| 1 | /* |
|---|
| 2 | ----------------------------------------------------------------------------- |
|---|
| 3 | This source file is part of LEXIExporter |
|---|
| 4 | |
|---|
| 5 | Copyright 2006 NDS Limited |
|---|
| 6 | |
|---|
| 7 | Author(s): |
|---|
| 8 | Bo Krohn |
|---|
| 9 | |
|---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
|---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
|---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
|---|
| 13 | version. |
|---|
| 14 | |
|---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
|---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
|---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
|---|
| 18 | |
|---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
|---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
|---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
|---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
|---|
| 23 | ----------------------------------------------------------------------------- |
|---|
| 24 | */ |
|---|
| 25 | |
|---|
| 26 | ///////////////////////////////////////////////////// |
|---|
| 27 | // |
|---|
| 28 | // Matrix 4x4 class |
|---|
| 29 | // |
|---|
| 30 | ///////////////////////////////////////////////////// |
|---|
| 31 | |
|---|
| 32 | #include "stdafx.h" |
|---|
| 33 | #include "MathMatrix4x4.h" |
|---|
| 34 | |
|---|
| 35 | // |
|---|
| 36 | |
|---|
| 37 | static float mZero[16] = { 0.0f, 0.0f, 0.0f, 0.0f, |
|---|
| 38 | 0.0f, 0.0f, 0.0f, 0.0f, |
|---|
| 39 | 0.0f, 0.0f, 0.0f, 0.0f, |
|---|
| 40 | 0.0f, 0.0f, 0.0f, 0.0f }; |
|---|
| 41 | |
|---|
| 42 | const CMatrix CMatrix::_zero(mZero); |
|---|
| 43 | |
|---|
| 44 | // |
|---|
| 45 | |
|---|
| 46 | static float mIdentity[16] = { 1.0f, 0.0f, 0.0f, 0.0f, |
|---|
| 47 | 0.0f, 1.0f, 0.0f, 0.0f, |
|---|
| 48 | 0.0f, 0.0f, 1.0f, 0.0f, |
|---|
| 49 | 0.0f, 0.0f, 0.0f, 1.0f }; |
|---|
| 50 | |
|---|
| 51 | const CMatrix CMatrix::_identity(mIdentity); |
|---|
| 52 | |
|---|
| 53 | // |
|---|
| 54 | |
|---|
| 55 | inline float det3x3( float a1,float a2,float a3, |
|---|
| 56 | float b1,float b2,float b3, |
|---|
| 57 | float c1,float c2,float c3) |
|---|
| 58 | { |
|---|
| 59 | return a1*(b2*c3-b3*c2)-b1*(a2*c3-a3*c2)+c1*(a2*b3-a3*b2); |
|---|
| 60 | } |
|---|
| 61 | |
|---|
| 62 | // |
|---|
| 63 | |
|---|
| 64 | void CMatrix::makeLookAt(const CVec3& eye, const CVec3& point, const CVec3& up) |
|---|
| 65 | { |
|---|
| 66 | CVec3 f; |
|---|
| 67 | f.subtract(eye, point); // view vector (maps to z) |
|---|
| 68 | const float flen = f.length2(); |
|---|
| 69 | if(F_Min < flen) |
|---|
| 70 | f.scale( 1.0f / sqrtf(flen) ); |
|---|
| 71 | |
|---|
| 72 | CVec3 upprime = up; |
|---|
| 73 | const float ulen = upprime.length2(); |
|---|
| 74 | if(F_Min < ulen) |
|---|
| 75 | upprime.scale( 1.0f / sqrtf(ulen) ); |
|---|
| 76 | |
|---|
| 77 | CVec3 s; |
|---|
| 78 | s.cross(upprime, f); // s = up X f (maps to x) |
|---|
| 79 | const float slen = s.length2(); |
|---|
| 80 | if(F_Min < slen) |
|---|
| 81 | s.scale( 1.0f / sqrtf(slen) ); |
|---|
| 82 | |
|---|
| 83 | CVec3 u; |
|---|
| 84 | u.cross(f, s); // u = f X s; (maps to y) |
|---|
| 85 | // s and f are normalized and orthogonal, so u is |
|---|
| 86 | |
|---|
| 87 | // this matrix maps to the eye point, we want to map the geometry so we |
|---|
