Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: downloads/ogre_src_v1-9-0/OgreMain/include/OgreShadowCameraSetupLiSPSM.h @ 148

Last change on this file since 148 was 148, checked in by patricwi, 6 years ago

Added new dependencies for ogre1.9 and cegui0.8

File size: 11.7 KB
Line 
1/*
2-----------------------------------------------------------------------------
3This source file is part of OGRE
4(Object-oriented Graphics Rendering Engine)
5For the latest info, see http://www.ogre3d.org/
6
7Copyright (c) 2000-2013 Torus Knot Software Ltd
8Copyright (c) 2006 Matthias Fink, netAllied GmbH <matthias.fink@web.de>                                                         
9
10Permission is hereby granted, free of charge, to any person obtaining a copy
11of this software and associated documentation files (the "Software"), to deal
12in the Software without restriction, including without limitation the rights
13to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14copies of the Software, and to permit persons to whom the Software is
15furnished to do so, subject to the following conditions:
16
17The above copyright notice and this permission notice shall be included in
18all copies or substantial portions of the Software.
19
20THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
23AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26THE SOFTWARE.
27-----------------------------------------------------------------------------
28*/
29#ifndef __ShadowCameraSetupLiSPSM_H__
30#define __ShadowCameraSetupLiSPSM_H__
31
32#include "OgrePrerequisites.h"
33#include "OgreShadowCameraSetupFocused.h"
34#include "OgreHeaderPrefix.h"
35
36namespace Ogre
37{
38
39        /** \addtogroup Core
40        *  @{
41        */
42        /** \addtogroup Scene
43        *  @{
44        */
45        /** Implements the Light Space Perspective Shadow Mapping Algorithm.
46        @remarks
47        Implements the LiSPSM algorithm for an advanced shadow map generation. LiSPSM was
48        developed by Michael Wimmer, Daniel Scherzer and Werner Purgathofer of the TU Wien.
49        The algorithm was presented on the Eurographics Symposium on Rendering 2004.
50        @note
51        Shadow mapping was introduced by Williams in 1978. First a depth image is rendered
52        from the light's view and compared in a second pass with depth values of the normal
53        camera view. In case the depth camera's depth value is greater than the depth seen
54        by the light the fragment lies in the shadow.
55        The concept has a major draw back named perspective aliasing. The shadow map distri-
56        butes the samples uniformly meaning the position of the viewer is ignored. For the
57        viewer however the perspective projection affects near objects to be displayed
58        bigger than further away objects. The same thing happens with the shadow map texels:
59        Near shadows appear very coarse and far away shadows are perfectly sampled.
60        In 2002 Stamminger et al. presented an algorithm called Perspective Shadow Maps
61        (PSM). PSM battles the perspective aliasing by distributing 50% of the shadow map
62        texels for objects in the range of <near clipping plane> to <near clipping plane * 2>
63        which inverts the problem: The shadows near the viewer are perfectly sampled,
64        however far away shadow may contain aliasing artefacts. A near clipping plane may be
65        a problem. But this is not the only one. In the post-perspective space the light
66        sources are non-intuitively mapped: Directional lights may become point light and
67        point lights may become directional lights. Also light sinks (opposite of a light
68        source) may appear.     Another problem are shadow casters located behind the viewer.
69        In post-projective space objects behind the viewer are mapped in front of him with
70        a flipped up-vector.
71        LiSPSM battles the light source problem of the post-projective space by rearranging
72        the light space before transformation in such a way that no special cases appear.
73        This is done by converting point/spot lights into directional lights. The light
74        space is arranged in such a way that the light direction equals the inverse UNIT_Y.
75        In this combination     the directional light will neither change its type nor its
76        direction. Furthermore all visible objects and shadow casters affecting the user's
77        visible area lie in front of the shadow camera: After building the intersection body
78        that contains all these objects (body intersection building was introduced with PSM;
79        have a look at the description for the method "calculateB" for further info) a
80        frustum around the body's light space bounding box is created. A parameter (called
81        'n') automatically adjusts the shadow map sample distribution by specifying the
82        frustum's view point - near plane which affects the perspective warp. In case the
83        distance is small the perspecive warp will be strong. As a consequence near objects
84        will gain quality.
