(msg); |
---|
| 1354 | } |
---|
| 1355 | } else { |
---|
| 1356 | |
---|
| 1357 | /* |
---|
| 1358 | * Construct the complete error message. Start with the simple |
---|
| 1359 | * error message, pulled from the interp result if necessary... |
---|
| 1360 | */ |
---|
| 1361 | |
---|
| 1362 | if (msg == NULL) { |
---|
| 1363 | msg = Tcl_GetObjResult(interp); |
---|
| 1364 | } |
---|
| 1365 | |
---|
| 1366 | /* |
---|
| 1367 | * Add a detailed quote from the bad expression, displaying and |
---|
| 1368 | * sometimes marking the precise location of the syntax error. |
---|
| 1369 | */ |
---|
| 1370 | |
---|
| 1371 | Tcl_AppendPrintfToObj(msg, "\nin expression \"%s%.*s%.*s%s%s%.*s%s\"", |
---|
| 1372 | ((start - limit) < parsePtr->string) ? "" : "...", |
---|
| 1373 | ((start - limit) < parsePtr->string) |
---|
| 1374 | ? (start - parsePtr->string) : limit - 3, |
---|
| 1375 | ((start - limit) < parsePtr->string) |
---|
| 1376 | ? parsePtr->string : start - limit + 3, |
---|
| 1377 | (scanned < limit) ? scanned : limit - 3, start, |
---|
| 1378 | (scanned < limit) ? "" : "...", insertMark ? mark : "", |
---|
| 1379 | (start + scanned + limit > parsePtr->end) |
---|
| 1380 | ? parsePtr->end - (start + scanned) : limit-3, |
---|
| 1381 | start + scanned, |
---|
| 1382 | (start + scanned + limit > parsePtr->end) ? "" : "..."); |
---|
| 1383 | |
---|
| 1384 | /* Next, append any postscript message. */ |
---|
| 1385 | if (post != NULL) { |
---|
| 1386 | Tcl_AppendToObj(msg, ";\n", -1); |
---|
| 1387 | Tcl_AppendObjToObj(msg, post); |
---|
| 1388 | Tcl_DecrRefCount(post); |
---|
| 1389 | } |
---|
| 1390 | Tcl_SetObjResult(interp, msg); |
---|
| 1391 | |
---|
| 1392 | /* Finally, place context information in the errorInfo. */ |
---|
| 1393 | numBytes = parsePtr->end - parsePtr->string; |
---|
| 1394 | Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf( |
---|
| 1395 | "\n (parsing expression \"%.*s%s\")", |
---|
| 1396 | (numBytes < limit) ? numBytes : limit - 3, |
---|
| 1397 | parsePtr->string, (numBytes < limit) ? "" : "...")); |
---|
| 1398 | } |
---|
| 1399 | |
---|
| 1400 | return TCL_ERROR; |
---|
| 1401 | } |
---|
| 1402 | |
---|
| 1403 | /* |
---|
| 1404 | *---------------------------------------------------------------------- |
---|
| 1405 | * |
---|
| 1406 | * ConvertTreeToTokens -- |
---|
| 1407 | * |
---|
| 1408 | * Given a string, the numBytes bytes starting at start, and an OpNode |
---|
| 1409 | * tree and Tcl_Token array created by passing that same string to |
---|
| 1410 | * ParseExpr(), this function writes into *parsePtr the sequence of |
---|
| 1411 | * Tcl_Tokens needed so to satisfy the historical interface provided |
---|
| 1412 | * by Tcl_ParseExpr(). Note that this routine exists only for the sake |
---|
| 1413 | * of the public Tcl_ParseExpr() routine. It is not used by Tcl itself |
---|
| 1414 | * at all. |
---|
| 1415 | * |
---|
| 1416 | * Results: |
---|
| 1417 | * None. |
---|
| 1418 | * |
---|
| 1419 | * Side effects: |
---|
| 1420 | * The Tcl_Parse *parsePtr is filled with Tcl_Tokens representing the |
---|
| 1421 | * parsed expression. |
---|
| 1422 | * |
---|
| 1423 | *---------------------------------------------------------------------- |
---|
| 1424 | */ |
---|
| 1425 | |
---|
| 1426 | static void |
---|
| 1427 | ConvertTreeToTokens( |
---|
| 1428 | const char *start, |
---|
| 1429 | int numBytes, |
---|
| 1430 | OpNode *nodes, |
---|
| 1431 | Tcl_Token *tokenPtr, |
---|
| 1432 | Tcl_Parse *parsePtr) |
---|
| 1433 | { |
---|
| 1434 | int subExprTokenIdx = 0; |
---|
| 1435 | OpNode *nodePtr = nodes; |
---|
| 1436 | int next = nodePtr->right; |
---|
| 1437 | |
---|
| 1438 | while (1) { |
---|
| 1439 | Tcl_Token *subExprTokenPtr; |
---|
| 1440 | int scanned, parentIdx; |
---|
| 1441 | unsigned char lexeme; |
---|
| 1442 | |
---|
| 1443 | /* |
---|
| 1444 | * Advance the mark so the next exit from this node won't retrace |
---|
| 1445 | * steps over ground already covered. |
---|
| 1446 | */ |
---|
| 1447 | |
---|
| 1448 | nodePtr->mark++; |
---|
| 1449 | |
---|
| 1450 | /* Handle next child node or leaf */ |
---|
| 1451 | switch (next) { |
---|
| 1452 | case OT_EMPTY: |
---|
| 1453 | |
---|
| 1454 | /* No tokens and no characters for the OT_EMPTY leaf. */ |
---|
| 1455 | break; |
---|
| 1456 | |
---|
| 1457 | case OT_LITERAL: |
---|
| 1458 | |
---|
| 1459 | /* Skip any white space that comes before the literal */ |
---|
| 1460 | scanned = TclParseAllWhiteSpace(start, numBytes); |
---|
| 1461 | start +=scanned; |
---|
| 1462 | numBytes -= scanned; |
---|
| 1463 | |
---|
| 1464 | /* Reparse the literal to get pointers into source string */ |
---|
| 1465 | scanned = ParseLexeme(start, numBytes, &lexeme, NULL); |
---|
| 1466 | |
---|
| 1467 | TclGrowParseTokenArray(parsePtr, 2); |
---|
| 1468 | subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; |
---|
| 1469 | subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; |
---|
| 1470 | subExprTokenPtr->start = start; |
---|
| 1471 | subExprTokenPtr->size = scanned; |
---|
| 1472 | subExprTokenPtr->numComponents = 1; |
---|
| 1473 | subExprTokenPtr[1].type = TCL_TOKEN_TEXT; |
---|
| 1474 | subExprTokenPtr[1].start = start; |
---|
| 1475 | subExprTokenPtr[1].size = scanned; |
---|
| 1476 | subExprTokenPtr[1].numComponents = 0; |
---|
| 1477 | |
---|
| 1478 | parsePtr->numTokens += 2; |
---|
| 1479 | start +=scanned; |
---|
| 1480 | numBytes -= scanned; |
---|
| 1481 | break; |
---|
| 1482 | |
---|
| 1483 | case OT_TOKENS: { |
---|
| 1484 | |
---|
| 1485 | /* |
---|
| 1486 | * tokenPtr points to a token sequence that came from parsing |
---|
| 1487 | * a Tcl word. A Tcl word is made up of a sequence of one or |
---|
| 1488 | * more elements. When the word is only a single element, it's |
---|
| 1489 | * been the historical practice to replace the TCL_TOKEN_WORD |
---|
| 1490 | * token directly with a TCL_TOKEN_SUB_EXPR token. However, |
---|
| 1491 | * when the word has multiple elements, a TCL_TOKEN_WORD token |
---|
| 1492 | * is kept as a grouping device so that TCL_TOKEN_SUB_EXPR |
---|
| 1493 | * always has only one element. Wise or not, these are the |
---|
| 1494 | * rules the Tcl expr parser has followed, and for the sake |
---|
| 1495 | * of those few callers of Tcl_ParseExpr() we do not change |
---|
| 1496 | * them now. Internally, we can do better. |
---|
| 1497 | */ |
---|
| 1498 | |
---|
| 1499 | int toCopy = tokenPtr->numComponents + 1; |
---|
| 1500 | |
---|
| 1501 | if (tokenPtr->numComponents == tokenPtr[1].numComponents + 1) { |
---|
| 1502 | |
---|
| 1503 | /* |
---|
| 1504 | * Single element word. Copy tokens and convert the leading |
---|
| 1505 | * token to TCL_TOKEN_SUB_EXPR. |