| 88 | // need the inverse. since it's an orthonormal matrix by construction, |
|---|
| 89 | // we can simply transpose it. |
|---|
| 90 | // [1 0 0 0] [[ s ]] |
|---|
| 91 | // [0 1 0 0] [[ u ]] |
|---|
| 92 | // [0 0 1 0] [[ f ]] |
|---|
| 93 | // [0 0 0 1] |
|---|
| 94 | |
|---|
| 95 | mat[0][0] = s.x; mat[0][1] = u.x; mat[0][2] = f.x; mat[0][3] = 0.0f; |
|---|
| 96 | mat[1][0] = s.y; mat[1][1] = u.y; mat[1][2] = f.y; mat[1][3] = 0.0f; |
|---|
| 97 | mat[2][0] = s.z; mat[2][1] = u.z; mat[2][2] = f.z; mat[2][3] = 0.0f; |
|---|
| 98 | |
|---|
| 99 | // translate eye to origin |
|---|
| 100 | mat[3][0] = -( mat[0][0] * eye.x + mat[1][0] * eye.y + mat[2][0] * eye.z ); |
|---|
| 101 | mat[3][1] = -( mat[0][1] * eye.x + mat[1][1] * eye.y + mat[2][1] * eye.z ); |
|---|
| 102 | mat[3][2] = -( mat[0][2] * eye.x + mat[1][2] * eye.y + mat[2][2] * eye.z ); |
|---|
| 103 | mat[3][3] = 1.0f - ( mat[0][3] * eye.x + mat[1][3] * eye.y + mat[2][3] * eye.z ); |
|---|
| 104 | } |
|---|
| 105 | |
|---|
| 106 | void CMatrix::makeLookAtDirection(const CVec3& eye, const CVec3& dir, const CVec3& up) |
|---|
| 107 | { |
|---|
| 108 | CVec3 f; |
|---|
| 109 | f.negate(dir); // view vector (maps to z) |
|---|
| 110 | const float flen = f.length2(); |
|---|
| 111 | if(F_Min < flen) |
|---|
| 112 | f.scale( 1.0f / sqrtf(flen) ); |
|---|
| 113 | |
|---|
| 114 | CVec3 upprime = up; |
|---|
| 115 | const float ulen = upprime.length2(); |
|---|
| 116 | if(F_Min < ulen) |
|---|
| 117 | upprime.scale( 1.0f / sqrtf(ulen) ); |
|---|
| 118 | |
|---|
| 119 | CVec3 s; |
|---|
| 120 | s.cross(upprime, f); // s = up X f (maps to x) |
|---|
| 121 | const float slen = s.length2(); |
|---|
| 122 | if(F_Min < slen) |
|---|
| 123 | s.scale( 1.0f / sqrtf(slen) ); |
|---|
| 124 | |
|---|
| 125 | CVec3 u; |
|---|
| 126 | u.cross(f, s); // u = f X s; (maps to y) |
|---|
| 127 | // s and f are normalized and orthogonal, so u is |
|---|
| 128 | |
|---|
| 129 | // this matrix maps to the eye point, we want to map the geometry so we |
|---|
| 130 | // need the inverse. since it's an orthonormal matrix by construction, |
|---|
| 131 | // we can simply transpose it. |
|---|
| 132 | // [1 0 0 0] [[ s ]] |
|---|
| 133 | // [0 1 0 0] [[ u ]] |
|---|
| 134 | // [0 0 1 0] [[ f ]] |
|---|
| 135 | // [0 0 0 1] |
|---|
| 136 | |
|---|
| 137 | mat[0][0] = s.x; mat[0][1] = u.x; mat[0][2] = f.x; mat[0][3] = 0.0f; |
|---|
| 138 | mat[1][0] = s.y; mat[1][1] = u.y; mat[1][2] = f.y; mat[1][3] = 0.0f; |
|---|
| 139 | mat[2][0] = s.z; mat[2][1] = u.z; mat[2][2] = f.z; mat[2][3] = 0.0f; |
|---|
| 140 | |
|---|
| 141 | // translate eye to origin |
|---|
| 142 | mat[3][0] = -( mat[0][0] * eye.x + mat[1][0] * eye.y + mat[2][0] * eye.z ); |
|---|
| 143 | mat[3][1] = -( mat[0][1] * eye.x + mat[1][1] * eye.y + mat[2][1] * eye.z ); |
|---|
| 144 | mat[3][2] = -( mat[0][2] * eye.x + mat[1][2] * eye.y + mat[2][2] * eye.z ); |
|---|
| 145 | mat[3][3] = 1.0f - ( mat[0][3] * eye.x + mat[1][3] * eye.y + mat[2][3] * eye.z ); |
|---|
| 146 | } |
|---|
| 147 | |
|---|
| 148 | // |
|---|
| 149 | |
|---|
| 150 | void CMatrix::makePerspective(float left, float right, float bottom, float top, float znear, float zfar) |
|---|
| 151 | { |
|---|
| 152 | float temp = 1.0f / ( right - left ); |
|---|
| 153 | |
|---|
| 154 | mat[0][0]= ( 2.0f * znear ) * temp; |
