| 1 | /* |
|---|
| 2 | ----------------------------------------------------------------------------- |
|---|
| 3 | This source file is part of OGRE |
|---|
| 4 | (Object-oriented Graphics Rendering Engine) |
|---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
|---|
| 6 | |
|---|
| 7 | Copyright (c) 2000-2013 Torus Knot Software Ltd |
|---|
| 8 | |
|---|
| 9 | Permission is hereby granted, free of charge, to any person obtaining a copy |
|---|
| 10 | of this software and associated documentation files (the "Software"), to deal |
|---|
| 11 | in the Software without restriction, including without limitation the rights |
|---|
| 12 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|---|
| 13 | copies of the Software, and to permit persons to whom the Software is |
|---|
| 14 | furnished to do so, subject to the following conditions: |
|---|
| 15 | |
|---|
| 16 | The above copyright notice and this permission notice shall be included in |
|---|
| 17 | all copies or substantial portions of the Software. |
|---|
| 18 | |
|---|
| 19 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|---|
| 20 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|---|
| 21 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|---|
| 22 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|---|
| 23 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|---|
| 24 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|---|
| 25 | THE SOFTWARE. |
|---|
| 26 | ----------------------------------------------------------------------------- |
|---|
| 27 | */ |
|---|
| 28 | #ifndef __RadixSort_H__ |
|---|
| 29 | #define __RadixSort_H__ |
|---|
| 30 | |
|---|
| 31 | #include "OgrePrerequisites.h" |
|---|
| 32 | |
|---|
| 33 | namespace Ogre { |
|---|
| 34 | |
|---|
| 35 | /** \addtogroup Core |
|---|
| 36 | * @{ |
|---|
| 37 | */ |
|---|
| 38 | /** \addtogroup General |
|---|
| 39 | * @{ |
|---|
| 40 | */ |
|---|
| 41 | /** Class for performing a radix sort (fast comparison-less sort based on |
|---|
| 42 | byte value) on various standard STL containers. |
|---|
| 43 | @remarks |
|---|
| 44 | A radix sort is a very fast sort algorithm. It doesn't use comparisons |
|---|
| 45 | and thus is able to break the theoretical minimum O(N*logN) complexity. |
|---|
| 46 | Radix sort is complexity O(k*N), where k is a constant. Note that radix |
|---|
| 47 | sorting is not in-place, it requires additional storage, so it trades |
|---|
| 48 | memory for speed. The overhead of copying means that it is only faster |
|---|
| 49 | for fairly large datasets, so you are advised to only use it for collections |
|---|
| 50 | of at least a few hundred items. |
|---|
| 51 | @par |
|---|
| 52 | This is a template class to allow it to deal with a variety of containers, |
|---|
| 53 | and a variety of value types to sort on. In addition to providing the |
|---|
| 54 | container and value type on construction, you also need to supply a |
|---|
| 55 | functor object which will retrieve the value to compare on for each item |
|---|
| 56 | in the list. For example, if you had an std::vector of by-value instances |
|---|
| 57 | of an object of class 'Bibble', and you wanted to sort on |
|---|
| 58 | Bibble::getDoobrie(), you'd have to firstly create a functor |
|---|
| 59 | like this: |
|---|
| 60 | @code |
|---|
| 61 | struct BibbleSortFunctor |
|---|
| 62 | { |
|---|
| 63 | float operator()(const Bibble& val) const |
|---|
| 64 | { |
|---|
| 65 | return val.getDoobrie(); |
