Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/ogre_src_v1-9-0/OgreMain/include/OgreTextureUnitState.h @ 148

Last change on this file since 148 was 148, checked in by patricwi, 6 years ago

Added new dependencies for ogre1.9 and cegui0.8

File size: 60.9 KB
Line 
1/*
2-----------------------------------------------------------------------------
3This source file is part of OGRE
4(Object-oriented Graphics Rendering Engine)
5For the latest info, see http://www.ogre3d.org
6
7Copyright (c) 2000-2013 Torus Knot Software Ltd
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26-----------------------------------------------------------------------------
27*/
28#ifndef __TextureUnitState_H__
29#define __TextureUnitState_H__
30
31#include "OgrePrerequisites.h"
32#include "OgreCommon.h"
33#include "OgreBlendMode.h"
34#include "OgreMatrix4.h"
35#include "OgreIteratorWrappers.h"
36#include "OgreString.h"
37#include "OgreTexture.h"
38#include "OgreHeaderPrefix.h"
39
40namespace Ogre {
41    /** \addtogroup Core
42    *  @{
43    */
44    /** \addtogroup Materials
45    *  @{
46    */
47    /** Class representing the state of a single texture unit during a Pass of a
48        Technique, of a Material.
49    @remarks
50        Texture units are pipelines for retrieving texture data for rendering onto
51        your objects in the world. Using them is common to both the fixed-function and
52        the programmable (vertex and fragment program) pipeline, but some of the
53        settings will only have an effect in the fixed-function pipeline (for example,
54        setting a texture rotation will have no effect if you use the programmable
55        pipeline, because this is overridden by the fragment program). The effect
56        of each setting as regards the 2 pipelines is commented in each setting.
57    @par
58        When I use the term 'fixed-function pipeline' I mean traditional rendering
59        where you do not use vertex or fragment programs (shaders). Programmable
60        pipeline means that for this pass you are using vertex or fragment programs.
61    */
62    class _OgreExport TextureUnitState : public TextureUnitStateAlloc
63    {
64        friend class RenderSystem;
65    public:
66        /** Definition of the broad types of texture effect you can apply to a texture unit.
67        @note
68            Note that these have no effect when using the programmable pipeline, since their
69            effect is overridden by the vertex / fragment programs.
70        */
71        enum TextureEffectType
72        {
73            /// Generate all texture coords based on angle between camera and vertex.
74            ET_ENVIRONMENT_MAP,
75            /// Generate texture coords based on a frustum.
76            ET_PROJECTIVE_TEXTURE,
77            /// Constant u/v scrolling effect.
78            ET_UVSCROLL,
79            /// Constant u scrolling effect.
80            ET_USCROLL,
81            /// Constant u/v scrolling effect.
82            ET_VSCROLL,
83            /// Constant rotation.
84            ET_ROTATE,
85            /// More complex transform.
86            ET_TRANSFORM
87
88        };
89
90        /** Enumeration to specify type of envmap.
91        @note
92            Note that these have no effect when using the programmable pipeline, since their
93            effect is overridden by the vertex / fragment programs.
94        */
95        enum EnvMapType
96        {
97            /// Envmap based on vector from camera to vertex position, good for planar geometry.
98            ENV_PLANAR,
99            /// Envmap based on dot of vector from camera to vertex and vertex normal, good for curves.
100            ENV_CURVED,
101            /// Envmap intended to supply reflection vectors for cube mapping.
102            ENV_REFLECTION,
103            /// Envmap intended to supply normal vectors for cube mapping.
104            ENV_NORMAL
105        };
106
107        /** Useful enumeration when dealing with procedural transforms.
108        @note
109            Note that these have no effect when using the programmable pipeline, since their
110            effect is overridden by the vertex / fragment programs.
111        */
112        enum TextureTransformType
113        {
114            TT_TRANSLATE_U,
115            TT_TRANSLATE_V,
116            TT_SCALE_U,
117            TT_SCALE_V,
118            TT_ROTATE
119        };
120
121        /** Texture addressing modes - default is TAM_WRAP.
122        @note
123            These settings are relevant in both the fixed-function and the
124            programmable pipeline.
125        */
126        enum TextureAddressingMode
127        {
128            /// Texture wraps at values over 1.0.
129            TAM_WRAP,
130            /// Texture mirrors (flips) at joins over 1.0.
131            TAM_MIRROR,
132            /// Texture clamps at 1.0.
133            TAM_CLAMP,
134            /// Texture coordinates outside the range [0.0, 1.0] are set to the border colour.
135            TAM_BORDER,
136            /// Unknown
137            TAM_UNKNOWN = 99
138        };
139
140        /** Texture addressing mode for each texture coordinate. */
141        struct UVWAddressingMode
142        {
143            TextureAddressingMode u, v, w;
144        };
145
146        /** Enum identifying the frame indexes for faces of a cube map (not the composite 3D type.
147        */
148        enum TextureCubeFace
149        {
150            CUBE_FRONT = 0,
151            CUBE_BACK = 1,
152            CUBE_LEFT = 2,
153            CUBE_RIGHT = 3,
154            CUBE_UP = 4,
155            CUBE_DOWN = 5
156        };
157
158        /** Internal structure defining a texture effect.
159        */
160        struct TextureEffect {
161            TextureEffectType type;
162            int subtype;
163            Real arg1, arg2;
164            WaveformType waveType;
165            Real base;
166            Real frequency;
167            Real phase;
168            Real amplitude;
169            Controller<Real>* controller;
170            const Frustum* frustum;
171        };
172
173        /** Texture effects in a multimap paired array.
174        */
175        typedef multimap<TextureEffectType, TextureEffect>::type EffectMap;
176
177        /** Default constructor.
178        */
179        TextureUnitState(Pass* parent);
180
181        TextureUnitState(Pass* parent, const TextureUnitState& oth );
182
183        TextureUnitState & operator = ( const TextureUnitState& oth );
184
185        /** Default destructor.
186        */
187        ~TextureUnitState();
188
189        /** Name-based constructor.
190        @param texName
191            The basic name of the texture e.g. brickwall.jpg, stonefloor.png.
192        @param texCoordSet
193            The index of the texture coordinate set to use.
194        */
195        TextureUnitState( Pass* parent, const String& texName, unsigned int texCoordSet = 0);
196
197        /** Get the name of current texture image for this layer.
198        @remarks
199            This will either always be a single name for this layer,
200            or will be the name of the current frame for an animated
201            or otherwise multi-frame texture.
202        @note
203            Applies to both fixed-function and programmable pipeline.
204        */
205        const String& getTextureName(void) const;
206
207        /** Sets this texture layer to use a single texture, given the
208            name of the texture to use on this layer.