---|
| 1506 | */ |
---|
| 1507 | |
---|
| 1508 | TclGrowParseTokenArray(parsePtr, toCopy); |
---|
| 1509 | subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; |
---|
| 1510 | memcpy(subExprTokenPtr, tokenPtr, |
---|
| 1511 | (size_t) toCopy * sizeof(Tcl_Token)); |
---|
| 1512 | subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; |
---|
| 1513 | parsePtr->numTokens += toCopy; |
---|
| 1514 | } else { |
---|
| 1515 | |
---|
| 1516 | /* |
---|
| 1517 | * Multiple element word. Create a TCL_TOKEN_SUB_EXPR |
---|
| 1518 | * token to lead, with fields initialized from the leading |
---|
| 1519 | * token, then copy entire set of word tokens. |
---|
| 1520 | */ |
---|
| 1521 | |
---|
| 1522 | TclGrowParseTokenArray(parsePtr, toCopy+1); |
---|
| 1523 | subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; |
---|
| 1524 | *subExprTokenPtr = *tokenPtr; |
---|
| 1525 | subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; |
---|
| 1526 | subExprTokenPtr->numComponents++; |
---|
| 1527 | subExprTokenPtr++; |
---|
| 1528 | memcpy(subExprTokenPtr, tokenPtr, |
---|
| 1529 | (size_t) toCopy * sizeof(Tcl_Token)); |
---|
| 1530 | parsePtr->numTokens += toCopy + 1; |
---|
| 1531 | } |
---|
| 1532 | |
---|
| 1533 | scanned = tokenPtr->start + tokenPtr->size - start; |
---|
| 1534 | start +=scanned; |
---|
| 1535 | numBytes -= scanned; |
---|
| 1536 | tokenPtr += toCopy; |
---|
| 1537 | break; |
---|
| 1538 | } |
---|
| 1539 | |
---|
| 1540 | default: |
---|
| 1541 | |
---|
| 1542 | /* Advance to the child node, which is an operator. */ |
---|
| 1543 | nodePtr = nodes + next; |
---|
| 1544 | |
---|
| 1545 | /* Skip any white space that comes before the subexpression */ |
---|
| 1546 | scanned = TclParseAllWhiteSpace(start, numBytes); |
---|
| 1547 | start +=scanned; |
---|
| 1548 | numBytes -= scanned; |
---|
| 1549 | |
---|
| 1550 | /* Generate tokens for the operator / subexpression... */ |
---|
| 1551 | switch (nodePtr->lexeme) { |
---|
| 1552 | case OPEN_PAREN: |
---|
| 1553 | case COMMA: |
---|
| 1554 | case COLON: |
---|
| 1555 | |
---|
| 1556 | /* |
---|
| 1557 | * Historical practice has been to have no Tcl_Tokens for |
---|
| 1558 | * these operators. |
---|
| 1559 | */ |
---|
| 1560 | |
---|
| 1561 | break; |
---|
| 1562 | |
---|
| 1563 | default: { |
---|
| 1564 | |
---|
| 1565 | /* |
---|
| 1566 | * Remember the index of the last subexpression we were |
---|
| 1567 | * working on -- that of our parent. We'll stack it later. |
---|
| 1568 | */ |
---|
| 1569 | |
---|
| 1570 | parentIdx = subExprTokenIdx; |
---|
| 1571 | |
---|
| 1572 | /* |
---|
| 1573 | * Verify space for the two leading Tcl_Tokens representing |
---|
| 1574 | * the subexpression rooted by this operator. The first |
---|
| 1575 | * Tcl_Token will be of type TCL_TOKEN_SUB_EXPR; the second |
---|
| 1576 | * of type TCL_TOKEN_OPERATOR. |
---|
| 1577 | */ |
---|
| 1578 | |
---|
| 1579 | TclGrowParseTokenArray(parsePtr, 2); |
---|
| 1580 | subExprTokenIdx = parsePtr->numTokens; |
---|
| 1581 | subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx; |
---|
| 1582 | parsePtr->numTokens += 2; |
---|
| 1583 | subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; |
---|
| 1584 | subExprTokenPtr[1].type = TCL_TOKEN_OPERATOR; |
---|
| 1585 | |
---|
| 1586 | /* |
---|
| 1587 | * Our current position scanning the string is the starting |
---|
| 1588 | * point for this subexpression. |
---|
| 1589 | */ |
---|
| 1590 | |
---|
| 1591 | subExprTokenPtr->start = start; |
---|
| 1592 | |
---|
| 1593 | /* |
---|
| 1594 | * Eventually, we know that the numComponents field of the |
---|
| 1595 | * Tcl_Token of type TCL_TOKEN_OPERATOR will be 0. This means |
---|
| 1596 | * we can make other use of this field for now to track the |
---|
| 1597 | * stack of subexpressions we have pending. |
---|
| 1598 | */ |
---|
| 1599 | |
---|
| 1600 | subExprTokenPtr[1].numComponents = parentIdx; |
---|
| 1601 | break; |
---|
| 1602 | } |
---|
| 1603 | } |
---|
| 1604 | break; |
---|
| 1605 | } |
---|
| 1606 | |
---|
| 1607 | /* Determine which way to exit the node on this pass. */ |
---|
| 1608 | router: |
---|
| 1609 | switch (nodePtr->mark) { |
---|
| 1610 | case MARK_LEFT: |
---|
| 1611 | next = nodePtr->left; |
---|
| 1612 | break; |
---|
| 1613 | |
---|
| 1614 | case MARK_RIGHT: |
---|
| 1615 | next = nodePtr->right; |
---|
| 1616 | |
---|
| 1617 | /* Skip any white space that comes before the operator */ |
---|
| 1618 | scanned = TclParseAllWhiteSpace(start, numBytes); |
---|
| 1619 | start +=scanned; |
---|
| 1620 | numBytes -= scanned; |
---|
| 1621 | |
---|
| 1622 | /* |
---|
| 1623 | * Here we scan from the string the operator corresponding to |
---|
| 1624 | * nodePtr->lexeme. |
---|
| 1625 | */ |
---|
| 1626 | |
---|
| 1627 | scanned = ParseLexeme(start, numBytes, &lexeme, NULL); |
---|
| 1628 | |
---|
| 1629 | switch(nodePtr->lexeme) { |
---|
| 1630 | case OPEN_PAREN: |
---|
| 1631 | case COMMA: |
---|
| 1632 | case COLON: |
---|
| 1633 | |
---|
| 1634 | /* No tokens for these lexemes -> nothing to do. */ |
---|
| 1635 | break; |
---|
| 1636 | |
---|
| 1637 | default: |
---|
| 1638 | |
---|
| 1639 | /* |
---|
| 1640 | * Record in the TCL_TOKEN_OPERATOR token the pointers into |
---|
| 1641 | * the string marking where the operator is. |
---|
| 1642 | */ |
---|
| 1643 | |
---|
| 1644 | subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx; |
---|
| 1645 | subExprTokenPtr[1].start = start; |
---|
| 1646 | subExprTokenPtr[1].size = scanned; |
---|
| 1647 | break; |
---|
| 1648 | } |
---|
| 1649 | |
---|
| 1650 | start +=scanned; |
---|
| 1651 | numBytes -= scanned; |
---|
| 1652 | break; |
---|
| 1653 | |
---|
| 1654 | case MARK_PARENT: |
---|
| 1655 | switch (nodePtr->lexeme) { |
---|
| 1656 | case START: |
---|
| 1657 | |
---|
| 1658 | /* When we get back to the START node, we're done. */ |
---|
| 1659 | return; |
---|
| 1660 | |
---|
| 1661 | case COMMA: |
---|
| 1662 | case COLON: |
---|
| 1663 | |
---|
| 1664 | /* No tokens for these lexemes -> nothing to do. */ |
---|
| 1665 | break; |
---|
| 1666 | |
---|
| 1667 | case OPEN_PAREN: |
---|
| 1668 | |
---|
| 1669 | /* Skip past matching close paren. */ |
---|
| 1670 | scanned = TclParseAllWhiteSpace(start, numBytes); |
---|
| 1671 | start +=scanned; |
---|
| 1672 | numBytes -= scanned; |
---|
| 1673 | scanned = ParseLexeme(start, numBytes, &lexeme, NULL); |
---|
| 1674 | start +=scanned; |
---|
| 1675 | numBytes -= scanned; |
---|
| 1676 | break; |
---|
| 1677 | |
---|
| 1678 | default: { |
---|
| 1679 | |
---|
| 1680 | /* |
---|
| 1681 | * Before we leave this node/operator/subexpression for the |
---|
| 1682 | * last time, finish up its tokens.... |