|---|
| 155 | mat[1][0]= 0.0f; |
|---|
| 156 | mat[2][0]= ( right + left ) * temp; // for asymmetric views |
|---|
| 157 | mat[3][0]= 0.0f; |
|---|
| 158 | |
|---|
| 159 | temp = 1.0f / ( top - bottom ); |
|---|
| 160 | |
|---|
| 161 | mat[0][1]= 0.0f; |
|---|
| 162 | mat[1][1]= ( 2.0f * znear ) * temp; |
|---|
| 163 | mat[2][1]= ( top + bottom ) * temp; // for asymmetric views |
|---|
| 164 | mat[3][1]= 0.0f; |
|---|
| 165 | |
|---|
| 166 | temp = 1.0f / ( zfar - znear ); |
|---|
| 167 | |
|---|
| 168 | mat[0][2]= 0.0f; |
|---|
| 169 | mat[1][2]= 0.0f; |
|---|
| 170 | mat[2][2]= -( zfar + znear ) * temp; |
|---|
| 171 | mat[3][2]= ( -2.0f * zfar * znear ) * temp; |
|---|
| 172 | |
|---|
| 173 | mat[0][3]= 0.0f; |
|---|
| 174 | mat[1][3]= 0.0f; |
|---|
| 175 | mat[2][3]= -1.0f; |
|---|
| 176 | mat[3][3]= 0.0f; |
|---|
| 177 | } |
|---|
| 178 | |
|---|
| 179 | void CMatrix::makePerspectiveFOV(float hfov, float vfov, float aspect, float znear, float zfar) |
|---|
| 180 | { |
|---|
| 181 | float hfovRad=UtilDegToRad(hfov); |
|---|
| 182 | float vfovRad=UtilDegToRad(vfov); |
|---|
| 183 | |
|---|
| 184 | float l,r,t,b; |
|---|
| 185 | float h,v; |
|---|
| 186 | |
|---|
| 187 | if( hfovRad < 0.0f ) |
|---|
| 188 | { |
|---|
| 189 | h = (znear * tanf( vfovRad * 0.5f )) * aspect; |
|---|
| 190 | h = atanf( h / znear ) * 2.0f; |
|---|
| 191 | v = vfovRad; |
|---|
| 192 | } |
|---|
| 193 | else |
|---|
| 194 | { |
|---|
| 195 | v = (znear * tanf( hfovRad * 0.5f )) / aspect; |
|---|
| 196 | v = atanf( v / znear ) * 2.0f; |
|---|
| 197 | h = hfovRad; |
|---|
| 198 | } |
|---|
| 199 | |
|---|
| 200 | l = znear * -tanf( h * 0.5f ); |
|---|
| 201 | r = - l; |
|---|
| 202 | b = znear * -tanf( v * 0.5f ); |
|---|
| 203 | t = - b; |
|---|
| 204 | |
|---|
| 205 | makePerspective( l, r, b, t, znear, zfar ); |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | void CMatrix::makeOrthogonalPerspective(float left, float right, float bottom, float top, float znear, float zfar) |
|---|
| 209 | { |
|---|
| 210 | float temp = 1.0f / ( right - left ); |
|---|
| 211 | |
|---|
| 212 | mat[0][0]= 2.0f * temp; |
|---|
| 213 | mat[1][0]= 0.0f; |
|---|
| 214 | mat[2][0]= 0.0f; |
|---|
| 215 | mat[3][0]= - ( right + left ) * temp; |
|---|
| 216 | |
|---|
| 217 | temp = 1.0f / ( top - bottom ); |
|---|
| 218 | |
|---|
| 219 | mat[0][1]= 0.0f; |
|---|
| 220 | mat[1][1]= 2.0f * temp; |
|---|
| 221 | mat[2][1]= 0.0f; |
|---|
| 222 | mat[3][1]= -( top + bottom ) * temp; |
|---|
| 223 | |
|---|
| 224 | temp = 1.0f / ( zfar - znear ); |
|---|
| 225 | |
|---|
| 226 | mat[0][2]= 0.0f; |
|---|
| 227 | mat[1][2]= 0.0f; |
|---|
| 228 | mat[2][2]= -2.0f * temp; |
|---|
| 229 | mat[3][2]= -( zfar + znear ) * temp; |
|---|
| 230 | |
|---|
| 231 | mat[0][3]= 0.0f; |
|---|
| 232 | mat[1][3]= 0.0f; |
|---|
| 233 | mat[2][3]= 0.0f; |
|---|
| 234 | mat[3][3]= 1.0f; |
|---|
| 235 | } |
|---|
| 236 | |
|---|
| 237 | // |
|---|
| 238 | |
|---|
| 239 | void CMatrix::setRotationRadians(float angle, const CVec3& axis) |
|---|
| 240 | { |
|---|
| 241 | if(fabs(angle) < 0.0000005f) |
|---|
| 242 | { |
|---|
| 243 | mat[0][0] = mat[1][1] = mat[2][2] = 1.f; |
|---|
| 244 | mat[0][1] = mat[0][2] = mat[1][0] = mat[1][2] = mat[2][0] = mat[2][1] = 0.f; |
|---|
| 245 | } |
|---|
| 246 | else |
|---|
| 247 | { |
|---|