209        @note
210            Applies to both fixed-function and programmable pipeline.
211        */
212        void setTextureName( const String& name, TextureType ttype = TEX_TYPE_2D);
213
214        /** Sets this texture layer to use a single texture, given the
215            pointer to the texture to use on this layer.
216        @note
217            Applies to both fixed-function and programmable pipeline.
218        */
219        void setTexture( const TexturePtr& texPtr);
220
221        /** Sets this texture layer to use a combination of 6 texture maps, each one relating to a face of a cube.
222        @remarks
223            Cubic textures are made up of 6 separate texture images. Each one of these is an orthogonal view of the
224            world with a FOV of 90 degrees and an aspect ratio of 1:1. You can generate these from 3D Studio by
225            rendering a scene to a reflection map of a transparent cube and saving the output files.
226        @par
227            Cubic maps can be used either for skyboxes (complete wrap-around skies, like space) or as environment
228            maps to simulate reflections. The system deals with these 2 scenarios in different ways:
229            <ol>
230            <li>
231            <p>
232            for cubic environment maps, the 6 textures are combined into a single 'cubic' texture map which
233            is then addressed using 3D texture coordinates. This is required because you don't know what
234            face of the box you're going to need to address when you render an object, and typically you
235            need to reflect more than one face on the one object, so all 6 textures are needed to be
236            'active' at once. Cubic environment maps are enabled by calling this method with the forUVW
237            parameter set to true, and then calling setEnvironmentMap(true).
238            </p>
239            <p>
240            Note that not all cards support cubic environment mapping.
241            </p>
242            </li>
243            <li>
244            <p>
245            for skyboxes, the 6 textures are kept separate and used independently for each face of the skybox.
246            This is done because not all cards support 3D cubic maps and skyboxes do not need to use 3D
247            texture coordinates so it is simpler to render each face of the box with 2D coordinates, changing
248            texture between faces.
249            </p>
250            <p>
251            Skyboxes are created by calling SceneManager::setSkyBox.
252            </p>
253            </li>
254            </ol>
255        @note
256            Applies to both fixed-function and programmable pipeline.
257        @param name
258            The basic name of the texture e.g. brickwall.jpg, stonefloor.png. There must be 6 versions
259            of this texture with the suffixes _fr, _bk, _up, _dn, _lf, and _rt (before the extension) which
260            make up the 6 sides of the box. The textures must all be the same size and be powers of 2 in width & height.
261            If you can't make your texture names conform to this, use the alternative method of the same name which takes
262            an array of texture names instead.
263        @param forUVW
264            Set to @c true if you want a single 3D texture addressable with 3D texture coordinates rather than
265            6 separate textures. Useful for cubic environment mapping.
266        */
267        void setCubicTextureName( const String& name, bool forUVW = false );
268
269        /** Sets this texture layer to use a combination of 6 texture maps, each one relating to a face of a cube.
270        @remarks
271            Cubic textures are made up of 6 separate texture images. Each one of these is an orthogonal view of the
272            world with a FOV of 90 degrees and an aspect ratio of 1:1. You can generate these from 3D Studio by
273            rendering a scene to a reflection map of a transparent cube and saving the output files.
274        @par
275            Cubic maps can be used either for skyboxes (complete wrap-around skies, like space) or as environment
276            maps to simulate reflections. The system deals with these 2 scenarios in different ways:
277            <ol>
278            <li>
279            <p>
280            For cubic environment maps, the 6 textures are combined into a single 'cubic' texture map which
281            is then addressed using 3D texture coordinates. This is required because you don't know what
282            face of the box you're going to need to address when you render an object, and typically you
283            need to reflect more than one face on the one object, so all 6 textures are needed to be
284            'active' at once. Cubic environment maps are enabled by calling this method with the forUVW
285            parameter set to @c true, and then calling setEnvironmentMap(true).
286            </p>
287            <p>
288            Note that not all cards support cubic environment mapping.
289            </p>
290            </li>
291            <li>
292            <p>
293            For skyboxes, the 6 textures are kept separate and used independently for each face of the skybox.
294            This is done because not all cards support 3D cubic maps and skyboxes do not need to use 3D
295            texture coordinates so it is simpler to render each face of the box with 2D coordinates, changing
296            texture between faces.
297            </p>
298            <p>
299            Skyboxes are created by calling SceneManager::setSkyBox.
300            </p>
301            </li>
302            </ol>
303        @note
304            Applies to both fixed-function and programmable pipeline.
305        @param names
306            The 6 names of the textures which make up the 6 sides of the box. The textures must all
307            be the same size and be powers of 2 in width & height.
308            Must be an Ogre::String array with a length of 6 unless forUVW is set to @c true.
309        @param forUVW
310            Set to @c true if you want a single 3D texture addressable with 3D texture coordinates rather than
311            6 separate textures. Useful for cubic environment mapping.
312        */
313        void setCubicTextureName( const String* const names, bool forUVW = false );
314
315        /** Sets this texture layer to use a combination of 6 texture maps, each one relating to a face of a cube.
316        @remarks
317            Cubic textures are made up of 6 separate texture images. Each one of these is an orthogonal view of the
318            world with a FOV of 90 degrees and an aspect ratio of 1:1. You can generate these from 3D Studio by
319            rendering a scene to a reflection map of a transparent cube and saving the output files.
320        @par
321            Cubic maps can be used either for skyboxes (complete wrap-around skies, like space) or as environment
322            maps to simulate reflections. The system deals with these 2 scenarios in different ways:
323            <ol>
324            <li>
325            <p>
326            for cubic environment maps, the 6 textures are combined into a single 'cubic' texture map which
327            is then addressed using 3D texture coordinates. This is required because you don't know what
328            face of the box you're going to need to address when you render an object, and typically you
329            need to reflect more than one face on the one object, so all 6 textures are needed to be
330            'active' at once. Cubic environment maps are enabled by calling this method with the forUVW
331            parameter set to true, and then calling setEnvironmentMap(true).
332            </p>
333            <p>
334            Note that not all cards support cubic environment mapping.
335            </p>
336            </li>
337            <li>
338            <p>
339            for skyboxes, the 6 textures are kept separate and used independently for each face of the skybox.
340            This is done because not all cards support 3D cubic maps and skyboxes do not need to use 3D
341            texture coordinates so it is simpler to render each face of the box with 2D coordinates, changing
342            texture between faces.
343            </p>
344            <p>
345            Skyboxes are created by calling SceneManager::setSkyBox.
346            </p>
347            </li>
348            </ol>
349        @note
350            Applies to both fixed-function and programmable pipeline.
351        @param texPtrs
352            The 6 pointers to the textures which make up the 6 sides of the box. The textures must all
353            be the same size and be powers of 2 in width & height.