---|
| 1683 | * |
---|
| 1684 | * Our current position scanning the string is where the |
---|
| 1685 | * substring for the subexpression ends. |
---|
| 1686 | */ |
---|
| 1687 | |
---|
| 1688 | subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx; |
---|
| 1689 | subExprTokenPtr->size = start - subExprTokenPtr->start; |
---|
| 1690 | |
---|
| 1691 | /* |
---|
| 1692 | * All the Tcl_Tokens allocated and filled belong to |
---|
| 1693 | * this subexpresion. The first token is the leading |
---|
| 1694 | * TCL_TOKEN_SUB_EXPR token, and all the rest (one fewer) |
---|
| 1695 | * are its components. |
---|
| 1696 | */ |
---|
| 1697 | |
---|
| 1698 | subExprTokenPtr->numComponents = |
---|
| 1699 | (parsePtr->numTokens - subExprTokenIdx) - 1; |
---|
| 1700 | |
---|
| 1701 | /* |
---|
| 1702 | * Finally, as we return up the tree to our parent, pop the |
---|
| 1703 | * parent subexpression off our subexpression stack, and |
---|
| 1704 | * fill in the zero numComponents for the operator Tcl_Token. |
---|
| 1705 | */ |
---|
| 1706 | |
---|
| 1707 | parentIdx = subExprTokenPtr[1].numComponents; |
---|
| 1708 | subExprTokenPtr[1].numComponents = 0; |
---|
| 1709 | subExprTokenIdx = parentIdx; |
---|
| 1710 | break; |
---|
| 1711 | } |
---|
| 1712 | } |
---|
| 1713 | |
---|
| 1714 | /* Since we're returning to parent, skip child handling code. */ |
---|
| 1715 | nodePtr = nodes + nodePtr->p.parent; |
---|
| 1716 | goto router; |
---|
| 1717 | } |
---|
| 1718 | } |
---|
| 1719 | } |
---|
| 1720 | |
---|
| 1721 | /* |
---|
| 1722 | *---------------------------------------------------------------------- |
---|
| 1723 | * |
---|
| 1724 | * Tcl_ParseExpr -- |
---|
| 1725 | * |
---|
| 1726 | * Given a string, the numBytes bytes starting at start, this function |
---|
| 1727 | * parses it as a Tcl expression and stores information about the |
---|
| 1728 | * structure of the expression in the Tcl_Parse struct indicated by the |
---|
| 1729 | * caller. |
---|
| 1730 | * |
---|
| 1731 | * Results: |
---|
| 1732 | * If the string is successfully parsed as a valid Tcl expression, TCL_OK |
---|
| 1733 | * is returned, and data about the expression structure is written to |
---|
| 1734 | * *parsePtr. If the string cannot be parsed as a valid Tcl expression, |
---|
| 1735 | * TCL_ERROR is returned, and if interp is non-NULL, an error message is |
---|
| 1736 | * written to interp. |
---|
| 1737 | * |
---|
| 1738 | * Side effects: |
---|
| 1739 | * If there is insufficient space in parsePtr to hold all the information |
---|
| 1740 | * about the expression, then additional space is malloc-ed. If the |
---|
| 1741 | * function returns TCL_OK then the caller must eventually invoke |
---|
| 1742 | * Tcl_FreeParse to release any additional space that was allocated. |
---|
| 1743 | * |
---|
| 1744 | *---------------------------------------------------------------------- |
---|
| 1745 | */ |
---|
| 1746 | |
---|
| 1747 | int |
---|
| 1748 | Tcl_ParseExpr( |
---|
| 1749 | Tcl_Interp *interp, /* Used for error reporting. */ |
---|
| 1750 | const char *start, /* Start of source string to parse. */ |
---|
| 1751 | int numBytes, /* Number of bytes in string. If < 0, the |
---|
| 1752 | * string consists of all bytes up to the |
---|
| 1753 | * first null character. */ |
---|
| 1754 | Tcl_Parse *parsePtr) /* Structure to fill with information about |
---|
| 1755 | * the parsed expression; any previous |
---|
| 1756 | * information in the structure is ignored. */ |
---|
| 1757 | { |
---|
| 1758 | int code; |
---|
| 1759 | OpNode *opTree = NULL; /* Will point to the tree of operators */ |
---|
| 1760 | Tcl_Obj *litList = Tcl_NewObj(); /* List to hold the literals */ |
---|
| 1761 | Tcl_Obj *funcList = Tcl_NewObj(); /* List to hold the functon names*/ |
---|
| 1762 | Tcl_Parse *exprParsePtr = |
---|
| 1763 | (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); |
---|
| 1764 | /* Holds the Tcl_Tokens of substitutions */ |
---|
| 1765 | |
---|
| 1766 | if (numBytes < 0) { |
---|
| 1767 | numBytes = (start ? strlen(start) : 0); |
---|
| 1768 | } |
---|
| 1769 | |
---|
| 1770 | code = ParseExpr(interp, start, numBytes, &opTree, litList, |
---|
| 1771 | funcList, exprParsePtr, 1 /* parseOnly */); |
---|
| 1772 | Tcl_DecrRefCount(funcList); |
---|
| 1773 | Tcl_DecrRefCount(litList); |
---|
| 1774 | |
---|
| 1775 | TclParseInit(interp, start, numBytes, parsePtr); |
---|
| 1776 | if (code == TCL_OK) { |
---|
| 1777 | ConvertTreeToTokens(start, numBytes, |
---|
| 1778 | opTree, exprParsePtr->tokenPtr, parsePtr); |
---|
| 1779 | } else { |
---|
| 1780 | parsePtr->term = exprParsePtr->term; |
---|
| 1781 | parsePtr->errorType = exprParsePtr->errorType; |
---|
| 1782 | } |
---|
| 1783 | |
---|
| 1784 | Tcl_FreeParse(exprParsePtr); |
---|
| 1785 | TclStackFree(interp, exprParsePtr); |
---|
| 1786 | ckfree((char *) opTree); |
---|
| 1787 | return code; |
---|
| 1788 | } |
---|
| 1789 | |
---|
| 1790 | /* |
---|
| 1791 | *---------------------------------------------------------------------- |
---|
| 1792 | * |
---|
| 1793 | * ParseLexeme -- |
---|
| 1794 | * |
---|
| 1795 | * Parse a single lexeme from the start of a string, scanning no more |
---|
| 1796 | * than numBytes bytes. |
---|
| 1797 | * |
---|
| 1798 | * Results: |
---|
| 1799 | * Returns the number of bytes scanned to produce the lexeme. |
---|
| 1800 | * |
---|
| 1801 | * Side effects: |
---|
| 1802 | * Code identifying lexeme parsed is writen to *lexemePtr. |
---|
| 1803 | * |
---|
| 1804 | *---------------------------------------------------------------------- |
---|
| 1805 | */ |
---|
| 1806 | |
---|
| 1807 | static int |
---|
| 1808 | ParseLexeme( |
---|
| 1809 | const char *start, /* Start of lexeme to parse. */ |
---|
| 1810 | int numBytes, /* Number of bytes in string. */ |
---|
| 1811 | unsigned char *lexemePtr, /* Write code of parsed lexeme to this |
---|
| 1812 | * storage. */ |
---|
| 1813 | Tcl_Obj **literalPtr) /* Write corresponding literal value to this |
---|
| 1814 | storage, if non-NULL. */ |
---|
| 1815 | { |
---|
| 1816 | const char *end; |
---|
| 1817 | int scanned; |
---|
| 1818 | Tcl_UniChar ch; |
---|
| 1819 | Tcl_Obj *literal = NULL; |
---|
| 1820 | unsigned char byte; |
---|
| 1821 | |
---|
| 1822 | if (numBytes == 0) { |
---|
| 1823 | *lexemePtr = END; |
---|
| 1824 | return 0; |
---|
| 1825 | } |
---|
| 1826 | byte = (unsigned char)(*start); |
---|
| 1827 | if (byte < sizeof(Lexeme) && Lexeme[byte] != 0) { |
---|
| 1828 | *lexemePtr = Lexeme[byte]; |
---|
| 1829 | return 1; |
---|
| 1830 | } |
---|
| 1831 | switch (byte) { |
---|
| 1832 | case '*': |
---|
| 1833 | if ((numBytes > 1) && (start[1] == '*')) { |
---|