| 248 | float sine=sinf(angle); |
|---|
| 249 | float cosine=cosf(angle); |
|---|
| 250 | |
|---|
| 251 | CVec3 sineAxis; |
|---|
| 252 | sineAxis.scale(sine, axis); |
|---|
| 253 | |
|---|
| 254 | float t = 1.0f - cosine; |
|---|
| 255 | float tx = t * axis.x; |
|---|
| 256 | mat[0][0] = tx * axis.x + cosine; |
|---|
| 257 | mat[0][1] = tx * axis.y + sineAxis.z; |
|---|
| 258 | mat[0][2] = tx * axis.z - sineAxis.y; |
|---|
| 259 | |
|---|
| 260 | float ty = t * axis.y; |
|---|
| 261 | mat[1][0] = ty * axis.x - sineAxis.z; |
|---|
| 262 | mat[1][1] = ty * axis.y + cosine; |
|---|
| 263 | mat[1][2] = ty * axis.z + sineAxis.x; |
|---|
| 264 | |
|---|
| 265 | float tz = t * axis.z; |
|---|
| 266 | mat[2][0] = tz * axis.x + sineAxis.y; |
|---|
| 267 | mat[2][1] = tz * axis.y - sineAxis.x; |
|---|
| 268 | mat[2][2] = tz * axis.z + cosine; |
|---|
| 269 | } |
|---|
| 270 | } |
|---|
| 271 | |
|---|
| 272 | void CMatrix::setRotationRadians(float anglex, float angley, float anglez) |
|---|
| 273 | { |
|---|
| 274 | float sx, sy, sz, cx, cy, cz; |
|---|
| 275 | float sxsy, cxsz, cxcz; |
|---|
| 276 | |
|---|
| 277 | if( anglex != 0.0f ) { sincos( anglex, sx, cx ); } |
|---|
| 278 | else { sx = 0.0f; cx = 1.0f; sxsy = 0.0f; } |
|---|
| 279 | |
|---|
| 280 | if( angley != 0.0f ) { sincos( angley, sy, cy ); sxsy = sx * sy; } |
|---|
| 281 | else { sy = 0.0f; cy = 1.0f; sxsy = 0.0f; } |
|---|
| 282 | |
|---|
| 283 | if( anglez != 0.0f ) { sincos( anglez, sz, cz ); cxsz = cx * sz; } |
|---|
| 284 | else { sz = 0.0f; cz = 1.0f; cxsz = 0.0f; } |
|---|
| 285 | |
|---|
| 286 | cxcz = cx * cz; |
|---|
| 287 | |
|---|
| 288 | mat[0][0] = cy * cz; |
|---|
| 289 | mat[0][1] = cy * sz; |
|---|
| 290 | mat[0][2] = -sy; |
|---|
| 291 | |
|---|
| 292 | mat[1][0] = sxsy * cz - cxsz; |
|---|
| 293 | mat[1][1] = sxsy * sz + cx * cz; |
|---|
| 294 | mat[1][2] = sx * cy; |
|---|
| 295 | |
|---|
| 296 | mat[2][0] = cxcz * sy + sx * sz; |
|---|
| 297 | mat[2][1] = cxsz * sy - sx * cz; |
|---|
| 298 | mat[2][2] = cx * cy; |
|---|
| 299 | } |
|---|
| 300 | |
|---|
| 301 | void CMatrix::getRotationRadians(float& anglex, float& angley, float& anglez) |
|---|
| 302 | { |
|---|
| 303 | CVec3 temp; |
|---|
| 304 | CVec3 row0( (float*)mat[0] ); |
|---|
| 305 | CVec3 row1( (float*)mat[1] ); |
|---|
| 306 | CVec3 row2( (float*)mat[2] ); |
|---|
| 307 | |
|---|
| 308 | if( mat[3][3] != 1.0f ) |
|---|
| 309 | { |
|---|
| 310 | float global_scale_inverse = 1.0f / mat[3][3]; |
|---|
| 311 | row0.scale( global_scale_inverse ); |
|---|
| 312 | row1.scale( global_scale_inverse ); |
|---|
| 313 | row2.scale( global_scale_inverse ); |
|---|
| 314 | } |
|---|
| 315 | |
|---|
| 316 | // possible scale or shearing must be removed... |
|---|
| 317 | row0.normalize(); |
|---|
| 318 | |
|---|
| 319 | // Compute XY shear factor and make 2nd row orthogonal to 1st. |
|---|
| 320 | float shearXY = row0.dot( row1 ); |
|---|
| 321 | row1.addScaled( -shearXY, row0 ); |
|---|
| 322 | |
|---|
| 323 | // Now, normalize 2nd row. |
|---|
| 324 | row1.normalize(); |
|---|
| 325 | |
|---|
| 326 | // Compute XZ and YZ shears, orthogonalize 3rd row. |
|---|
| 327 | float shearXZ = row0.dot( row2 ); |
|---|
| 328 | row2.addScaled( -shearXZ, row0 ); |
|---|
| 329 | float shearYZ = row1.dot( row2 ); |
|---|
| 330 | row2.addScaled( -shearYZ, row1 ); |