354            Must be an Ogre::TexturePtr array with a length of 6 unless forUVW is set to @c true.
355        @param forUVW
356            Set to @c true if you want a single 3D texture addressable with 3D texture coordinates rather than
357            6 separate textures. Useful for cubic environment mapping.
358        */
359        void setCubicTexture( const TexturePtr* const texPtrs, bool forUVW = false );
360
361        /** Sets the names of the texture images for an animated texture.
362        @remarks
363            Animated textures are just a series of images making up the frames of the animation. All the images
364            must be the same size, and their names must have a frame number appended before the extension, e.g.
365            if you specify a name of "wall.jpg" with 3 frames, the image names must be "wall_0.jpg", "wall_1.jpg"
366            and "wall_2.jpg".
367        @par
368            You can change the active frame on a texture layer by calling the setCurrentFrame method.
369        @note
370            If you can't make your texture images conform to the naming standard laid out here, you
371            can call the alternative setAnimatedTextureName method which takes an array of names instead.
372        @note
373            Applies to both fixed-function and programmable pipeline.
374        @param name
375            The base name of the textures to use e.g. wall.jpg for frames wall_0.jpg, wall_1.jpg etc.
376        @param numFrames
377            The number of frames in the sequence.
378        @param duration
379            The length of time it takes to display the whole animation sequence, in seconds.
380            If 0, no automatic transition occurs.
381        */
382        void setAnimatedTextureName( const String& name, unsigned int numFrames, Real duration = 0 );
383
384        /** Sets the names of the texture images for an animated texture.
385        @remarks
386            This an alternative method to the one where you specify a single name and let the system derive
387            the names of each frame, incase your images can't conform to this naming standard.
388        @par
389            Animated textures are just a series of images making up the frames of the animation. All the images
390            must be the same size, and you must provide their names as an array in the first parameter.
391            You can change the active frame on a texture layer by calling the setCurrentFrame method.
392        @note
393            If you can make your texture images conform to a naming standard of basicName_frame.ext, you
394            can call the alternative setAnimatedTextureName method which just takes a base name instead.
395        @note
396            Applies to both fixed-function and programmable pipeline.
397        @param names
398            Pointer to array of names of the textures to use, in frame order.
399        @param numFrames
400            The number of frames in the sequence.
401        @param duration
402            The length of time it takes to display the whole animation sequence, in seconds.
403            If 0, no automatic transition occurs.
404        */
405        void setAnimatedTextureName( const String* const names, unsigned int numFrames, Real duration = 0 );
406
407        /** Returns the width and height of the texture in the given frame.
408        */
409        std::pair< size_t, size_t > getTextureDimensions( unsigned int frame = 0 ) const;
410
411        /** Changes the active frame in an animated or multi-image texture.
412        @remarks
413            An animated texture (or a cubic texture where the images are not combined for 3D use) is made up of
414            a number of frames. This method sets the active frame.
415        @note
416            Applies to both fixed-function and programmable pipeline.
417        */
418        void setCurrentFrame( unsigned int frameNumber );
419
420        /** Gets the active frame in an animated or multi-image texture layer.
421        @note
422            Applies to both fixed-function and programmable pipeline.
423        */
424        unsigned int getCurrentFrame(void) const;
425
426        /** Gets the name of the texture associated with a frame number.
427            Throws an exception if frameNumber exceeds the number of stored frames.
428        @note
429            Applies to both fixed-function and programmable pipeline.
430        */
431        const String& getFrameTextureName(unsigned int frameNumber) const;
432
433        /** Sets the name of the texture associated with a frame.
434        @param name
435            The name of the texture.
436        @param frameNumber
437            The frame the texture name is to be placed in.
438        @note
439            Throws an exception if frameNumber exceeds the number of stored frames.
440            Applies to both fixed-function and programmable pipeline.
441        */
442        void setFrameTextureName(const String& name, unsigned int frameNumber);
443
444        /** Add a Texture name to the end of the frame container.
445        @param name
446            The name of the texture.
447        @note
448            Applies to both fixed-function and programmable pipeline.
449        */
450        void addFrameTextureName(const String& name);
451        /** Deletes a specific texture frame.  The texture used is not deleted but the
452            texture will no longer be used by the Texture Unit.  An exception is raised
453            if the frame number exceeds the number of actual frames.
454        @param frameNumber
455            The frame number of the texture to be deleted.
456        @note
457            Applies to both fixed-function and programmable pipeline.
458        */
459        void deleteFrameTextureName(const size_t frameNumber);
460        /** Gets the number of frames for a texture.
461        @note
462            Applies to both fixed-function and programmable pipeline.
463        */
464        unsigned int getNumFrames(void) const;
465
466
467        /** The type of unit to bind the texture settings to. */
468        enum BindingType
469        {
470            /** Regular fragment processing unit - the default. */
471            BT_FRAGMENT = 0,
472            /** Vertex processing unit - indicates this unit will be used for
473                a vertex texture fetch.
474            */
475            BT_VERTEX = 1,                     
476                        /// Geometry processing unit           
477                        BT_GEOMETRY = 2,
478                        /// Tesselation control processing unit
479                        BT_TESSELATION_HULL = 3,
480                        /// Tesselation evaluation processing unit
481                        BT_TESSELATION_DOMAIN = 4,
482                        /// Compute processing unit
483                        BT_COMPUTE = 5
484        };
485        /** Enum identifying the type of content this texture unit contains.
486        */
487        enum ContentType
488        {
489            /// Normal texture identified by name
490            CONTENT_NAMED = 0,
491            /// A shadow texture, automatically bound by engine
492            CONTENT_SHADOW = 1,
493            /// A compositor texture, automatically linked to active viewport's chain
494            CONTENT_COMPOSITOR = 2
495        };
496
497        /** Sets the type of unit these texture settings should be bound to.
498        @remarks
499            Some render systems, when implementing vertex texture fetch, separate
500            the binding of textures for use in the vertex program versus those
501            used in fragment programs. This setting allows you to target the
502            vertex processing unit with a texture binding, in those cases. For
503            rendersystems which have a unified binding for the vertex and fragment
504            units, this setting makes no difference.
505        */
506        void setBindingType(BindingType bt);
507
508        /** Gets the type of unit these texture settings should be bound to. 
509        */
510        BindingType getBindingType(void) const;
511
512        /** Set the type of content this TextureUnitState references.
513        @remarks
514            The default is to reference a standard named texture, but this unit
515            can also reference automated content like a shadow texture.
516        */
517        void setContentType(ContentType ct);
518        /** Get the type of content this TextureUnitState references. */
519        ContentType getContentType(void) const;
520
521        /** Returns true if this texture unit is either a series of 6 2D textures, each
522            in it's own frame, or is a full 3D cube map. You can tell which by checking
523            getTextureType.