| 1834 | *lexemePtr = EXPON; |
---|
| 1835 | return 2; |
---|
| 1836 | } |
---|
| 1837 | *lexemePtr = MULT; |
---|
| 1838 | return 1; |
---|
| 1839 | |
---|
| 1840 | case '=': |
---|
| 1841 | if ((numBytes > 1) && (start[1] == '=')) { |
---|
| 1842 | *lexemePtr = EQUAL; |
---|
| 1843 | return 2; |
---|
| 1844 | } |
---|
| 1845 | *lexemePtr = INCOMPLETE; |
---|
| 1846 | return 1; |
---|
| 1847 | |
---|
| 1848 | case '!': |
---|
| 1849 | if ((numBytes > 1) && (start[1] == '=')) { |
---|
| 1850 | *lexemePtr = NEQ; |
---|
| 1851 | return 2; |
---|
| 1852 | } |
---|
| 1853 | *lexemePtr = NOT; |
---|
| 1854 | return 1; |
---|
| 1855 | |
---|
| 1856 | case '&': |
---|
| 1857 | if ((numBytes > 1) && (start[1] == '&')) { |
---|
| 1858 | *lexemePtr = AND; |
---|
| 1859 | return 2; |
---|
| 1860 | } |
---|
| 1861 | *lexemePtr = BIT_AND; |
---|
| 1862 | return 1; |
---|
| 1863 | |
---|
| 1864 | case '|': |
---|
| 1865 | if ((numBytes > 1) && (start[1] == '|')) { |
---|
| 1866 | *lexemePtr = OR; |
---|
| 1867 | return 2; |
---|
| 1868 | } |
---|
| 1869 | *lexemePtr = BIT_OR; |
---|
| 1870 | return 1; |
---|
| 1871 | |
---|
| 1872 | case '<': |
---|
| 1873 | if (numBytes > 1) { |
---|
| 1874 | switch (start[1]) { |
---|
| 1875 | case '<': |
---|
| 1876 | *lexemePtr = LEFT_SHIFT; |
---|
| 1877 | return 2; |
---|
| 1878 | case '=': |
---|
| 1879 | *lexemePtr = LEQ; |
---|
| 1880 | return 2; |
---|
| 1881 | } |
---|
| 1882 | } |
---|
| 1883 | *lexemePtr = LESS; |
---|
| 1884 | return 1; |
---|
| 1885 | |
---|
| 1886 | case '>': |
---|
| 1887 | if (numBytes > 1) { |
---|
| 1888 | switch (start[1]) { |
---|
| 1889 | case '>': |
---|
| 1890 | *lexemePtr = RIGHT_SHIFT; |
---|
| 1891 | return 2; |
---|
| 1892 | case '=': |
---|
| 1893 | *lexemePtr = GEQ; |
---|
| 1894 | return 2; |
---|
| 1895 | } |
---|
| 1896 | } |
---|
| 1897 | *lexemePtr = GREATER; |
---|
| 1898 | return 1; |
---|
| 1899 | |
---|
| 1900 | case 'i': |
---|
| 1901 | if ((numBytes > 1) && (start[1] == 'n') |
---|
| 1902 | && ((numBytes == 2) || !isalpha(UCHAR(start[2])))) { |
---|
| 1903 | |
---|
| 1904 | /* |
---|
| 1905 | * Must make this check so we can tell the difference between |
---|
| 1906 | * the "in" operator and the "int" function name and the |
---|
| 1907 | * "infinity" numeric value. |
---|
| 1908 | */ |
---|
| 1909 | |
---|
| 1910 | *lexemePtr = IN_LIST; |
---|
| 1911 | return 2; |
---|
| 1912 | } |
---|
| 1913 | break; |
---|
| 1914 | |
---|
| 1915 | case 'e': |
---|
| 1916 | if ((numBytes > 1) && (start[1] == 'q') |
---|
| 1917 | && ((numBytes == 2) || !isalpha(UCHAR(start[2])))) { |
---|
| 1918 | *lexemePtr = STREQ; |
---|
| 1919 | return 2; |
---|
| 1920 | } |
---|
| 1921 | break; |
---|
| 1922 | |
---|
| 1923 | case 'n': |
---|
| 1924 | if ((numBytes > 1) && ((numBytes == 2) || !isalpha(UCHAR(start[2])))) { |
---|
| 1925 | switch (start[1]) { |
---|
| 1926 | case 'e': |
---|
| 1927 | *lexemePtr = STRNEQ; |
---|
| 1928 | return 2; |
---|
| 1929 | case 'i': |
---|
| 1930 | *lexemePtr = NOT_IN_LIST; |
---|
| 1931 | return 2; |
---|
| 1932 | } |
---|
| 1933 | } |
---|
| 1934 | } |
---|
| 1935 | |
---|
| 1936 | literal = Tcl_NewObj(); |
---|
| 1937 | if (TclParseNumber(NULL, literal, NULL, start, numBytes, &end, |
---|
| 1938 | TCL_PARSE_NO_WHITESPACE) == TCL_OK) { |
---|
| 1939 | TclInitStringRep(literal, start, end-start); |
---|
| 1940 | *lexemePtr = NUMBER; |
---|
| 1941 | if (literalPtr) { |
---|
| 1942 | *literalPtr = literal; |
---|
| 1943 | } else { |
---|
| 1944 | Tcl_DecrRefCount(literal); |
---|
| 1945 | } |
---|
| 1946 | return (end-start); |
---|
| 1947 | } |
---|
| 1948 | |
---|
| 1949 | if (Tcl_UtfCharComplete(start, numBytes)) { |
---|
| 1950 | scanned = Tcl_UtfToUniChar(start, &ch); |
---|
| 1951 | } else { |
---|
| 1952 | char utfBytes[TCL_UTF_MAX]; |
---|
| 1953 | memcpy(utfBytes, start, (size_t) numBytes); |
---|
| 1954 | utfBytes[numBytes] = '\0'; |
---|
| 1955 | scanned = Tcl_UtfToUniChar(utfBytes, &ch); |
---|
| 1956 | } |
---|
| 1957 | if (!isalpha(UCHAR(ch))) { |
---|
| 1958 | *lexemePtr = INVALID; |
---|
| 1959 | Tcl_DecrRefCount(literal); |
---|
| 1960 | return scanned; |
---|
| 1961 | } |
---|
| 1962 | end = start; |
---|
| 1963 | while (isalnum(UCHAR(ch)) || (UCHAR(ch) == '_')) { |
---|
| 1964 | end += scanned; |
---|
| 1965 | numBytes -= scanned; |
---|
| 1966 | if (Tcl_UtfCharComplete(end, numBytes)) { |
---|
| 1967 | scanned = Tcl_UtfToUniChar(end, &ch); |
---|
| 1968 | } else { |
---|
| 1969 | char utfBytes[TCL_UTF_MAX]; |
---|
| 1970 | memcpy(utfBytes, end, (size_t) numBytes); |
---|
| 1971 | utfBytes[numBytes] = '\0'; |
---|
| 1972 | scanned = Tcl_UtfToUniChar(utfBytes, &ch); |
---|
| 1973 | } |
---|
| 1974 | } |
---|
| 1975 | *lexemePtr = BAREWORD; |
---|
| 1976 | if (literalPtr) { |
---|
| 1977 | Tcl_SetStringObj(literal, start, (int) (end-start)); |
---|
| 1978 | *literalPtr = literal; |
---|
| 1979 | } else { |
---|
| 1980 | Tcl_DecrRefCount(literal); |
---|
| 1981 | } |
---|
| 1982 | return (end-start); |
---|
| 1983 | } |
---|
| 1984 | |
---|
| 1985 | /* |
---|
| 1986 | *---------------------------------------------------------------------- |
---|
| 1987 | * |
---|
| 1988 | * TclCompileExpr -- |
---|
| 1989 | * |
---|
| 1990 | * This procedure compiles a string containing a Tcl expression into Tcl |
---|
| 1991 | * bytecodes. |
---|
| 1992 | * |
---|
| 1993 | * Results: |
---|
| 1994 | * None. |
---|
| 1995 | * |
---|
| 1996 | * Side effects: |
---|
| 1997 | * Adds instructions to envPtr to evaluate the expression at runtime. |
---|
| 1998 | * |
---|
| 1999 | *---------------------------------------------------------------------- |
---|
| 2000 | */ |
---|
| 2001 | |
---|
| 2002 | void |
---|
| 2003 | TclCompileExpr( |
---|
| 2004 | Tcl_Interp *interp, /* Used for error reporting. */ |
---|
| 2005 | const char *script, /* The source script to compile. */ |
---|
| 2006 | int numBytes, /* Number of bytes in script. */ |
---|
| 2007 | CompileEnv *envPtr, /* Holds resulting instructions. */ |
---|
| 2008 | int optimize) /* 0 for one-off expressions */ |
---|
| 2009 | { |
---|
| 2010 | OpNode *opTree = NULL; /* Will point to the tree of operators */ |
---|
| 2011 | Tcl_Obj *litList = Tcl_NewObj(); /* List to hold the literals */ |
---|
| 2012 | Tcl_Obj *funcList = Tcl_NewObj(); /* List to hold the functon names*/ |
---|
| 2013 | Tcl_Parse *parsePtr = |
---|
| 2014 | (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); |
---|
| 2015 | /* Holds the Tcl_Tokens of substitutions */ |
---|
| 2016 | |
---|
| 2017 | int code = ParseExpr(interp, script, numBytes, &opTree, litList, |
---|
| 2018 | funcList, parsePtr, 0 /* parseOnly */); |
---|
| 2019 | |
---|
| 2020 | if (code == TCL_OK) { |