|---|
| 331 | |
|---|
| 332 | // Next, normalize 3rd row. |
|---|
| 333 | row2.normalize(); |
|---|
| 334 | |
|---|
| 335 | // Check for a coordinate system flip. If the determinant is -1, then negate the rows. |
|---|
| 336 | temp.cross( row1, row2 ); |
|---|
| 337 | if( row0.dot( temp ) < 0.0f ) |
|---|
| 338 | { |
|---|
| 339 | row0.negate(); |
|---|
| 340 | row1.negate(); |
|---|
| 341 | row2.negate(); |
|---|
| 342 | } |
|---|
| 343 | |
|---|
| 344 | angley = asin( -row0.z ); |
|---|
| 345 | if( cosf( angley ) != 0.0f ) |
|---|
| 346 | { |
|---|
| 347 | anglex = atan2f( row1.z, row2.z ); |
|---|
| 348 | anglez = atan2f( row0.y, row0.x ); |
|---|
| 349 | } |
|---|
| 350 | else |
|---|
| 351 | { |
|---|
| 352 | anglex = atan2f( row1.x, row1.y ); |
|---|
| 353 | anglez = 0.0f; |
|---|
| 354 | } |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | // |
|---|
| 358 | |
|---|
| 359 | void CMatrix::multiply(const CMatrix& m) |
|---|
| 360 | { |
|---|
| 361 | /*register */unsigned int i; |
|---|
| 362 | float m2[4][4]; |
|---|
| 363 | |
|---|
| 364 | for( i=0; i<4; i++ ) { |
|---|
| 365 | |
|---|
| 366 | m2[0][i] = ( m.mat[0][0] * mat[0][i] + |
|---|
| 367 | m.mat[0][1] * mat[1][i] + |
|---|
| 368 | m.mat[0][2] * mat[2][i] + |
|---|
| 369 | m.mat[0][3] * mat[3][i] ); |
|---|
| 370 | |
|---|
| 371 | m2[1][i] = ( m.mat[1][0] * mat[0][i] + |
|---|
| 372 | m.mat[1][1] * mat[1][i] + |
|---|
| 373 | m.mat[1][2] * mat[2][i] + |
|---|
| 374 | m.mat[1][3] * mat[3][i] ); |
|---|
| 375 | |
|---|
| 376 | m2[2][i] = ( m.mat[2][0] * mat[0][i] + |
|---|
| 377 | m.mat[2][1] * mat[1][i] + |
|---|
| 378 | m.mat[2][2] * mat[2][i] + |
|---|
| 379 | m.mat[2][3] * mat[3][i] ); |
|---|
| 380 | |
|---|
| 381 | m2[3][i] = ( m.mat[3][0] * mat[0][i] + |
|---|
| 382 | m.mat[3][1] * mat[1][i] + |
|---|
| 383 | m.mat[3][2] * mat[2][i] + |
|---|
| 384 | m.mat[3][3] * mat[3][i] ); |
|---|
| 385 | } |
|---|
| 386 | |
|---|
| 387 | memcpy(mat, m2, 16*sizeof(float)); |
|---|
| 388 | } |
|---|
| 389 | |
|---|
| 390 | void CMatrix::multiply(const CMatrix& m1, const CMatrix& m2) |
|---|
| 391 | { |
|---|
| 392 | register unsigned int i; |
|---|
| 393 | |
|---|
| 394 | if( this != &m1 && this != &m2 ) { |
|---|
| 395 | |
|---|
| 396 | for( i=0; i<4; i++ ) { |
|---|
| 397 | |
|---|
| 398 | mat[0][i] = ( m1.mat[0][0] * m2.mat[0][i] + |
|---|
| 399 | m1.mat[0][1] * m2.mat[1][i] + |
|---|
| 400 | m1.mat[0][2] * m2.mat[2][i] + |
|---|
| 401 | m1.mat[0][3] * m2.mat[3][i] ); |
|---|
| 402 | |
|---|
| 403 | mat[1][i] = ( m1.mat[1][0] * m2.mat[0][i] + |
|---|
| 404 | m1.mat[1][1] * m2.mat[1][i] + |
|---|
| 405 | m1.mat[1][2] * m2.mat[2][i] + |
|---|
| 406 | m1.mat[1][3] * m2.mat[3][i] ); |
|---|
| 407 | |
|---|
| 408 | mat[2][i] = ( m1.mat[2][0] * m2.mat[0][i] + |
|---|
| 409 | m1.mat[2][1] * m2.mat[1][i] + |
|---|
| 410 | m1.mat[2][2] * m2.mat[2][i] + |
|---|
| 411 | m1.mat[2][3] * m2.mat[3][i] ); |
|---|
| 412 | |
|---|
| 413 | mat[3][i] = ( m1.mat[3][0] * m2.mat[0][i] + |
|---|
| 414 | m1.mat[3][1] * m2.mat[1][i] + |
|---|
| 415 | m1.mat[3][2] * m2.mat[2][i] + |
|---|
| 416 | m1.mat[3][3] * m2.mat[3][i] ); |
|---|
| 417 | } |
|---|
| 418 | |
|---|
| 419 | } |
|---|
| 420 | else { |
|---|
| 421 | |
|---|
| 422 | float m3[4][4]; |
|---|
| 423 | |
|---|
| 424 | for( i=0; i<4; i++ ) { |
|---|