85        However there are still problems. PSM as well as LiSPSM only devote to minimize
86        perspective aliasing. Projection aliasing is still a problem, also 'swimming
87        artefacts' still occur. The LiSPSM quality distribution is very good but not the
88        best available: Some sources say logarithmic shadow mapping is the non plus ultra,
89        however others reject this thought. There is a research project on logarithmic shadow
90        maps. The web page url is http://gamma.cs.unc.edu/logsm/. However there is no techical
91        report available yet (Oct 23rd, 2006).
92        @note
93        More information can be found on the webpage of the TU Wien:
94        http://www.cg.tuwien.ac.at/research/vr/lispsm/
95        @note
96        Original implementation by Matthias Fink <matthias.fink@web.de>, 2006.
97        */
98        class _OgreExport LiSPSMShadowCameraSetup : public FocusedShadowCameraSetup
99        {
100        protected:
101                /// Warp factor adjustment
102                Real mOptAdjustFactor;
103                /// Use simple nopt derivation?
104                bool mUseSimpleNOpt;
105                /// Extra calculated warp factor
106                mutable Real mOptAdjustFactorTweak;
107                /// Threshold (cos angle) within which to start increasing the opt adjust as camera direction approaches light direction
108                Real mCosCamLightDirThreshold;
109
110                /** Calculates the LiSPSM projection matrix P.
111                @remarks
112                The LiSPSM projection matrix will be built around the axis aligned bounding box
113                of the intersection body B in light space. The distance between the near plane
114                and the projection center is chosen in such a way (distance is set by the para-
115                meter n) that the perspective error is the same on the near and far     plane. In
116                case P equals the identity matrix the algorithm falls back to a uniform shadow
117                mapping matrix.
118                @param lightSpace Matrix of the light space transformation
119                @param bodyB Intersection body B
120                @param bodyLVS Intersection body LVS (relevant space in front of the camera)
121                @param sm Scene manager
122                @param cam Currently active camera
123                @param light Currently active light
124                */
125                Matrix4 calculateLiSPSM(const Matrix4& lightSpace, const PointListBody& bodyB, 
126                        const PointListBody& bodyLVS, const SceneManager& sm, 
127                        const Camera& cam, const Light& light) const;
128
129                /** Calculates the distance between camera position and near clipping plane.
130                @remarks
131                n_opt determines the distance between light space origin (shadow camera position)
132                and     the near clipping plane to achieve an optimal perspective foreshortening effect.
133                In this way the texel distribution over the shadow map is controlled.
134
135                Formula:
136                               d
137                n_opt = ---------------
138                        sqrt(z1/z0) - 1
139
140                Parameters:
141                d: distance between the near and the far clipping plane
142                z0: located on the near clipping plane of the intersection body b
143                z1: located on the far clipping plane with the same x/y values as z0           
144                @note
145                A positive value is applied as the distance between viewer and near clipping plane.
146                In case null is returned uniform shadow mapping will be applied.
147                @param lightSpace Matrix of the light space transformation
148                @param bodyBABB_ls Bounding box of the transformed (light space) bodyB
149                @param bodyLVS Point list of the bodyLVS which describes the scene space which is in
150                front of the light and the camera
151                @param cam Currently active camera
152                */
153                Real calculateNOpt(const Matrix4& lightSpace, const AxisAlignedBox& bodyBABB_ls, 
154                        const PointListBody& bodyLVS, const Camera& cam) const;
155
156                /** Calculates a simpler version than the one above.
157                */
158                Real calculateNOptSimple(const PointListBody& bodyLVS, 
159                        const Camera& cam) const;
160
161                /** Calculates the visible point on the near plane for the n_opt calculation
162                @remarks
163                z0 lies on the parallel plane to the near plane through e and on the near plane of
164                the frustum C (plane z = bodyB_zMax_ls) and on the line x = e.x.