---|
| 2021 | |
---|
| 2022 | /* Valid parse; compile the tree. */ |
---|
| 2023 | int objc; |
---|
| 2024 | Tcl_Obj *const *litObjv; |
---|
| 2025 | Tcl_Obj **funcObjv; |
---|
| 2026 | |
---|
| 2027 | /* TIP #280 : Track Lines within the expression */ |
---|
| 2028 | TclAdvanceLines(&envPtr->line, script, |
---|
| 2029 | script + TclParseAllWhiteSpace(script, numBytes)); |
---|
| 2030 | |
---|
| 2031 | TclListObjGetElements(NULL, litList, &objc, (Tcl_Obj ***)&litObjv); |
---|
| 2032 | TclListObjGetElements(NULL, funcList, &objc, &funcObjv); |
---|
| 2033 | CompileExprTree(interp, opTree, 0, &litObjv, funcObjv, |
---|
| 2034 | parsePtr->tokenPtr, envPtr, optimize); |
---|
| 2035 | } else { |
---|
| 2036 | TclCompileSyntaxError(interp, envPtr); |
---|
| 2037 | } |
---|
| 2038 | |
---|
| 2039 | Tcl_FreeParse(parsePtr); |
---|
| 2040 | TclStackFree(interp, parsePtr); |
---|
| 2041 | Tcl_DecrRefCount(funcList); |
---|
| 2042 | Tcl_DecrRefCount(litList); |
---|
| 2043 | ckfree((char *) opTree); |
---|
| 2044 | } |
---|
| 2045 | |
---|
| 2046 | /* |
---|
| 2047 | *---------------------------------------------------------------------- |
---|
| 2048 | * |
---|
| 2049 | * ExecConstantExprTree -- |
---|
| 2050 | * Compiles and executes bytecode for the subexpression tree at index |
---|
| 2051 | * in the nodes array. This subexpression must be constant, made up |
---|
| 2052 | * of only constant operators (not functions) and literals. |
---|
| 2053 | * |
---|
| 2054 | * Results: |
---|
| 2055 | * A standard Tcl return code and result left in interp. |
---|
| 2056 | * |
---|
| 2057 | * Side effects: |
---|
| 2058 | * Consumes subtree of nodes rooted at index. Advances the pointer |
---|
| 2059 | * *litObjvPtr. |
---|
| 2060 | * |
---|
| 2061 | *---------------------------------------------------------------------- |
---|
| 2062 | */ |
---|
| 2063 | |
---|
| 2064 | static int |
---|
| 2065 | ExecConstantExprTree( |
---|
| 2066 | Tcl_Interp *interp, |
---|
| 2067 | OpNode *nodes, |
---|
| 2068 | int index, |
---|
| 2069 | Tcl_Obj *const **litObjvPtr) |
---|
| 2070 | { |
---|
| 2071 | CompileEnv *envPtr; |
---|
| 2072 | ByteCode *byteCodePtr; |
---|
| 2073 | int code; |
---|
| 2074 | Tcl_Obj *byteCodeObj = Tcl_NewObj(); |
---|
| 2075 | |
---|
| 2076 | /* |
---|
| 2077 | * Note we are compiling an expression with literal arguments. This means |
---|
| 2078 | * there can be no [info frame] calls when we execute the resulting |
---|
| 2079 | * bytecode, so there's no need to tend to TIP 280 issues. |
---|
| 2080 | */ |
---|
| 2081 | |
---|
| 2082 | envPtr = (CompileEnv *) TclStackAlloc(interp, sizeof(CompileEnv)); |
---|
| 2083 | TclInitCompileEnv(interp, envPtr, NULL, 0, NULL, 0); |
---|
| 2084 | CompileExprTree(interp, nodes, index, litObjvPtr, NULL, NULL, envPtr, |
---|
| 2085 | 0 /* optimize */); |
---|
| 2086 | TclEmitOpcode(INST_DONE, envPtr); |
---|
| 2087 | Tcl_IncrRefCount(byteCodeObj); |
---|
| 2088 | TclInitByteCodeObj(byteCodeObj, envPtr); |
---|
| 2089 | TclFreeCompileEnv(envPtr); |
---|
| 2090 | TclStackFree(interp, envPtr); |
---|
| 2091 | byteCodePtr = (ByteCode *) byteCodeObj->internalRep.otherValuePtr; |
---|
| 2092 | code = TclExecuteByteCode(interp, byteCodePtr); |
---|
| 2093 | Tcl_DecrRefCount(byteCodeObj); |
---|
| 2094 | return code; |
---|
| 2095 | } |
---|
| 2096 | |
---|
| 2097 | /* |
---|
| 2098 | *---------------------------------------------------------------------- |
---|
| 2099 | * |
---|
| 2100 | * CompileExprTree -- |
---|
| 2101 | * Compiles and writes to envPtr instructions for the subexpression |
---|
| 2102 | * tree at index in the nodes array. (*litObjvPtr) must point to the |
---|
| 2103 | * proper location in a corresponding literals list. Likewise, when |
---|
| 2104 | * non-NULL, funcObjv and tokenPtr must point into matching arrays of |
---|
| 2105 | * function names and Tcl_Token's derived from earlier call to |
---|
| 2106 | * ParseExpr(). When optimize is true, any constant subexpressions |
---|
| 2107 | * will be precomputed. |
---|
| 2108 | * |
---|
| 2109 | * Results: |
---|
| 2110 | * None. |
---|
| 2111 | * |
---|
| 2112 | * Side effects: |
---|
| 2113 | * Adds instructions to envPtr to evaluate the expression at runtime. |
---|
| 2114 | * Consumes subtree of nodes rooted at index. Advances the pointer |
---|
| 2115 | * *litObjvPtr. |
---|
| 2116 | * |
---|
| 2117 | *---------------------------------------------------------------------- |
---|
| 2118 | */ |
---|
| 2119 | |
---|
| 2120 | static void |
---|
| 2121 | CompileExprTree( |
---|
| 2122 | Tcl_Interp *interp, |
---|
| 2123 | OpNode *nodes, |
---|
| 2124 | int index, |
---|
| 2125 | Tcl_Obj *const **litObjvPtr, |
---|
| 2126 | Tcl_Obj *const *funcObjv, |
---|
| 2127 | Tcl_Token *tokenPtr, |
---|
| 2128 | CompileEnv *envPtr, |
---|
| 2129 | int optimize) |
---|
| 2130 | { |
---|
| 2131 | OpNode *nodePtr = nodes + index; |
---|
| 2132 | OpNode *rootPtr = nodePtr; |
---|
| 2133 | int numWords = 0; |
---|
| 2134 | JumpList *jumpPtr = NULL; |
---|
| 2135 | int convert = 1; |
---|
| 2136 | |
---|
| 2137 | while (1) { |
---|
| 2138 | int next; |
---|
| 2139 | JumpList *freePtr, *newJump; |
---|
| 2140 | |
---|
| 2141 | if (nodePtr->mark == MARK_LEFT) { |
---|
| 2142 | next = nodePtr->left; |
---|
| 2143 | |
---|
| 2144 | switch (nodePtr->lexeme) { |
---|
| 2145 | case QUESTION: |
---|
| 2146 | newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); |
---|
| 2147 | newJump->next = jumpPtr; |
---|
| 2148 | jumpPtr = newJump; |
---|
| 2149 | newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); |
---|
| 2150 | newJump->next = jumpPtr; |
---|
| 2151 | jumpPtr = newJump; |
---|
| 2152 | jumpPtr->depth = envPtr->currStackDepth; |
---|
| 2153 | convert = 1; |
---|
| 2154 | break; |
---|
| 2155 | case AND: |
---|
| 2156 | case OR: |
---|
| 2157 | newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); |
---|
| 2158 | newJump->next = jumpPtr; |
---|
| 2159 | jumpPtr = newJump; |
---|
| 2160 | newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); |
---|
| 2161 | newJump->next = jumpPtr; |
---|
| 2162 | jumpPtr = newJump; |
---|
| 2163 | newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); |
---|
| 2164 | newJump->next = jumpPtr; |
---|
| 2165 | jumpPtr = newJump; |
---|
| 2166 | jumpPtr->depth = envPtr->currStackDepth; |
---|
| 2167 | break; |
---|
| 2168 | } |
---|
| 2169 | } else if (nodePtr->mark == MARK_RIGHT) { |
---|
| 2170 | next = nodePtr->right; |
---|
| 2171 | |
---|
| 2172 | switch (nodePtr->lexeme) { |
---|
| 2173 | case FUNCTION: { |
---|
| 2174 | Tcl_DString cmdName; |
---|
| 2175 | const char *p; |
---|
| 2176 | int length; |
---|
| 2177 | |
---|