524        @note
525            Applies to both fixed-function and programmable pipeline.
526        */
527        bool isCubic(void) const;
528
529        /** Returns true if this texture layer uses a composite 3D cubic texture.
530        @note
531            Applies to both fixed-function and programmable pipeline.
532        */
533        bool is3D(void) const;
534
535        /** Returns the type of this texture.
536        @note
537            Applies to both fixed-function and programmable pipeline.
538        */
539        TextureType getTextureType(void) const;
540
541        /** Sets the desired pixel format when load the texture.
542        */
543        void setDesiredFormat(PixelFormat desiredFormat);
544
545        /** Gets the desired pixel format when load the texture.
546        */
547        PixelFormat getDesiredFormat(void) const;
548
549        /** Sets how many mipmaps have been requested for the texture.
550        */
551        void setNumMipmaps(int numMipmaps);
552
553        /** Gets how many mipmaps have been requested for the texture.
554        */
555        int getNumMipmaps(void) const;
556
557        /** Sets whether this texture is requested to be loaded as alpha if single channel
558        */
559        void setIsAlpha(bool isAlpha);
560
561        /** Gets whether this texture is requested to be loaded as alpha if single channel
562        */
563        bool getIsAlpha(void) const;
564
565        /// @copydoc Texture::getGamma
566        Real getGamma() const { return mGamma; }
567        /// @copydoc Texture::setGamma
568        void setGamma(Real gamma) { mGamma = gamma; }
569
570        /// @copydoc Texture::setHardwareGammaEnabled
571        void setHardwareGammaEnabled(bool enabled);
572        /// @copydoc Texture::isHardwareGammaEnabled
573        bool isHardwareGammaEnabled() const;
574
575        /** Gets the index of the set of texture co-ords this layer uses.
576        @note
577        Only applies to the fixed function pipeline and has no effect if a fragment program is used.
578        */
579        unsigned int getTextureCoordSet(void) const;
580
581        /** Sets the index of the set of texture co-ords this layer uses.
582        @note
583            Default is 0 for all layers. Only change this if you have provided multiple texture co-ords per
584            vertex.
585        @note
586        Only applies to the fixed function pipeline and has no effect if a fragment program is used.
587        */
588        void setTextureCoordSet(unsigned int set);
589
590        /** Sets a matrix used to transform any texture coordinates on this layer.
591        @remarks
592            Texture coordinates can be modified on a texture layer to create effects like scrolling
593            textures. A texture transform can either be applied to a layer which takes the source coordinates
594            from a fixed set in the geometry, or to one which generates them dynamically (e.g. environment mapping).
595        @par
596            It's obviously a bit impractical to create scrolling effects by calling this method manually since you
597            would have to call it every framw with a slight alteration each time, which is tedious. Instead
598            you can use the ControllerManager class to create a Controller object which will manage the
599            effect over time for you. See the ControllerManager::createTextureScroller and it's sibling methods for details.<BR>
600            In addition, if you want to set the individual texture transformations rather than concatenating them
601            yourself, use setTextureScroll, setTextureScale and setTextureRotate.
602        @note
603            Has no effect in the programmable pipeline.
604        */
605        void setTextureTransform(const Matrix4& xform);
606
607        /** Gets the current texture transformation matrix.
608        @remarks
609            Causes a reclaculation of the matrix if any parameters have been changed via
610            setTextureScroll, setTextureScale and setTextureRotate.
611        @note
612            Has no effect in the programmable pipeline.
613        */
614        const Matrix4& getTextureTransform(void) const;
615
616        /** Sets the translation offset of the texture, ie scrolls the texture.
617        @remarks
618            This method sets the translation element of the texture transformation, and is easier to use than setTextureTransform if
619            you are combining translation, scaling and rotation in your texture transformation. Again if you want
620            to animate these values you need to use a Controller
621        @note
622            Has no effect in the programmable pipeline.
623        @param u
624            The amount the texture should be moved horizontally (u direction).
625        @param v
626            The amount the texture should be moved vertically (v direction).
627        @see
628            ControllerManager, Controller
629        */
630        void setTextureScroll(Real u, Real v);
631
632        /** As setTextureScroll, but sets only U value.
633        @note
634            Has no effect in the programmable pipeline.
635        */
636        void setTextureUScroll(Real value);
637        /// Get texture uscroll value.
638        Real getTextureUScroll(void) const;
639
640        /** As setTextureScroll, but sets only V value.
641        @note
642            Has no effect in the programmable pipeline.
643        */
644        void setTextureVScroll(Real value);
645        /// Get texture vscroll value.
646        Real getTextureVScroll(void) const;
647
648        /** As setTextureScale, but sets only U value.
649        @note
650            Has no effect in the programmable pipeline.
651        */
652        void setTextureUScale(Real value);
653        /// Get texture uscale value.
654        Real getTextureUScale(void) const;
655
656        /** As setTextureScale, but sets only V value.
657        @note
658            Has no effect in the programmable pipeline.
659        */
660        void setTextureVScale(Real value);
661        /// Get texture vscale value.
662        Real getTextureVScale(void) const;
663
664        /** Sets the scaling factor applied to texture coordinates.
665        @remarks
666            This method sets the scale element of the texture transformation, and is easier to use than
667            setTextureTransform if you are combining translation, scaling and rotation in your texture transformation. Again if you want
668            to animate these values you need to use a Controller (see ControllerManager and it's methods for
669            more information).
670        @note
671            Has no effect in the programmable pipeline.
672        @param uScale
673            The value by which the texture is to be scaled horizontally.
674        @param vScale
675            The value by which the texture is to be scaled vertically.
676        */
677        void setTextureScale(Real uScale, Real vScale);
678
679        /** Sets the anticlockwise rotation factor applied to texture coordinates.
680        @remarks
681            This sets a fixed rotation angle - if you wish to animate this, see the
682            ControllerManager::createTextureRotater method.
683        @note
684            Has no effect in the programmable pipeline.
685        @param angle
686            The angle of rotation (anticlockwise).
687        */
688        void setTextureRotate(const Radian& angle);
689        /// Get texture rotation effects angle value.
690        const Radian& getTextureRotate(void) const;
691
692        /** Gets the texture addressing mode for a given coordinate,
693            i.e. what happens at uv values above 1.0.
694        @note
695            The default is TAM_WRAP i.e. the texture repeats over values of 1.0.
696        */
697        const UVWAddressingMode& getTextureAddressingMode(void) const;
698
699        /** Sets the texture addressing mode, i.e. what happens at uv values above 1.0.