| 425 | |
|---|
| 426 | m3[0][i] = ( m1.mat[0][0] * m2.mat[0][i] + |
|---|
| 427 | m1.mat[0][1] * m2.mat[1][i] + |
|---|
| 428 | m1.mat[0][2] * m2.mat[2][i] + |
|---|
| 429 | m1.mat[0][3] * m2.mat[3][i] ); |
|---|
| 430 | |
|---|
| 431 | m3[1][i] = ( m1.mat[1][0] * m2.mat[0][i] + |
|---|
| 432 | m1.mat[1][1] * m2.mat[1][i] + |
|---|
| 433 | m1.mat[1][2] * m2.mat[2][i] + |
|---|
| 434 | m1.mat[1][3] * m2.mat[3][i] ); |
|---|
| 435 | |
|---|
| 436 | m3[2][i] = ( m1.mat[2][0] * m2.mat[0][i] + |
|---|
| 437 | m1.mat[2][1] * m2.mat[1][i] + |
|---|
| 438 | m1.mat[2][2] * m2.mat[2][i] + |
|---|
| 439 | m1.mat[2][3] * m2.mat[3][i] ); |
|---|
| 440 | |
|---|
| 441 | m3[3][i] = ( m1.mat[3][0] * m2.mat[0][i] + |
|---|
| 442 | m1.mat[3][1] * m2.mat[1][i] + |
|---|
| 443 | m1.mat[3][2] * m2.mat[2][i] + |
|---|
| 444 | m1.mat[3][3] * m2.mat[3][i] ); |
|---|
| 445 | } |
|---|
| 446 | |
|---|
| 447 | memcpy(mat, m3, 16*sizeof(float)); |
|---|
| 448 | } |
|---|
| 449 | } |
|---|
| 450 | |
|---|
| 451 | // |
|---|
| 452 | |
|---|
| 453 | void CMatrix::transformPoints(const CVec3* from, CVec3* to, unsigned int iCount) const |
|---|
| 454 | { |
|---|
| 455 | register float t0, t1, t2, w; |
|---|
| 456 | |
|---|
| 457 | for( unsigned int i = 0; i < iCount; i++ ) |
|---|
| 458 | { |
|---|
| 459 | t0 = from[i].x; |
|---|
| 460 | t1 = from[i].y; |
|---|
| 461 | t2 = from[i].z; |
|---|
| 462 | |
|---|
| 463 | to[i].x = (t0 * mat[0][0] + t1 * mat[1][0] + t2 * mat[2][0] + mat[3][0]); |
|---|
| 464 | to[i].y = (t0 * mat[0][1] + t1 * mat[1][1] + t2 * mat[2][1] + mat[3][1]); |
|---|
| 465 | to[i].z = (t0 * mat[0][2] + t1 * mat[1][2] + t2 * mat[2][2] + mat[3][2]); |
|---|
| 466 | w = (t0 * mat[0][3] + t1 * mat[1][3] + t2 * mat[2][3] + mat[3][3]); |
|---|
| 467 | |
|---|
| 468 | if( w != 1.0f ) { |
|---|
| 469 | if( fabs( w ) < F_MinValue ) |
|---|
| 470 | w = F_MinValue; |
|---|
| 471 | w = 1.0f / w; |
|---|
| 472 | to[i].x *= w; |
|---|
| 473 | to[i].y *= w; |
|---|
| 474 | to[i].z *= w; |
|---|
| 475 | } |
|---|
| 476 | } |
|---|
| 477 | } |
|---|
| 478 | |
|---|
| 479 | void CMatrix::transformPoints(const CVec4* from, CVec4* to, unsigned int iCount) const |
|---|
| 480 | { |
|---|
| 481 | register float t0, t1, t2, t3; |
|---|
| 482 | |
|---|
| 483 | for( unsigned int i = 0; i < iCount; i++ ) |
|---|
| 484 | { |
|---|
| 485 | t0 = from[i].x; |
|---|
| 486 | t1 = from[i].y; |
|---|
| 487 | t2 = from[i].z; |
|---|
| 488 | t3 = from[i].w; |
|---|
| 489 | |
|---|
| 490 | to[i].x = (t0 * mat[0][0] + t1 * mat[1][0] + t2 * mat[2][0] + t3 * mat[3][0]); |
|---|
| 491 | to[i].y = (t0 * mat[0][1] + t1 * mat[1][1] + t2 * mat[2][1] + t3 * mat[3][1]); |
|---|
| 492 | to[i].z = (t0 * mat[0][2] + t1 * mat[1][2] + t2 * mat[2][2] + t3 * mat[3][2]); |
|---|
| 493 | to[i].w = (t0 * mat[0][3] + t1 * mat[1][3] + t2 * mat[2][3] + t3 * mat[3][3]); |
|---|
| 494 | } |
|---|
| 495 | } |
|---|
| 496 | |
|---|
| 497 | void CMatrix::transformVectors(const CVec3* from, CVec3* to, unsigned int iCount) const |
|---|
| 498 | { |
|---|
| 499 | /*register */float t0, t1, t2; |
|---|
| 500 | |
|---|
| 501 | for(unsigned int i = 0; i < iCount; i++, from++, to++) |
|---|
| 502 | { |
|---|
| 503 | t0 = from->x; |
|---|
| 504 | t1 = from->y; |
|---|
| 505 | t2 = from->z; |
|---|
| 506 | |
|---|
| 507 | to->x = (t0 * mat[0][0] + t1 * mat[1][0] + t2 * mat[2][0]); |