|---|
| 66 | } |
|---|
| 67 | } |
|---|
| 68 | @endcode |
|---|
| 69 | Then, you need to declare a RadixSort class which names the container type, |
|---|
| 70 | the value type in the container, and the type of the value you want to |
|---|
| 71 | sort by. You can then call the sort function. E.g. |
|---|
| 72 | @code |
|---|
| 73 | RadixSort<BibbleList, Bibble, float> radixSorter; |
|---|
| 74 | BibbleSortFunctor functor; |
|---|
| 75 | |
|---|
| 76 | radixSorter.sort(myBibbleList, functor); |
|---|
| 77 | @endcode |
|---|
| 78 | You should try to reuse RadixSort instances, since repeated allocation of the |
|---|
| 79 | internal storage is then avoided. |
|---|
| 80 | @note |
|---|
| 81 | Radix sorting is often associated with just unsigned integer values. Our |
|---|
| 82 | implementation can handle both unsigned and signed integers, as well as |
|---|
| 83 | floats (which are often not supported by other radix sorters). doubles |
|---|
| 84 | are not supported; you will need to implement your functor object to convert |
|---|
| 85 | to float if you wish to use this sort routine. |
|---|
| 86 | */ |
|---|
| 87 | template <class TContainer, class TContainerValueType, typename TCompValueType> |
|---|
| 88 | class RadixSort |
|---|
| 89 | { |
|---|
| 90 | public: |
|---|
| 91 | typedef typename TContainer::iterator ContainerIter; |
|---|
| 92 | protected: |
|---|
| 93 | /// Alpha-pass counters of values (histogram) |
|---|
| 94 | /// 4 of them so we can radix sort a maximum of a 32bit value |
|---|
| 95 | int mCounters[4][256]; |
|---|
| 96 | /// Beta-pass offsets |
|---|
| 97 | int mOffsets[256]; |
|---|
| 98 | /// Sort area size |
|---|
| 99 | int mSortSize; |
|---|
| 100 | /// Number of passes for this type |
|---|
| 101 | int mNumPasses; |
|---|
| 102 | |
|---|
| 103 | struct SortEntry |
|---|
| 104 | { |
|---|
| 105 | TCompValueType key; |
|---|
| 106 | ContainerIter iter; |
|---|
| 107 | SortEntry() {} |
|---|
| 108 | SortEntry(TCompValueType k, ContainerIter it) |
|---|
| 109 | : key(k), iter(it) {} |
|---|
| 110 | |
|---|
| 111 | }; |
|---|
| 112 | /// Temp sort storage |
|---|
| 113 | typedef std::vector<SortEntry, STLAllocator<SortEntry, GeneralAllocPolicy> > SortVector; |
|---|
| 114 | SortVector mSortArea1; |
|---|
| 115 | SortVector mSortArea2; |
|---|
| 116 | SortVector* mSrc; |
|---|
| 117 | SortVector* mDest; |
|---|
| 118 | TContainer mTmpContainer; // initial copy |
|---|
| 119 | |
|---|
| 120 | |
|---|
| 121 | void sortPass(int byteIndex) |
|---|
| 122 | { |
|---|
| 123 | // Calculate offsets |
|---|
| 124 | // Basically this just leaves gaps for duplicate entries to fill |
|---|
| 125 | mOffsets[0] = 0; |
|---|
| 126 | for (int i = 1; i < 256; ++i) |
|---|
| 127 | { |
|---|
| 128 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
|---|
| 129 | } |
|---|
| 130 | |
|---|
| 131 | // Sort pass |
|---|
| 132 | for (int i = 0; i < mSortSize; ++i) |
|---|
| 133 | { |
|---|
| 134 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); |
|---|
| 135 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; |
|---|
| 136 | } |
|---|
| 137 | |
|---|
| 138 | } |
|---|
| 139 | template <typename T> |
|---|
| 140 | void finalPass(int byteIndex, T val) |
|---|
| 141 | { |
|---|
| 142 | // default is to do normal pass |
|---|
| 143 | sortPass(byteIndex); |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | // special case signed int |
|---|
| 147 | void finalPass(int byteIndex, int val) |
|---|