700        @note
701            The default is TAM_WRAP i.e. the texture repeats over values of 1.0.
702                @note This is a shortcut method which sets the addressing mode for all
703                        coordinates at once; you can also call the more specific method
704                        to set the addressing mode per coordinate.
705        @note
706            This is a shortcut method which sets the addressing mode for all
707            coordinates at once; you can also call the more specific method
708            to set the addressing mode per coordinate.
709        @note
710            This applies for both the fixed-function and programmable pipelines.
711        */
712        void setTextureAddressingMode( TextureAddressingMode tam);
713
714        /** Sets the texture addressing mode, i.e. what happens at uv values above 1.0.
715        @note
716            The default is TAM_WRAP i.e. the texture repeats over values of 1.0.
717        @note
718            This applies for both the fixed-function and programmable pipelines.
719        */
720        void setTextureAddressingMode( TextureAddressingMode u, 
721            TextureAddressingMode v, TextureAddressingMode w);
722
723        /** Sets the texture addressing mode, i.e. what happens at uv values above 1.0.
724        @note
725            The default is TAM_WRAP i.e. the texture repeats over values of 1.0.
726        @note
727            This applies for both the fixed-function and programmable pipelines.
728        */
729        void setTextureAddressingMode( const UVWAddressingMode& uvw);
730
731        /** Sets the texture border colour.
732        @note
733            The default is ColourValue::Black, and this value only used when addressing mode
734            is TAM_BORDER.
735        @note
736            This applies for both the fixed-function and programmable pipelines.
737        */
738        void setTextureBorderColour(const ColourValue& colour);
739
740        /** Sets the texture border colour.
741        @note
742            The default is ColourValue::Black, and this value only used when addressing mode
743            is TAM_BORDER.
744        */
745        const ColourValue& getTextureBorderColour(void) const;
746
747        /** Setting advanced blending options.
748        @remarks
749            This is an extended version of the TextureUnitState::setColourOperation method which allows
750            extremely detailed control over the blending applied between this and earlier layers.
751            See the IMPORTANT note below about the issues between mulitpass and multitexturing that
752            using this method can create.
753        @par
754            Texture colour operations determine how the final colour of the surface appears when
755            rendered. Texture units are used to combine colour values from various sources (ie. the
756            diffuse colour of the surface from lighting calculations, combined with the colour of
757            the texture). This method allows you to specify the 'operation' to be used, ie. the
758            calculation such as adds or multiplies, and which values to use as arguments, such as
759            a fixed value or a value from a previous calculation.
760        @par
761            The defaults for each layer are:
762            <ul>
763            <li>op = LBX_MODULATE</li>
764            <li>source1 = LBS_TEXTURE</li>
765            <li>source2 = LBS_CURRENT</li>
766            </ul>
767            ie. each layer takes the colour results of the previous layer, and multiplies them
768            with the new texture being applied. Bear in mind that colours are RGB values from
769            0.0 - 1.0 so multiplying them together will result in values in the same range,
770            'tinted' by the multiply. Note however that a straight multiply normally has the
771            effect of darkening the textures - for this reason there are brightening operations
772            like LBO_MODULATE_X2. See the LayerBlendOperation and LayerBlendSource enumerated
773            types for full details.
774        @note
775            Because of the limitations on some underlying APIs (Direct3D included)
776            the LBS_TEXTURE argument can only be used as the first argument, not the second.
777        @par
778            The final 3 parameters are only required if you decide to pass values manually
779            into the operation, i.e. you want one or more of the inputs to the colour calculation
780            to come from a fixed value that you supply. Hence you only need to fill these in if
781            you supply LBS_MANUAL to the corresponding source, or use the LBX_BLEND_MANUAL
782            operation.
783        @warning
784            Ogre tries to use multitexturing hardware to blend texture layers
785            together. However, if it runs out of texturing units (e.g. 2 of a GeForce2, 4 on a
786            GeForce3) it has to fall back on multipass rendering, i.e. rendering the same object
787            multiple times with different textures. This is both less efficient and there is a smaller
788            range of blending operations which can be performed. For this reason, if you use this method
789            you MUST also call TextureUnitState::setColourOpMultipassFallback to specify which effect you
790            want to fall back on if sufficient hardware is not available.
791        @note
792            This has no effect in the programmable pipeline.
793        @par
794            If you wish to avoid having to do this, use the simpler TextureUnitState::setColourOperation method
795            which allows less flexible blending options but sets up the multipass fallback automatically,
796            since it only allows operations which have direct multipass equivalents.
797        @param op
798            The operation to be used, e.g. modulate (multiply), add, subtract.
799        @param source1
800            The source of the first colour to the operation e.g. texture colour.
801        @param source2
802            The source of the second colour to the operation e.g. current surface colour.
803        @param arg1
804            Manually supplied colour value (only required if source1 = LBS_MANUAL).
805        @param arg2
806            Manually supplied colour value (only required if source2 = LBS_MANUAL).
807        @param manualBlend
808            Manually supplied 'blend' value - only required for operations
809            which require manual blend e.g. LBX_BLEND_MANUAL.
810        */
811        void setColourOperationEx(
812            LayerBlendOperationEx op,
813            LayerBlendSource source1 = LBS_TEXTURE,
814            LayerBlendSource source2 = LBS_CURRENT,
815
816            const ColourValue& arg1 = ColourValue::White,
817            const ColourValue& arg2 = ColourValue::White,
818
819            Real manualBlend = 0.0);
820
821        /** Determines how this texture layer is combined with the one below it (or the diffuse colour of
822            the geometry if this is layer 0).
823        @remarks
824            This method is the simplest way to blend tetxure layers, because it requires only one parameter,
825            gives you the most common blending types, and automatically sets up 2 blending methods: one for
826            if single-pass multitexturing hardware is available, and another for if it is not and the blending must
827            be achieved through multiple rendering passes. It is, however, quite limited and does not expose
828            the more flexible multitexturing operations, simply because these can't be automatically supported in
829            multipass fallback mode. If want to use the fancier options, use TextureUnitState::setColourOperationEx,
830            but you'll either have to be sure that enough multitexturing units will be available, or you should
831            explicitly set a fallback using TextureUnitState::setColourOpMultipassFallback.
832        @note
833            The default method is LBO_MODULATE for all layers.
834        @note
835            This option has no effect in the programmable pipeline.
836        @param op
837            One of the LayerBlendOperation enumerated blending types.
838        */
839        void setColourOperation( const LayerBlendOperation op);
840
841        /** Sets the multipass fallback operation for this layer, if you used TextureUnitState::setColourOperationEx
842            and not enough multitexturing hardware is available.