|---|
| 508 | to->y = (t0 * mat[0][1] + t1 * mat[1][1] + t2 * mat[2][1]); |
|---|
| 509 | to->z = (t0 * mat[0][2] + t1 * mat[1][2] + t2 * mat[2][2]); |
|---|
| 510 | } |
|---|
| 511 | } |
|---|
| 512 | |
|---|
| 513 | void CMatrix::transformVectors(const CVec4* from, CVec4* to, unsigned int iCount) const |
|---|
| 514 | { |
|---|
| 515 | /*register */float t0, t1, t2; |
|---|
| 516 | |
|---|
| 517 | for(unsigned int i = 0; i < iCount; i++, from++, to++) |
|---|
| 518 | { |
|---|
| 519 | t0 = from->x; |
|---|
| 520 | t1 = from->y; |
|---|
| 521 | t2 = from->z; |
|---|
| 522 | |
|---|
| 523 | to->x = (t0 * mat[0][0] + t1 * mat[1][0] + t2 * mat[2][0]); |
|---|
| 524 | to->y = (t0 * mat[0][1] + t1 * mat[1][1] + t2 * mat[2][1]); |
|---|
| 525 | to->z = (t0 * mat[0][2] + t1 * mat[1][2] + t2 * mat[2][2]); |
|---|
| 526 | to->w = from->w; |
|---|
| 527 | } |
|---|
| 528 | } |
|---|
| 529 | |
|---|
| 530 | // |
|---|
| 531 | |
|---|
| 532 | void CMatrix::invert() |
|---|
| 533 | { |
|---|
| 534 | float det, idet; |
|---|
| 535 | CMatrix local_matrix; |
|---|
| 536 | |
|---|
| 537 | const CMatrix& matrix=*this; |
|---|
| 538 | |
|---|
| 539 | // calculate the adjoint matrix |
|---|
| 540 | adjoint( matrix, local_matrix ); |
|---|
| 541 | // calculate the 4x4 determinant if the determinant is zero, |
|---|
| 542 | // then the inverse matrix is not unique. |
|---|
| 543 | det = matrix.determinant(); |
|---|
| 544 | |
|---|
| 545 | // This test is only made to avoid crash |
|---|
| 546 | // it is not a test of matrix inversibility |
|---|
| 547 | if( fabs( det ) < F_Min ) |
|---|
| 548 | throw; |
|---|
| 549 | |
|---|
| 550 | // scale the adjoint matrix to get the inverse |
|---|
| 551 | idet = 1.0f / det; |
|---|
| 552 | for(unsigned int i=0; i<4; ++i) |
|---|
| 553 | for(unsigned int j=0; j<4; ++j) |
|---|
| 554 | mat[i][j] = local_matrix.mat[i][j] * idet; |
|---|
| 555 | } |
|---|
| 556 | |
|---|
| 557 | // |
|---|
| 558 | |
|---|
| 559 | void CMatrix::transpose() |
|---|
| 560 | { |
|---|
| 561 | float m[4][4]; |
|---|
| 562 | |
|---|
| 563 | m[0][0] = mat[0][0]; |
|---|
| 564 | m[0][1] = mat[1][0]; |
|---|
| 565 | m[0][2] = mat[2][0]; |
|---|
| 566 | m[0][3] = mat[3][0]; |
|---|
| 567 | |
|---|
| 568 | m[1][0] = mat[0][1]; |
|---|
| 569 | m[1][1] = mat[1][1]; |
|---|
| 570 | m[1][2] = mat[2][1]; |
|---|
| 571 | m[1][3] = mat[3][1]; |
|---|
| 572 | |
|---|
| 573 | m[2][0] = mat[0][2]; |
|---|
| 574 | m[2][1] = mat[1][2]; |
|---|
| 575 | m[2][2] = mat[2][2]; |
|---|
| 576 | m[2][3] = mat[3][2]; |
|---|
| 577 | |
|---|
| 578 | m[3][0] = mat[0][3]; |
|---|
| 579 | m[3][1] = mat[1][3]; |
|---|
| 580 | m[3][2] = mat[2][3]; |
|---|
| 581 | m[3][3] = mat[3][3]; |
|---|
| 582 | |
|---|
| 583 | memcpy(mat, m, 16*sizeof(float)); |
|---|
| 584 | } |
|---|
| 585 | |
|---|
| 586 | // |
|---|
| 587 | |
|---|
| 588 | float CMatrix::determinant() const |
|---|
| 589 | { |
|---|
| 590 | float ans; |
|---|
| 591 | float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4; |
|---|
| 592 | |
|---|
| 593 | /* assign to individual variable names to aid selecting */ |
|---|
| 594 | /* correct elements */ |
|---|
| 595 | |
|---|
| 596 | a1 = mat[0][0]; b1 = mat[0][1]; |
|---|
| 597 | c1 = mat[0][2]; d1 = mat[0][3]; |
|---|
| 598 | |
|---|