| 2178 | Tcl_DStringInit(&cmdName); |
---|
| 2179 | Tcl_DStringAppend(&cmdName, "tcl::mathfunc::", -1); |
---|
| 2180 | p = TclGetStringFromObj(*funcObjv, &length); |
---|
| 2181 | funcObjv++; |
---|
| 2182 | Tcl_DStringAppend(&cmdName, p, length); |
---|
| 2183 | TclEmitPush(TclRegisterNewNSLiteral(envPtr, |
---|
| 2184 | Tcl_DStringValue(&cmdName), |
---|
| 2185 | Tcl_DStringLength(&cmdName)), envPtr); |
---|
| 2186 | Tcl_DStringFree(&cmdName); |
---|
| 2187 | |
---|
| 2188 | /* |
---|
| 2189 | * Start a count of the number of words in this function |
---|
| 2190 | * command invocation. In case there's already a count |
---|
| 2191 | * in progress (nested functions), save it in our unused |
---|
| 2192 | * "left" field for restoring later. |
---|
| 2193 | */ |
---|
| 2194 | |
---|
| 2195 | nodePtr->left = numWords; |
---|
| 2196 | numWords = 2; /* Command plus one argument */ |
---|
| 2197 | break; |
---|
| 2198 | } |
---|
| 2199 | case QUESTION: |
---|
| 2200 | TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump)); |
---|
| 2201 | break; |
---|
| 2202 | case COLON: |
---|
| 2203 | TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, |
---|
| 2204 | &(jumpPtr->next->jump)); |
---|
| 2205 | envPtr->currStackDepth = jumpPtr->depth; |
---|
| 2206 | jumpPtr->offset = (envPtr->codeNext - envPtr->codeStart); |
---|
| 2207 | jumpPtr->convert = convert; |
---|
| 2208 | convert = 1; |
---|
| 2209 | break; |
---|
| 2210 | case AND: |
---|
| 2211 | TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump)); |
---|
| 2212 | break; |
---|
| 2213 | case OR: |
---|
| 2214 | TclEmitForwardJump(envPtr, TCL_TRUE_JUMP, &(jumpPtr->jump)); |
---|
| 2215 | break; |
---|
| 2216 | } |
---|
| 2217 | } else { |
---|
| 2218 | switch (nodePtr->lexeme) { |
---|
| 2219 | case START: |
---|
| 2220 | case QUESTION: |
---|
| 2221 | if (convert && (nodePtr == rootPtr)) { |
---|
| 2222 | TclEmitOpcode(INST_TRY_CVT_TO_NUMERIC, envPtr); |
---|
| 2223 | } |
---|
| 2224 | break; |
---|
| 2225 | case OPEN_PAREN: |
---|
| 2226 | |
---|
| 2227 | /* do nothing */ |
---|
| 2228 | break; |
---|
| 2229 | case FUNCTION: |
---|
| 2230 | |
---|
| 2231 | /* |
---|
| 2232 | * Use the numWords count we've kept to invoke the |
---|
| 2233 | * function command with the correct number of arguments. |
---|
| 2234 | */ |
---|
| 2235 | |
---|
| 2236 | if (numWords < 255) { |
---|
| 2237 | TclEmitInstInt1(INST_INVOKE_STK1, numWords, envPtr); |
---|
| 2238 | } else { |
---|
| 2239 | TclEmitInstInt4(INST_INVOKE_STK4, numWords, envPtr); |
---|
| 2240 | } |
---|
| 2241 | |
---|
| 2242 | /* Restore any saved numWords value. */ |
---|
| 2243 | numWords = nodePtr->left; |
---|
| 2244 | convert = 1; |
---|
| 2245 | break; |
---|
| 2246 | case COMMA: |
---|
| 2247 | |
---|
| 2248 | /* Each comma implies another function argument. */ |
---|
| 2249 | numWords++; |
---|
| 2250 | break; |
---|
| 2251 | case COLON: |
---|
| 2252 | if (TclFixupForwardJump(envPtr, &(jumpPtr->next->jump), |
---|
| 2253 | (envPtr->codeNext - envPtr->codeStart) |
---|
| 2254 | - jumpPtr->next->jump.codeOffset, 127)) { |
---|
| 2255 | jumpPtr->offset += 3; |
---|
| 2256 | } |
---|
| 2257 | TclFixupForwardJump(envPtr, &(jumpPtr->jump), |
---|
| 2258 | jumpPtr->offset - jumpPtr->jump.codeOffset, 127); |
---|
| 2259 | convert |= jumpPtr->convert; |
---|
| 2260 | envPtr->currStackDepth = jumpPtr->depth + 1; |
---|
| 2261 | freePtr = jumpPtr; |
---|
| 2262 | jumpPtr = jumpPtr->next; |
---|
| 2263 | TclStackFree(interp, freePtr); |
---|
| 2264 | freePtr = jumpPtr; |
---|
| 2265 | jumpPtr = jumpPtr->next; |
---|
| 2266 | TclStackFree(interp, freePtr); |
---|
| 2267 | break; |
---|
| 2268 | case AND: |
---|
| 2269 | case OR: |
---|
| 2270 | TclEmitForwardJump(envPtr, (nodePtr->lexeme == AND) |
---|
| 2271 | ? TCL_FALSE_JUMP : TCL_TRUE_JUMP, |
---|
| 2272 | &(jumpPtr->next->jump)); |
---|
| 2273 | TclEmitPush(TclRegisterNewLiteral(envPtr, |
---|
| 2274 | (nodePtr->lexeme == AND) ? "1" : "0", 1), envPtr); |
---|
| 2275 | TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, |
---|
| 2276 | &(jumpPtr->next->next->jump)); |
---|
| 2277 | TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->jump), 127); |
---|
| 2278 | if (TclFixupForwardJumpToHere(envPtr, &(jumpPtr->jump), 127)) { |
---|
| 2279 | jumpPtr->next->next->jump.codeOffset += 3; |
---|
| 2280 | } |
---|
| 2281 | TclEmitPush(TclRegisterNewLiteral(envPtr, |
---|
| 2282 | (nodePtr->lexeme == AND) ? "0" : "1", 1), envPtr); |
---|
| 2283 | TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->next->jump), |
---|
| 2284 | 127); |
---|
| 2285 | convert = 0; |
---|
| 2286 | envPtr->currStackDepth = jumpPtr->depth + 1; |
---|
| 2287 | freePtr = jumpPtr; |
---|
| 2288 | jumpPtr = jumpPtr->next; |
---|
| 2289 | TclStackFree(interp, freePtr); |
---|
| 2290 | freePtr = jumpPtr; |
---|
| 2291 | jumpPtr = jumpPtr->next; |
---|
| 2292 | TclStackFree(interp, freePtr); |
---|
| 2293 | freePtr = jumpPtr; |
---|
| 2294 | jumpPtr = jumpPtr->next; |
---|
| 2295 | TclStackFree(interp, freePtr); |
---|
| 2296 | break; |
---|
| 2297 | default: |
---|
| 2298 | TclEmitOpcode(instruction[nodePtr->lexeme], envPtr); |
---|
| 2299 | convert = 0; |
---|
| 2300 | break; |
---|
| 2301 | } |
---|
| 2302 | if (nodePtr == rootPtr) { |
---|
| 2303 | |
---|
| 2304 | /* We're done */ |
---|
| 2305 | return; |
---|
| 2306 | } |
---|
| 2307 | nodePtr = nodes + nodePtr->p.parent; |
---|
| 2308 | continue; |
---|
| 2309 | } |
---|
| 2310 | |
---|
| 2311 | nodePtr->mark++; |
---|
| 2312 | switch (next) { |
---|
| 2313 | case OT_EMPTY: |
---|
| 2314 | numWords = 1; /* No arguments, so just the command */ |
---|
| 2315 | break; |
---|
| 2316 | case OT_LITERAL: { |
---|
| 2317 | Tcl_Obj *const *litObjv = *litObjvPtr; |
---|
| 2318 | Tcl_Obj *literal = *litObjv; |
---|
| 2319 | |
---|
| 2320 | if (optimize) { |
---|
| 2321 | int length, index; |
---|
| 2322 | const char *bytes = TclGetStringFromObj(literal, &length); |
---|
| 2323 | LiteralEntry *lePtr; |
---|
| 2324 | Tcl_Obj *objPtr; |
---|
| 2325 | |
---|
| 2326 | index = TclRegisterNewLiteral(envPtr, bytes, length); |
---|
| 2327 | lePtr = envPtr->literalArrayPtr + index; |
---|
| 2328 | objPtr = lePtr->objPtr; |
---|
| 2329 | if ((objPtr->typePtr == NULL) && (literal->typePtr != NULL)) { |
---|
| 2330 | /* |
---|
| 2331 | * Would like to do this: |
---|
| 2332 | * |
---|
| 2333 | * lePtr->objPtr = literal; |
---|
| 2334 | * Tcl_IncrRefCount(literal); |
---|
| 2335 | * Tcl_DecrRefCount(objPtr); |
---|
| 2336 | * |
---|
| 2337 | * However, the design of the "global" and "local" |
---|
| 2338 | * LiteralTable does not permit the value of lePtr->objPtr |
---|
| 2339 | * to change. So rather than replace lePtr->objPtr, we |