843        @remarks
844            Because some effects exposed using TextureUnitState::setColourOperationEx are only supported under
845            multitexturing hardware, if the hardware is lacking the system must fallback on multipass rendering,
846            which unfortunately doesn't support as many effects. This method is for you to specify the fallback
847            operation which most suits you.
848        @par
849            You'll notice that the interface is the same as the Material::setSceneBlending method; this is
850            because multipass rendering IS effectively scene blending, since each layer is rendered on top
851            of the last using the same mechanism as making an object transparent, it's just being rendered
852            in the same place repeatedly to get the multitexture effect.
853        @par
854            If you use the simpler (and hence less flexible) TextureUnitState::setColourOperation method you
855            don't need to call this as the system sets up the fallback for you.
856        @note
857            This option has no effect in the programmable pipeline, because there is no multipass fallback
858            and multitexture blending is handled by the fragment shader.
859        */
860        void setColourOpMultipassFallback( const SceneBlendFactor sourceFactor, const SceneBlendFactor destFactor);
861
862        /** Get multitexturing colour blending mode.
863        */
864        const LayerBlendModeEx& getColourBlendMode(void) const;
865
866        /** Get multitexturing alpha blending mode.
867        */
868        const LayerBlendModeEx& getAlphaBlendMode(void) const;
869
870        /** Get the multipass fallback for colour blending operation source factor.
871        */
872        SceneBlendFactor getColourBlendFallbackSrc(void) const;
873
874        /** Get the multipass fallback for colour blending operation destination factor.
875        */
876        SceneBlendFactor getColourBlendFallbackDest(void) const;
877
878        /** Sets the alpha operation to be applied to this texture.
879        @remarks
880            This works in exactly the same way as setColourOperation, except
881            that the effect is applied to the level of alpha (i.e. transparency)
882            of the texture rather than its colour. When the alpha of a texel (a pixel
883            on a texture) is 1.0, it is opaque, whereas it is fully transparent if the
884            alpha is 0.0. Please refer to the setColourOperation method for more info.
885        @param op
886            The operation to be used, e.g. modulate (multiply), add, subtract
887        @param source1
888            The source of the first alpha value to the operation e.g. texture alpha
889        @param source2
890            The source of the second alpha value to the operation e.g. current surface alpha
891        @param arg1
892            Manually supplied alpha value (only required if source1 = LBS_MANUAL)
893        @param arg2
894            Manually supplied alpha value (only required if source2 = LBS_MANUAL)
895        @param manualBlend
896            Manually supplied 'blend' value - only required for operations
897            which require manual blend e.g. LBX_BLEND_MANUAL
898        @see
899            setColourOperation
900        @note
901            This option has no effect in the programmable pipeline.
902        */
903        void setAlphaOperation(LayerBlendOperationEx op,
904            LayerBlendSource source1 = LBS_TEXTURE,
905            LayerBlendSource source2 = LBS_CURRENT,
906            Real arg1 = 1.0,
907            Real arg2 = 1.0,
908            Real manualBlend = 0.0);
909
910        /** Generic method for setting up texture effects.
911        @remarks
912            Allows you to specify effects directly by using the TextureEffectType enumeration. The
913            arguments that go with it depend on the effect type. Only one effect of
914            each type can be applied to a texture layer.
915        @par
916            This method is used internally by Ogre but it is better generally for applications to use the
917            more intuitive specialised methods such as setEnvironmentMap and setScroll.
918        @note
919            This option has no effect in the programmable pipeline.
920        */
921        void addEffect(TextureEffect& effect);
922
923        /** Turns on/off texture coordinate effect that makes this layer an environment map.
924        @remarks
925            Environment maps make an object look reflective by using the object's vertex normals relative
926            to the camera view to generate texture coordinates.
927        @par
928            The vectors generated can either be used to address a single 2D texture which
929            is a 'fish-eye' lens view of a scene, or a 3D cubic environment map which requires 6 textures
930            for each side of the inside of a cube. The type depends on what texture you set up - if you use the
931            setTextureName method then a 2D fisheye lens texture is required, whereas if you used setCubicTextureName
932            then a cubic environment map will be used.
933        @par
934            This effect works best if the object has lots of gradually changing normals. The texture also
935            has to be designed for this effect - see the example spheremap.png included with the sample
936            application for a 2D environment map; a cubic map can be generated by rendering 6 views of a
937            scene to each of the cube faces with orthogonal views.
938        @note
939            Enabling this disables any other texture coordinate generation effects.
940            However it can be combined with texture coordinate modification functions, which then operate on the
941            generated coordinates rather than static model texture coordinates.
942        @param enable
943            True to enable, false to disable
944        @param envMapType
945            The type of environment mapping to perform. Planar, curved, reflection or normal. @see EnvMapType
946        @note
947            This option has no effect in the programmable pipeline.
948        */
949        void setEnvironmentMap(bool enable, EnvMapType envMapType = ENV_CURVED);
950
951        /** Sets up an animated scroll for the texture layer.
952        @note
953            Useful for creating constant scrolling effects on a texture layer (for varying scrolls, see setTransformAnimation).
954        @param uSpeed
955            The number of horizontal loops per second (+ve=moving right, -ve = moving left).
956        @param vSpeed
957            The number of vertical loops per second (+ve=moving up, -ve= moving down).
958        @note
959            This option has no effect in the programmable pipeline.
960        */
961        void setScrollAnimation(Real uSpeed, Real vSpeed);
962
963        /** Sets up an animated texture rotation for this layer.
964        @note
965            Useful for constant rotations (for varying rotations, see setTransformAnimation).
966        @param speed
967            The number of complete anticlockwise revolutions per second (use -ve for clockwise)
968        @note
969            This option has no effect in the programmable pipeline.
970        */
971        void setRotateAnimation(Real speed);
972
973        /** Sets up a general time-relative texture modification effect.
974        @note
975            This can be called multiple times for different values of ttype, but only the latest effect
976            applies if called multiple time for the same ttype.
977        @param ttype
978            The type of transform, either translate (scroll), scale (stretch) or rotate (spin).
979        @param waveType
980            The shape of the wave, see WaveformType enum for details.
981        @param base
982            The base value for the function (range of output = {base, base + amplitude}).
983        @param frequency
984            The speed of the wave in cycles per second.
985        @param phase
986            The offset of the start of the wave, e.g. 0.5 to start half-way through the wave.
987        @param amplitude
988            Scales the output so that instead of lying within 0..1 it lies within 0..1*amplitude for exaggerated effects.
989        @note
990            This option has no effect in the programmable pipeline.
991        */
992        void setTransformAnimation( const TextureTransformType ttype,
993            const WaveformType waveType, Real base = 0, Real frequency = 1, Real phase = 0, Real amplitude = 1 );
994
995
996        /** Enables or disables projective texturing on this texture unit.