| 148 | { |
|---|
| 149 | int numNeg = 0; |
|---|
| 150 | // all negative values are in entries 128+ in most significant byte |
|---|
| 151 | for (int i = 128; i < 256; ++i) |
|---|
| 152 | { |
|---|
| 153 | numNeg += mCounters[byteIndex][i]; |
|---|
| 154 | } |
|---|
| 155 | // Calculate offsets - positive ones start at the number of negatives |
|---|
| 156 | // do positive numbers |
|---|
| 157 | mOffsets[0] = numNeg; |
|---|
| 158 | for (int i = 1; i < 128; ++i) |
|---|
| 159 | { |
|---|
| 160 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
|---|
| 161 | } |
|---|
| 162 | // Do negative numbers (must start at zero) |
|---|
| 163 | // No need to invert ordering, already correct (-1 is highest number) |
|---|
| 164 | mOffsets[128] = 0; |
|---|
| 165 | for (int i = 129; i < 256; ++i) |
|---|
| 166 | { |
|---|
| 167 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
|---|
| 168 | } |
|---|
| 169 | |
|---|
| 170 | // Sort pass |
|---|
| 171 | for (int i = 0; i < mSortSize; ++i) |
|---|
| 172 | { |
|---|
| 173 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); |
|---|
| 174 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; |
|---|
| 175 | } |
|---|
| 176 | } |
|---|
| 177 | |
|---|
| 178 | |
|---|
| 179 | // special case float |
|---|
| 180 | void finalPass(int byteIndex, float val) |
|---|
| 181 | { |
|---|
| 182 | // floats need to be special cased since negative numbers will come |
|---|
| 183 | // after positives (high bit = sign) and will be in reverse order |
|---|
| 184 | // (no ones-complement of the +ve value) |
|---|
| 185 | int numNeg = 0; |
|---|
| 186 | // all negative values are in entries 128+ in most significant byte |
|---|
| 187 | for (int i = 128; i < 256; ++i) |
|---|
| 188 | { |
|---|
| 189 | numNeg += mCounters[byteIndex][i]; |
|---|
| 190 | } |
|---|
| 191 | // Calculate offsets - positive ones start at the number of negatives |
|---|
| 192 | // do positive numbers normally |
|---|
| 193 | mOffsets[0] = numNeg; |
|---|
| 194 | for (int i = 1; i < 128; ++i) |
|---|
| 195 | { |
|---|
| 196 | mOffsets[i] = mOffsets[i-1] + mCounters[byteIndex][i-1]; |
|---|
| 197 | } |
|---|
| 198 | // Do negative numbers (must start at zero) |
|---|
| 199 | // Also need to invert ordering |
|---|
| 200 | // In order to preserve the stability of the sort (essential since |
|---|
| 201 | // we rely on previous bytes already being sorted) we have to count |
|---|
| 202 | // backwards in our offsets from |
|---|
| 203 | mOffsets[255] = mCounters[byteIndex][255]; |
|---|
| 204 | for (int i = 254; i > 127; --i) |
|---|
| 205 | { |
|---|
| 206 | mOffsets[i] = mOffsets[i+1] + mCounters[byteIndex][i]; |
|---|
| 207 | } |
|---|
| 208 | |
|---|
| 209 | // Sort pass |
|---|
| 210 | for (int i = 0; i < mSortSize; ++i) |
|---|
| 211 | { |
|---|
| 212 | unsigned char byteVal = getByte(byteIndex, (*mSrc)[i].key); |
|---|
| 213 | if (byteVal > 127) |
|---|
| 214 | { |
|---|
| 215 | // -ve; pre-decrement since offsets set to count |
|---|
| 216 | (*mDest)[--mOffsets[byteVal]] = (*mSrc)[i]; |
|---|
| 217 | } |
|---|
| 218 | else |
|---|
| 219 | { |
|---|
| 220 | // +ve |
|---|
| 221 | (*mDest)[mOffsets[byteVal]++] = (*mSrc)[i]; |
|---|
| 222 | } |
|---|
| 223 | } |
|---|
| 224 | } |
|---|
| 225 | |
|---|
| 226 | inline unsigned char getByte(int byteIndex, TCompValueType val) |
|---|
| 227 | { |
|---|
| 228 | #if OGRE_ENDIAN == OGRE_ENDIAN_LITTLE |
|---|
| 229 | return ((unsigned char*)(&val))[byteIndex]; |
|---|