---|
| 2340 | * do surgery to transfer our desired intrep into it. |
---|
| 2341 | * |
---|
| 2342 | */ |
---|
| 2343 | objPtr->typePtr = literal->typePtr; |
---|
| 2344 | objPtr->internalRep = literal->internalRep; |
---|
| 2345 | literal->typePtr = NULL; |
---|
| 2346 | } |
---|
| 2347 | TclEmitPush(index, envPtr); |
---|
| 2348 | } else { |
---|
| 2349 | /* |
---|
| 2350 | * When optimize==0, we know the expression is a one-off |
---|
| 2351 | * and there's nothing to be gained from sharing literals |
---|
| 2352 | * when they won't live long, and the copies we have already |
---|
| 2353 | * have an appropriate intrep. In this case, skip literal |
---|
| 2354 | * registration that would enable sharing, and use the routine |
---|
| 2355 | * that preserves intreps. |
---|
| 2356 | */ |
---|
| 2357 | TclEmitPush(TclAddLiteralObj(envPtr, literal, NULL), envPtr); |
---|
| 2358 | } |
---|
| 2359 | (*litObjvPtr)++; |
---|
| 2360 | break; |
---|
| 2361 | } |
---|
| 2362 | case OT_TOKENS: |
---|
| 2363 | TclCompileTokens(interp, tokenPtr+1, tokenPtr->numComponents, |
---|
| 2364 | envPtr); |
---|
| 2365 | tokenPtr += tokenPtr->numComponents + 1; |
---|
| 2366 | break; |
---|
| 2367 | default: |
---|
| 2368 | if (optimize && nodes[next].constant) { |
---|
| 2369 | Tcl_InterpState save = Tcl_SaveInterpState(interp, TCL_OK); |
---|
| 2370 | if (ExecConstantExprTree(interp, nodes, next, litObjvPtr) |
---|
| 2371 | == TCL_OK) { |
---|
| 2372 | TclEmitPush(TclAddLiteralObj(envPtr, |
---|
| 2373 | Tcl_GetObjResult(interp), NULL), envPtr); |
---|
| 2374 | } else { |
---|
| 2375 | TclCompileSyntaxError(interp, envPtr); |
---|
| 2376 | } |
---|
| 2377 | Tcl_RestoreInterpState(interp, save); |
---|
| 2378 | convert = 0; |
---|
| 2379 | } else { |
---|
| 2380 | nodePtr = nodes + next; |
---|
| 2381 | } |
---|
| 2382 | } |
---|
| 2383 | } |
---|
| 2384 | } |
---|
| 2385 | |
---|
| 2386 | /* |
---|
| 2387 | *---------------------------------------------------------------------- |
---|
| 2388 | * |
---|
| 2389 | * TclSingleOpCmd -- |
---|
| 2390 | * Implements the commands: ~, !, <<, >>, %, !=, ne, in, ni |
---|
| 2391 | * in the ::tcl::mathop namespace. These commands have no |
---|
| 2392 | * extension to arbitrary arguments; they accept only exactly one |
---|
| 2393 | * or exactly two arguments as suitable for the operator. |
---|
| 2394 | * |
---|
| 2395 | * Results: |
---|
| 2396 | * A standard Tcl return code and result left in interp. |
---|
| 2397 | * |
---|
| 2398 | * Side effects: |
---|
| 2399 | * None. |
---|
| 2400 | * |
---|
| 2401 | *---------------------------------------------------------------------- |
---|
| 2402 | */ |
---|
| 2403 | |
---|
| 2404 | int |
---|
| 2405 | TclSingleOpCmd( |
---|
| 2406 | ClientData clientData, |
---|
| 2407 | Tcl_Interp *interp, |
---|
| 2408 | int objc, |
---|
| 2409 | Tcl_Obj *const objv[]) |
---|
| 2410 | { |
---|
| 2411 | TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData; |
---|
| 2412 | unsigned char lexeme; |
---|
| 2413 | OpNode nodes[2]; |
---|
| 2414 | Tcl_Obj *const *litObjv = objv + 1; |
---|
| 2415 | |
---|
| 2416 | if (objc != 1+occdPtr->i.numArgs) { |
---|
| 2417 | Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected); |
---|
| 2418 | return TCL_ERROR; |
---|
| 2419 | } |
---|
| 2420 | |
---|
| 2421 | ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL); |
---|
| 2422 | nodes[0].lexeme = START; |
---|
| 2423 | nodes[0].mark = MARK_RIGHT; |
---|
| 2424 | nodes[0].right = 1; |
---|
| 2425 | nodes[1].lexeme = lexeme; |
---|
| 2426 | if (objc == 2) { |
---|
| 2427 | nodes[1].mark = MARK_RIGHT; |
---|
| 2428 | } else { |
---|
| 2429 | nodes[1].mark = MARK_LEFT; |
---|
| 2430 | nodes[1].left = OT_LITERAL; |
---|
| 2431 | } |
---|
| 2432 | nodes[1].right = OT_LITERAL; |
---|
| 2433 | nodes[1].p.parent = 0; |
---|
| 2434 | |
---|
| 2435 | return ExecConstantExprTree(interp, nodes, 0, &litObjv); |
---|
| 2436 | } |
---|
| 2437 | |
---|
| 2438 | /* |
---|
| 2439 | *---------------------------------------------------------------------- |
---|
| 2440 | * |
---|
| 2441 | * TclSortingOpCmd -- |
---|
| 2442 | * Implements the commands: <, <=, >, >=, ==, eq |
---|
| 2443 | * in the ::tcl::mathop namespace. These commands are defined for |
---|
| 2444 | * arbitrary number of arguments by computing the AND of the base |
---|
| 2445 | * operator applied to all neighbor argument pairs. |
---|
| 2446 | * |
---|
| 2447 | * Results: |
---|
| 2448 | * A standard Tcl return code and result left in interp. |
---|
| 2449 | * |
---|
| 2450 | * Side effects: |
---|
| 2451 | * None. |
---|
| 2452 | * |
---|
| 2453 | *---------------------------------------------------------------------- |
---|
| 2454 | */ |
---|
| 2455 | |
---|
| 2456 | int |
---|
| 2457 | TclSortingOpCmd( |
---|
| 2458 | ClientData clientData, |
---|
| 2459 | Tcl_Interp *interp, |
---|
| 2460 | int objc, |
---|
| 2461 | Tcl_Obj *const objv[]) |
---|
| 2462 | { |
---|
| 2463 | int code = TCL_OK; |
---|
| 2464 | |
---|
| 2465 | if (objc < 3) { |
---|
| 2466 | Tcl_SetObjResult(interp, Tcl_NewBooleanObj(1)); |
---|
| 2467 | } else { |
---|
| 2468 | TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData; |
---|
| 2469 | Tcl_Obj **litObjv = (Tcl_Obj **) TclStackAlloc(interp, |
---|
| 2470 | 2*(objc-2)*sizeof(Tcl_Obj *)); |
---|
| 2471 | OpNode *nodes = (OpNode *) TclStackAlloc(interp, |
---|
| 2472 | 2*(objc-2)*sizeof(OpNode)); |
---|
| 2473 | unsigned char lexeme; |
---|
| 2474 | int i, lastAnd = 1; |
---|
| 2475 | Tcl_Obj *const *litObjPtrPtr = litObjv; |
---|
| 2476 | |
---|
| 2477 | ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL); |
---|
| 2478 | |
---|
| 2479 | litObjv[0] = objv[1]; |
---|
| 2480 | nodes[0].lexeme = START; |
---|
| 2481 | nodes[0].mark = MARK_RIGHT; |
---|
| 2482 | for (i=2; i<objc-1; i++) { |
---|
| 2483 | litObjv[2*(i-1)-1] = objv[i]; |
---|
| 2484 | nodes[2*(i-1)-1].lexeme = lexeme; |
---|
| 2485 | nodes[2*(i-1)-1].mark = MARK_LEFT; |
---|
| 2486 | nodes[2*(i-1)-1].left = OT_LITERAL; |
---|
| 2487 | nodes[2*(i-1)-1].right = OT_LITERAL; |
---|
| 2488 | |
---|
| 2489 | litObjv[2*(i-1)] = objv[i]; |
---|
| 2490 | nodes[2*(i-1)].lexeme = AND; |
---|
| 2491 | nodes[2*(i-1)].mark = MARK_LEFT; |
---|
| 2492 | nodes[2*(i-1)].left = lastAnd; |
---|
| 2493 | nodes[lastAnd].p.parent = 2*(i-1); |
---|
| 2494 | |
---|
| 2495 | nodes[2*(i-1)].right = 2*(i-1)+1; |
---|
| 2496 | nodes[2*(i-1)+1].p.parent= 2*(i-1); |
---|
| 2497 | |
---|
| 2498 | lastAnd = 2*(i-1); |
---|
| 2499 | } |
---|
| 2500 | litObjv[2*(objc-2)-1] = objv[objc-1]; |
---|
| 2501 | |
---|
| 2502 | nodes[2*(objc-2)-1].lexeme = lexeme; |
---|
| 2503 | nodes[2*(objc-2)-1].mark = MARK_LEFT; |