997        @remarks
998            Projective texturing allows you to generate texture coordinates
999            based on a Frustum, which gives the impression that a texture is
1000            being projected onto the surface. Note that once you have called
1001            this method, the texture unit continues to monitor the Frustum you
1002            passed in and the projection will change if you can alter it. It also
1003            means that you must ensure that the Frustum object you pass a pointer
1004            to remains in existence for as long as this TextureUnitState does.
1005        @par
1006            This effect cannot be combined with other texture generation effects,
1007            such as environment mapping. It also has no effect on passes which
1008            have a vertex program enabled - projective texturing has to be done
1009            in the vertex program instead.
1010        @param enabled
1011            Whether to enable / disable.
1012        @param projectionSettings
1013            The Frustum which will be used to derive the
1014            projection parameters.
1015        */
1016        void setProjectiveTexturing(bool enabled, const Frustum* projectionSettings = 0);
1017
1018        /** Removes all effects applied to this texture layer.
1019        */
1020        void removeAllEffects(void);
1021
1022        /** Removes a single effect applied to this texture layer.
1023        @note
1024            Because you can only have 1 effect of each type (e.g. 1 texture coordinate generation) applied
1025            to a layer, only the effect type is required.
1026        */
1027        void removeEffect( const TextureEffectType type );
1028
1029        /** Determines if this texture layer is currently blank.
1030        @note
1031            This can happen if a texture fails to load or some other non-fatal error. Worth checking after
1032            setting texture name.
1033        */
1034        bool isBlank(void) const;
1035
1036        /** Sets this texture layer to be blank.
1037        */
1038        void setBlank(void);
1039
1040        /** Tests if the texture associated with this unit has failed to load.
1041        */
1042        bool isTextureLoadFailing() const { return mTextureLoadFailed; }
1043
1044        /** Tells the unit to retry loading the texture if it had failed to load.
1045        */
1046        void retryTextureLoad() { mTextureLoadFailed = false; }
1047
1048        /// Get texture effects in a multimap paired array.
1049        const EffectMap& getEffects(void) const;
1050        /// Get the animated-texture animation duration.
1051        Real getAnimationDuration(void) const;
1052
1053        /** Set the texture filtering for this unit, using the simplified interface.
1054        @remarks
1055            You also have the option of specifying the minification, magnification
1056            and mip filter individually if you want more control over filtering
1057            options. See the alternative setTextureFiltering methods for details.
1058        @note
1059            This option applies in both the fixed function and the programmable pipeline.
1060        @param filterType
1061            The high-level filter type to use.
1062        */
1063        void setTextureFiltering(TextureFilterOptions filterType);
1064        /** Set a single filtering option on this texture unit.
1065        @param ftype
1066            The filtering type to set.
1067        @param opts
1068            The filtering option to set.
1069        */
1070        void setTextureFiltering(FilterType ftype, FilterOptions opts);
1071        /** Set a the detailed filtering options on this texture unit.
1072        @param minFilter
1073            The filtering to use when reducing the size of the texture.
1074            Can be FO_POINT, FO_LINEAR or FO_ANISOTROPIC.
1075        @param magFilter
1076            The filtering to use when increasing the size of the texture.
1077            Can be FO_POINT, FO_LINEAR or FO_ANISOTROPIC.
1078        @param mipFilter
1079            The filtering to use between mip levels.
1080            Can be FO_NONE (turns off mipmapping), FO_POINT or FO_LINEAR (trilinear filtering).
1081        */
1082        void setTextureFiltering(FilterOptions minFilter, FilterOptions magFilter, FilterOptions mipFilter);
1083        /// Get the texture filtering for the given type.
1084        FilterOptions getTextureFiltering(FilterType ftpye) const;
1085
1086                void setTextureCompareEnabled(bool enabled);
1087                bool getTextureCompareEnabled() const;
1088       
1089                void setTextureCompareFunction(CompareFunction function);
1090                CompareFunction getTextureCompareFunction() const;
1091
1092        /** Sets the anisotropy level to be used for this texture level.
1093        @param maxAniso
1094            The maximal anisotropy level, should be between 2 and the maximum
1095            supported by hardware (1 is the default, ie. no anisotrophy).
1096        @note
1097            This option applies in both the fixed function and the programmable pipeline.
1098        */
1099        void setTextureAnisotropy(unsigned int maxAniso);
1100        /// Get this layer texture anisotropy level.
1101        unsigned int getTextureAnisotropy() const;
1102
1103        /** Sets the bias value applied to the mipmap calculation.
1104        @remarks
1105            You can alter the mipmap calculation by biasing the result with a
1106            single floating point value. After the mip level has been calculated,
1107            this bias value is added to the result to give the final mip level.
1108            Lower mip levels are larger (higher detail), so a negative bias will
1109            force the larger mip levels to be used, and a positive bias
1110            will cause smaller mip levels to be used. The bias values are in
1111            mip levels, so a -1 bias will force mip levels one larger than by the
1112            default calculation.
1113        @param bias
1114            The bias value as described above, can be positive or negative.
1115        */
1116        void setTextureMipmapBias(float bias) { mMipmapBias = bias; }
1117        /** Gets the bias value applied to the mipmap calculation.
1118        @see TextureUnitState::setTextureMipmapBias
1119        */
1120        float getTextureMipmapBias(void) const { return mMipmapBias; }
1121
1122        /** Set the compositor reference for this texture unit state.
1123        @remarks
1124            Only valid when content type is compositor.
1125        @param compositorName
1126            The name of the compositor to reference.
1127        @param textureName
1128            The name of the texture to reference.
1129        @param mrtIndex
1130            The index of the wanted texture, if referencing an MRT.
1131        */
1132        void setCompositorReference(const String& compositorName, const String& textureName, size_t mrtIndex = 0);
1133
1134        /** Gets the name of the compositor that this texture referneces. */
1135        const String& getReferencedCompositorName() const { return mCompositorRefName; }
1136        /** Gets the name of the texture in the compositor that this texture references. */
1137        const String& getReferencedTextureName() const { return mCompositorRefTexName; }
1138        /** Gets the MRT index of the texture in the compositor that this texture references. */ 
1139        size_t getReferencedMRTIndex() const { return mCompositorRefMrtIndex; }
1140   
1141        /// Gets the parent Pass object.
1142        Pass* getParent(void) const { return mParent; }
1143
1144        /** Internal method for preparing this object for load, as part of Material::prepare. */
1145        void _prepare(void);
1146        /** Internal method for undoing the preparation this object as part of Material::unprepare. */
1147        void _unprepare(void);
1148        /** Internal method for loading this object as part of Material::load. */
1149        void _load(void);
1150        /** Internal method for unloading this object as part of Material::unload. */
1151        void _unload(void);
1152        /// Returns whether this unit has texture coordinate generation that depends on the camera.