| 230 | #else |
|---|
| 231 | return ((unsigned char*)(&val))[mNumPasses - byteIndex - 1]; |
|---|
| 232 | #endif |
|---|
| 233 | } |
|---|
| 234 | |
|---|
| 235 | public: |
|---|
| 236 | |
|---|
| 237 | RadixSort() {} |
|---|
| 238 | ~RadixSort() {} |
|---|
| 239 | |
|---|
| 240 | /** Main sort function |
|---|
| 241 | @param container A container of the type you declared when declaring |
|---|
| 242 | @param func A functor which returns the value for comparison when given |
|---|
| 243 | a container value |
|---|
| 244 | */ |
|---|
| 245 | template <class TFunction> |
|---|
| 246 | void sort(TContainer& container, TFunction func) |
|---|
| 247 | { |
|---|
| 248 | if (container.empty()) |
|---|
| 249 | return; |
|---|
| 250 | |
|---|
| 251 | // Set up the sort areas |
|---|
| 252 | mSortSize = static_cast<int>(container.size()); |
|---|
| 253 | mSortArea1.resize(container.size()); |
|---|
| 254 | mSortArea2.resize(container.size()); |
|---|
| 255 | |
|---|
| 256 | // Copy data now (we need constant iterators for sorting) |
|---|
| 257 | mTmpContainer = container; |
|---|
| 258 | |
|---|
| 259 | mNumPasses = sizeof(TCompValueType); |
|---|
| 260 | |
|---|
| 261 | // Counter pass |
|---|
| 262 | // Initialise the counts |
|---|
| 263 | int p; |
|---|
| 264 | for (p = 0; p < mNumPasses; ++p) |
|---|
| 265 | memset(mCounters[p], 0, sizeof(int) * 256); |
|---|
| 266 | |
|---|
| 267 | // Perform alpha pass to count |
|---|
| 268 | ContainerIter i = mTmpContainer.begin(); |
|---|
| 269 | TCompValueType prevValue = func.operator()(*i); |
|---|
| 270 | bool needsSorting = false; |
|---|
| 271 | for (int u = 0; i != mTmpContainer.end(); ++i, ++u) |
|---|
| 272 | { |
|---|
| 273 | // get sort value |
|---|
| 274 | TCompValueType val = func.operator()(*i); |
|---|
| 275 | // cheap check to see if needs sorting (temporal coherence) |
|---|
| 276 | if (!needsSorting && val < prevValue) |
|---|
| 277 | needsSorting = true; |
|---|
| 278 | |
|---|
| 279 | // Create a sort entry |
|---|
| 280 | mSortArea1[u].key = val; |
|---|
| 281 | mSortArea1[u].iter = i; |
|---|
| 282 | |
|---|
| 283 | // increase counters |
|---|
| 284 | for (p = 0; p < mNumPasses; ++p) |
|---|
| 285 | { |
|---|
| 286 | unsigned char byteVal = getByte(p, val); |
|---|
| 287 | mCounters[p][byteVal]++; |
|---|
| 288 | } |
|---|
| 289 | |
|---|
| 290 | prevValue = val; |
|---|
| 291 | |
|---|
| 292 | } |
|---|
| 293 | |
|---|
| 294 | // early exit if already sorted |
|---|
| 295 | if (!needsSorting) |
|---|
| 296 | return; |
|---|
| 297 | |
|---|
| 298 | |
|---|
| 299 | // Sort passes |
|---|
| 300 | mSrc = &mSortArea1; |
|---|
| 301 | mDest = &mSortArea2; |
|---|
| 302 | |
|---|
| 303 | for (p = 0; p < mNumPasses - 1; ++p) |
|---|
| 304 | { |
|---|
| 305 | sortPass(p); |
|---|
| 306 | // flip src/dst |
|---|
| 307 | SortVector* tmp = mSrc; |
|---|
| 308 | mSrc = mDest; |
|---|
| 309 | mDest = tmp; |
|---|
| 310 | } |
|---|
| 311 | // Final pass may differ, make polymorphic |
|---|
| 312 | finalPass(p, prevValue); |
|---|
| 313 | |
|---|
| 314 | // Copy everything back |
|---|
| 315 | int c = 0; |
|---|
| 316 | for (i = container.begin(); |
|---|
| 317 | i != container.end(); ++i, ++c) |
|---|
| 318 | { |
|---|
| 319 | *i = *((*mDest)[c].iter); |
|---|
| 320 | } |
|---|
| 321 | } |
|---|
| 322 | |
|---|
| 323 | }; |
|---|
| 324 | |
|---|
| 325 | /** @} */ |
|---|
| 326 | /** @} */ |
|---|
| 327 | |
|---|
| 328 | } |
|---|
| 329 | #endif |
|---|
| 330 | |
|---|