---|
| 2504 | nodes[2*(objc-2)-1].left = OT_LITERAL; |
---|
| 2505 | nodes[2*(objc-2)-1].right = OT_LITERAL; |
---|
| 2506 | |
---|
| 2507 | nodes[0].right = lastAnd; |
---|
| 2508 | nodes[lastAnd].p.parent = 0; |
---|
| 2509 | |
---|
| 2510 | code = ExecConstantExprTree(interp, nodes, 0, &litObjPtrPtr); |
---|
| 2511 | |
---|
| 2512 | TclStackFree(interp, nodes); |
---|
| 2513 | TclStackFree(interp, litObjv); |
---|
| 2514 | } |
---|
| 2515 | return code; |
---|
| 2516 | } |
---|
| 2517 | |
---|
| 2518 | /* |
---|
| 2519 | *---------------------------------------------------------------------- |
---|
| 2520 | * |
---|
| 2521 | * TclVariadicOpCmd -- |
---|
| 2522 | * Implements the commands: +, *, &, |, ^, ** |
---|
| 2523 | * in the ::tcl::mathop namespace. These commands are defined for |
---|
| 2524 | * arbitrary number of arguments by repeatedly applying the base |
---|
| 2525 | * operator with suitable associative rules. When fewer than two |
---|
| 2526 | * arguments are provided, suitable identity values are returned. |
---|
| 2527 | * |
---|
| 2528 | * Results: |
---|
| 2529 | * A standard Tcl return code and result left in interp. |
---|
| 2530 | * |
---|
| 2531 | * Side effects: |
---|
| 2532 | * None. |
---|
| 2533 | * |
---|
| 2534 | *---------------------------------------------------------------------- |
---|
| 2535 | */ |
---|
| 2536 | |
---|
| 2537 | int |
---|
| 2538 | TclVariadicOpCmd( |
---|
| 2539 | ClientData clientData, |
---|
| 2540 | Tcl_Interp *interp, |
---|
| 2541 | int objc, |
---|
| 2542 | Tcl_Obj *const objv[]) |
---|
| 2543 | { |
---|
| 2544 | TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData; |
---|
| 2545 | unsigned char lexeme; |
---|
| 2546 | int code; |
---|
| 2547 | |
---|
| 2548 | if (objc < 2) { |
---|
| 2549 | Tcl_SetObjResult(interp, Tcl_NewIntObj(occdPtr->i.identity)); |
---|
| 2550 | return TCL_OK; |
---|
| 2551 | } |
---|
| 2552 | |
---|
| 2553 | ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL); |
---|
| 2554 | lexeme |= BINARY; |
---|
| 2555 | |
---|
| 2556 | if (objc == 2) { |
---|
| 2557 | Tcl_Obj *litObjv[2]; |
---|
| 2558 | OpNode nodes[2]; |
---|
| 2559 | int decrMe = 0; |
---|
| 2560 | Tcl_Obj *const *litObjPtrPtr = litObjv; |
---|
| 2561 | |
---|
| 2562 | if (lexeme == EXPON) { |
---|
| 2563 | litObjv[1] = Tcl_NewIntObj(occdPtr->i.identity); |
---|
| 2564 | Tcl_IncrRefCount(litObjv[1]); |
---|
| 2565 | decrMe = 1; |
---|
| 2566 | litObjv[0] = objv[1]; |
---|
| 2567 | nodes[0].lexeme = START; |
---|
| 2568 | nodes[0].mark = MARK_RIGHT; |
---|
| 2569 | nodes[0].right = 1; |
---|
| 2570 | nodes[1].lexeme = lexeme; |
---|
| 2571 | nodes[1].mark = MARK_LEFT; |
---|
| 2572 | nodes[1].left = OT_LITERAL; |
---|
| 2573 | nodes[1].right = OT_LITERAL; |
---|
| 2574 | nodes[1].p.parent = 0; |
---|
| 2575 | } else { |
---|
| 2576 | if (lexeme == DIVIDE) { |
---|
| 2577 | litObjv[0] = Tcl_NewDoubleObj(1.0); |
---|
| 2578 | } else { |
---|
| 2579 | litObjv[0] = Tcl_NewIntObj(occdPtr->i.identity); |
---|
| 2580 | } |
---|
| 2581 | Tcl_IncrRefCount(litObjv[0]); |
---|
| 2582 | litObjv[1] = objv[1]; |
---|
| 2583 | nodes[0].lexeme = START; |
---|
| 2584 | nodes[0].mark = MARK_RIGHT; |
---|
| 2585 | nodes[0].right = 1; |
---|
| 2586 | nodes[1].lexeme = lexeme; |
---|
| 2587 | nodes[1].mark = MARK_LEFT; |
---|
| 2588 | nodes[1].left = OT_LITERAL; |
---|
| 2589 | nodes[1].right = OT_LITERAL; |
---|
| 2590 | nodes[1].p.parent = 0; |
---|
| 2591 | } |
---|
| 2592 | |
---|
| 2593 | code = ExecConstantExprTree(interp, nodes, 0, &litObjPtrPtr); |
---|
| 2594 | |
---|
| 2595 | Tcl_DecrRefCount(litObjv[decrMe]); |
---|
| 2596 | return code; |
---|
| 2597 | } else { |
---|
| 2598 | Tcl_Obj *const *litObjv = objv + 1; |
---|
| 2599 | OpNode *nodes = (OpNode *) TclStackAlloc(interp, |
---|
| 2600 | (objc-1)*sizeof(OpNode)); |
---|
| 2601 | int i, lastOp = OT_LITERAL; |
---|
| 2602 | |
---|
| 2603 | nodes[0].lexeme = START; |
---|
| 2604 | nodes[0].mark = MARK_RIGHT; |
---|
| 2605 | if (lexeme == EXPON) { |
---|
| 2606 | for (i=objc-2; i>0; i-- ) { |
---|
| 2607 | nodes[i].lexeme = lexeme; |
---|
| 2608 | nodes[i].mark = MARK_LEFT; |
---|
| 2609 | nodes[i].left = OT_LITERAL; |
---|
| 2610 | nodes[i].right = lastOp; |
---|
| 2611 | if (lastOp >= 0) { |
---|
| 2612 | nodes[lastOp].p.parent = i; |
---|
| 2613 | } |
---|
| 2614 | lastOp = i; |
---|
| 2615 | } |
---|
| 2616 | } else { |
---|
| 2617 | for (i=1; i<objc-1; i++ ) { |
---|
| 2618 | nodes[i].lexeme = lexeme; |
---|
| 2619 | nodes[i].mark = MARK_LEFT; |
---|
| 2620 | nodes[i].left = lastOp; |
---|
| 2621 | if (lastOp >= 0) { |
---|
| 2622 | nodes[lastOp].p.parent = i; |
---|
| 2623 | } |
---|
| 2624 | nodes[i].right = OT_LITERAL; |
---|
| 2625 | lastOp = i; |
---|
| 2626 | } |
---|
| 2627 | } |
---|
| 2628 | nodes[0].right = lastOp; |
---|
| 2629 | nodes[lastOp].p.parent = 0; |
---|
| 2630 | |
---|
| 2631 | code = ExecConstantExprTree(interp, nodes, 0, &litObjv); |
---|
| 2632 | |
---|
| 2633 | TclStackFree(interp, nodes); |
---|
| 2634 | |
---|
| 2635 | return code; |
---|
| 2636 | } |
---|
| 2637 | } |
---|
| 2638 | |
---|
| 2639 | /* |
---|
| 2640 | *---------------------------------------------------------------------- |
---|
| 2641 | * |
---|
| 2642 | * TclNoIdentOpCmd -- |
---|
| 2643 | * Implements the commands: -, / |
---|
| 2644 | * in the ::tcl::mathop namespace. These commands are defined for |
---|
| 2645 | * arbitrary non-zero number of arguments by repeatedly applying |
---|
| 2646 | * the base operator with suitable associative rules. When no |
---|
| 2647 | * arguments are provided, an error is raised. |
---|
| 2648 | * |
---|
| 2649 | * Results: |
---|
| 2650 | * A standard Tcl return code and result left in interp. |
---|
| 2651 | * |
---|
| 2652 | * Side effects: |
---|
| 2653 | * None. |
---|
| 2654 | * |
---|
| 2655 | *---------------------------------------------------------------------- |
---|
| 2656 | */ |
---|
| 2657 | |
---|
| 2658 | int |
---|
| 2659 | TclNoIdentOpCmd( |
---|
| 2660 | ClientData clientData, |
---|
| 2661 | Tcl_Interp *interp, |
---|
| 2662 | int objc, |
---|
| 2663 | Tcl_Obj *const objv[]) |
---|
| 2664 | { |
---|
| 2665 | TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData; |
---|
| 2666 | if (objc < 2) { |
---|
| 2667 | Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected); |
---|
| 2668 | return TCL_ERROR; |
---|
| 2669 | } |
---|
| 2670 | return TclVariadicOpCmd(clientData, interp, objc, objv); |
---|
| 2671 | } |
---|
| 2672 | /* |
---|
| 2673 | * Local Variables: |
---|
| 2674 | * mode: c |
---|
| 2675 | * c-basic-offset: 4 |
---|
| 2676 | * fill-column: 78 |
---|
| 2677 | * End: |
---|
| 2678 | */ |
---|