1153        bool hasViewRelativeTextureCoordinateGeneration(void) const;
1154
1155        /// Is this loaded?
1156        bool isLoaded(void) const;
1157        /** Tells the class that it needs recompilation. */
1158        void _notifyNeedsRecompile(void);
1159
1160        /** Set the name of the Texture Unit State.
1161        @remarks
1162            The name of the Texture Unit State is optional.  Its useful in material scripts where a material could inherit
1163            from another material and only want to modify a particalar Texture Unit State.
1164        */
1165        void setName(const String& name);
1166        /// Get the name of the Texture Unit State.
1167        const String& getName(void) const { return mName; }
1168
1169        /** Set the alias name used for texture frame names.
1170        @param name
1171            Can be any sequence of characters and does not have to be unique.
1172        */
1173        void setTextureNameAlias(const String& name);
1174        /** Gets the Texture Name Alias of the Texture Unit.
1175        */
1176        const String& getTextureNameAlias(void) const { return mTextureNameAlias;}
1177
1178        /** Applies texture names to Texture Unit State with matching texture name aliases.
1179            If no matching aliases are found then the TUS state does not change.
1180        @remarks
1181            Cubic, 1d, 2d, and 3d textures are determined from current state of the Texture Unit.
1182            Assumes animated frames are sequentially numbered in the name.
1183            If matching texture aliases are found then true is returned.
1184
1185        @param aliasList
1186            A map container of texture alias, texture name pairs.
1187        @param apply
1188            Set @c true to apply the texture aliases else just test to see if texture alias matches are found.
1189        @return
1190            True if matching texture aliases were found in the Texture Unit State.
1191        */
1192        bool applyTextureAliases(const AliasTextureNamePairList& aliasList, const bool apply = true);
1193
1194        /** Notify this object that its parent has changed. */
1195        void _notifyParent(Pass* parent);
1196
1197        /** Get the texture pointer for the current frame. */
1198        const TexturePtr& _getTexturePtr(void) const;
1199        /** Get the texture pointer for a given frame. */
1200        const TexturePtr& _getTexturePtr(size_t frame) const;
1201   
1202        /** Set the texture pointer for the current frame (internal use only!). */
1203        void _setTexturePtr(const TexturePtr& texptr);
1204        /** Set the texture pointer for a given frame (internal use only!). */
1205        void _setTexturePtr(const TexturePtr& texptr, size_t frame);
1206
1207                size_t calculateSize(void) const;
1208
1209        /** Gets the animation controller (as created because of setAnimatedTexture)
1210            if it exists.
1211        */
1212        Controller<Real>* _getAnimController() const { return mAnimController; }
1213protected:
1214        // State
1215        /// The current animation frame.
1216        unsigned int mCurrentFrame;
1217
1218        /// Duration of animation in seconds.
1219        Real mAnimDuration;
1220        bool mCubic; /// Is this a series of 6 2D textures to make up a cube?
1221       
1222        TextureType mTextureType; 
1223        PixelFormat mDesiredFormat;
1224        int mTextureSrcMipmaps; /// Request number of mipmaps.
1225
1226        unsigned int mTextureCoordSetIndex;
1227        UVWAddressingMode mAddressMode;
1228        ColourValue mBorderColour;
1229
1230        LayerBlendModeEx mColourBlendMode;
1231        SceneBlendFactor mColourBlendFallbackSrc;
1232        SceneBlendFactor mColourBlendFallbackDest;
1233
1234        LayerBlendModeEx mAlphaBlendMode;
1235        mutable bool mTextureLoadFailed;
1236        bool mIsAlpha;
1237        bool mHwGamma;
1238        Real mGamma;
1239
1240        mutable bool mRecalcTexMatrix;
1241        Real mUMod, mVMod;
1242        Real mUScale, mVScale;
1243        Radian mRotate;
1244        mutable Matrix4 mTexModMatrix;
1245
1246        /// Texture filtering - minification.
1247        FilterOptions mMinFilter;
1248        /// Texture filtering - magnification.
1249        FilterOptions mMagFilter;
1250        /// Texture filtering - mipmapping.
1251        FilterOptions mMipFilter;
1252
1253                bool mCompareEnabled;
1254                CompareFunction mCompareFunc;
1255
1256        /// Texture anisotropy.
1257        unsigned int mMaxAniso;
1258        /// Mipmap bias (always float, not Real).
1259        float mMipmapBias;
1260
1261        bool mIsDefaultAniso;
1262        bool mIsDefaultFiltering;
1263        /// Binding type (fragment or vertex pipeline).
1264        BindingType mBindingType;
1265        /// Content type of texture (normal loaded texture, auto-texture).
1266        ContentType mContentType;
1267        /// The index of the referenced texture if referencing an MRT in a compositor.
1268        size_t mCompositorRefMrtIndex;
1269
1270        //-----------------------------------------------------------------------------
1271        // Complex members (those that can't be copied using memcpy) are at the end to
1272        // allow for fast copying of the basic members.
1273        //
1274        vector<String>::type mFrames;
1275        mutable vector<TexturePtr>::type mFramePtrs;
1276        String mName;               ///< Optional name for the TUS.
1277        String mTextureNameAlias;   ///< Optional alias for texture frames.
1278        EffectMap mEffects;
1279        /// The data that references the compositor.
1280        String mCompositorRefName;
1281        String mCompositorRefTexName;
1282        //-----------------------------------------------------------------------------
1283
1284        //-----------------------------------------------------------------------------
1285        // Pointer members (those that can't be copied using memcpy), and MUST
1286        // preserving even if assign from others
1287        //
1288        Pass* mParent;
1289        Controller<Real>* mAnimController;
1290        //-----------------------------------------------------------------------------
1291
1292
1293        /** Internal method for calculating texture matrix.
1294        */
1295        void recalcTextureMatrix(void) const;
1296
1297        /** Internal method for creating animation controller.
1298        */
1299        void createAnimController(void);
1300
1301        /** Internal method for creating texture effect controller.
1302        */
1303        void createEffectController(TextureEffect& effect);
1304
1305        /** Internal method for ensuring the texture for a given frame is prepared. */
1306        void ensurePrepared(size_t frame) const;
1307        /** Internal method for ensuring the texture for a given frame is loaded. */
1308        void ensureLoaded(size_t frame) const;
1309
1310
1311    };
1312
1313    /** @} */
1314    /** @} */
1315
1316} // namespace Ogre
1317
1318#include "OgreHeaderSuffix.h"
1319
1320#endif // __TextureUnitState_H__
Note: See TracBrowser for help on using the repository browser.