165                @param lightSpace Matrix of the light space transformation
166                @param e The LiSPSM parameter e is located near or on the near clipping plane of the
167                LiSPSM frustum C
168                @param bodyB_zMax_ls Maximum z-value of the light space bodyB bounding box
169                @param cam Currently active camera
170                */
171                Vector3 calculateZ0_ls(const Matrix4& lightSpace, const Vector3& e, Real bodyB_zMax_ls, 
172                        const Camera& cam) const;
173
174                /** Builds a frustum matrix.
175                @remarks
176                Builds a standard frustum matrix out of the distance info of the six frustum
177                clipping planes.
178                */
179                Matrix4 buildFrustumProjection(Real left, Real right, Real bottom, 
180                        Real top, Real near, Real far) const;
181
182        public:
183                /** Default constructor.
184                @remarks
185                Nothing done here.
186                */
187                LiSPSMShadowCameraSetup(void);
188
189                /** Default destructor.
190                @remarks
191                Nothing done here.
192                */
193                virtual ~LiSPSMShadowCameraSetup(void);
194
195                /** Returns a LiSPSM shadow camera.
196                @remarks
197                Builds and returns a LiSPSM shadow camera.
198                More information can be found on the webpage of the TU Wien:
199                http://www.cg.tuwien.ac.at/research/vr/lispsm/
200                */
201                virtual void getShadowCamera(const SceneManager *sm, const Camera *cam, 
202                        const Viewport *vp, const Light *light, Camera *texCam, size_t iteration) const;
203
204                /** Adjusts the parameter n to produce optimal shadows.
205                @remarks
206                The smaller the parameter n, the stronger the perspective warping effect.
207                The consequence of a stronger warping is that the near shadows will gain
208                quality while the far ones will lose it. Depending on your scene and light
209                types you may want to tweak this value - for example directional lights
210                tend to benefit from higher values of n than other types of light,
211                especially if you expect to see more distant shadows (say if the viewpoint is
212                higher above the ground plane). Remember that you can supply separate
213                ShadowCameraSetup instances configured differently per light if you wish.
214                @param n The adjustment factor - default is 0.1f.
215                */
216                virtual void setOptimalAdjustFactor(Real n) { mOptAdjustFactor = n; }
217                /** Get the parameter n used to produce optimal shadows.
218                @see setOptimalAdjustFactor
219                */
220                virtual Real getOptimalAdjustFactor() const { return mOptAdjustFactor; }
221                /** Sets whether or not to use a slightly simpler version of the
222                        camera near point derivation (default is true)
223                */
224                virtual void setUseSimpleOptimalAdjust(bool s) { mUseSimpleNOpt = s; }
225                /** Gets whether or not to use a slightly simpler version of the
226                camera near point derivation (default is true)
227                */
228                virtual bool getUseSimpleOptimalAdjust() const { return mUseSimpleNOpt; }
229
230                /** Sets the threshold between the camera and the light direction below
231                        which the LiSPSM projection is 'flattened', since coincident light
232                        and camera projections cause problems with the perspective skew.
233                        @remarks
234                        For example, setting this to 20 degrees will mean that as the difference
235                        between the light and camera direction reduces from 20 degrees to 0
236                        degrees, the perspective skew will be proportionately removed.
237                */
238                virtual void setCameraLightDirectionThreshold(Degree angle);
239
240                /** Sets the threshold between the camera and the light direction below
241                which the LiSPSM projection is 'flattened', since coincident light
242                and camera projections cause problems with the perspective skew.
243                */
244                virtual Degree getCameraLightDirectionThreshold() const;
245
246
247        };
248        /** @} */
249        /** @} */
250
251}
252
253#include "OgreHeaderSuffix.h"
254
255#endif
256
Note: See TracBrowser for help on using the repository browser.