| 599 | a2 = mat[1][0]; b2 = mat[1][1]; |
|---|
| 600 | c2 = mat[1][2]; d2 = mat[1][3]; |
|---|
| 601 | |
|---|
| 602 | a3 = mat[2][0]; b3 = mat[2][1]; |
|---|
| 603 | c3 = mat[2][2]; d3 = mat[2][3]; |
|---|
| 604 | |
|---|
| 605 | a4 = mat[3][0]; b4 = mat[3][1]; |
|---|
| 606 | c4 = mat[3][2]; d4 = mat[3][3]; |
|---|
| 607 | |
|---|
| 608 | ans = a1 * det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4) |
|---|
| 609 | - b1 * det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4) |
|---|
| 610 | + c1 * det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4) |
|---|
| 611 | - d1 * det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4); |
|---|
| 612 | |
|---|
| 613 | return ans; |
|---|
| 614 | } |
|---|
| 615 | |
|---|
| 616 | // |
|---|
| 617 | |
|---|
| 618 | void CMatrix::adjoint(const CMatrix& in, CMatrix& out) |
|---|
| 619 | { |
|---|
| 620 | float a1, a2, a3, a4, b1, b2, b3, b4; |
|---|
| 621 | float c1, c2, c3, c4, d1, d2, d3, d4; |
|---|
| 622 | |
|---|
| 623 | /* assign to individual variable names to aid */ |
|---|
| 624 | /* selecting correct values */ |
|---|
| 625 | |
|---|
| 626 | a1 = in.mat[0][0]; b1 = in.mat[0][1]; |
|---|
| 627 | c1 = in.mat[0][2]; d1 = in.mat[0][3]; |
|---|
| 628 | |
|---|
| 629 | a2 = in.mat[1][0]; b2 = in.mat[1][1]; |
|---|
| 630 | c2 = in.mat[1][2]; d2 = in.mat[1][3]; |
|---|
| 631 | |
|---|
| 632 | a3 = in.mat[2][0]; b3 = in.mat[2][1]; |
|---|
| 633 | c3 = in.mat[2][2]; d3 = in.mat[2][3]; |
|---|
| 634 | |
|---|
| 635 | a4 = in.mat[3][0]; b4 = in.mat[3][1]; |
|---|
| 636 | c4 = in.mat[3][2]; d4 = in.mat[3][3]; |
|---|
| 637 | |
|---|
| 638 | |
|---|
| 639 | /* row column labeling reversed since we transpose rows & columns */ |
|---|
| 640 | |
|---|
| 641 | out.mat[0][0] = det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4); |
|---|
| 642 | out.mat[1][0] = - det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4); |
|---|
| 643 | out.mat[2][0] = det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4); |
|---|
| 644 | out.mat[3][0] = - det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4); |
|---|
| 645 | |
|---|
| 646 | out.mat[0][1] = - det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4); |
|---|
| 647 | out.mat[1][1] = det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4); |
|---|
| 648 | out.mat[2][1] = - det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4); |
|---|
| 649 | out.mat[3][1] = det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4); |
|---|
| 650 | |
|---|
| 651 | out.mat[0][2] = det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4); |
|---|
| 652 | out.mat[1][2] = - det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4); |
|---|
| 653 | out.mat[2][2] = det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4); |
|---|
| 654 | out.mat[3][2] = - det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4); |
|---|
| 655 | |
|---|
| 656 | out.mat[0][3] = - det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3); |
|---|
| 657 | out.mat[1][3] = det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3); |
|---|
| 658 | out.mat[2][3] = - det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3); |
|---|
| 659 | out.mat[3][3] = det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3); |
|---|
| 660 | } |
|---|
| 661 | |
|---|
| 662 | // |
|---|
| 663 | |
|---|