| 1 | /* |
|---|
| 2 | ----------------------------------------------------------------------------- |
|---|
| 3 | This source file is part of OGRE |
|---|
| 4 | (Object-oriented Graphics Rendering Engine) |
|---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
|---|
| 6 | |
|---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
|---|
| 8 | Also see acknowledgements in Readme.html |
|---|
| 9 | |
|---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
|---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
|---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
|---|
| 13 | version. |
|---|
| 14 | |
|---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
|---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
|---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
|---|
| 18 | |
|---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
|---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
|---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
|---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
|---|
| 23 | |
|---|
| 24 | You may alternatively use this source under the terms of a specific version of |
|---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from |
|---|
| 26 | Torus Knot Software Ltd. |
|---|
| 27 | ----------------------------------------------------------------------------- |
|---|
| 28 | */ |
|---|
| 29 | #ifndef __Matrix4__ |
|---|
| 30 | #define __Matrix4__ |
|---|
| 31 | |
|---|
| 32 | // Precompiler options |
|---|
| 33 | #include "OgrePrerequisites.h" |
|---|
| 34 | |
|---|
| 35 | #include "OgreVector3.h" |
|---|
| 36 | #include "OgreMatrix3.h" |
|---|
| 37 | #include "OgreVector4.h" |
|---|
| 38 | #include "OgrePlane.h" |
|---|
| 39 | namespace Ogre |
|---|
| 40 | { |
|---|
| 41 | /** Class encapsulating a standard 4x4 homogenous matrix. |
|---|
| 42 | @remarks |
|---|
| 43 | OGRE uses column vectors when applying matrix multiplications, |
|---|
| 44 | This means a vector is represented as a single column, 4-row |
|---|
| 45 | matrix. This has the effect that the tranformations implemented |
|---|
| 46 | by the matrices happens right-to-left e.g. if vector V is to be |
|---|
| 47 | transformed by M1 then M2 then M3, the calculation would be |
|---|
| 48 | M3 * M2 * M1 * V. The order that matrices are concatenated is |
|---|
| 49 | vital since matrix multiplication is not cummatative, i.e. you |
|---|
| 50 | can get a different result if you concatenate in the wrong order. |
|---|
| 51 | @par |
|---|
| 52 | The use of column vectors and right-to-left ordering is the |
|---|
| 53 | standard in most mathematical texts, and id the same as used in |
|---|
| 54 | OpenGL. It is, however, the opposite of Direct3D, which has |
|---|
| 55 | inexplicably chosen to differ from the accepted standard and uses |
|---|
| 56 | row vectors and left-to-right matrix multiplication. |
|---|
| 57 | @par |
|---|
| 58 | OGRE deals with the differences between D3D and OpenGL etc. |
|---|
| 59 | internally when operating through different render systems. OGRE |
|---|
| 60 | users only need to conform to standard maths conventions, i.e. |
|---|
| 61 | right-to-left matrix multiplication, (OGRE transposes matrices it |
|---|
| 62 | passes to D3D to compensate). |
|---|
| 63 | @par |
|---|
| 64 | The generic form M * V which shows the layout of the matrix |
|---|
| 65 | entries is shown below: |
|---|
| 66 | <pre> |
|---|
| 67 | [ m[0][0] m[0][1] m[0][2] m[0][3] ] {x} |
|---|
| 68 | | m[1][0] m[1][1] m[1][2] m[1][3] | * {y} |
|---|
| 69 | | m[2][0] m[2][1] m[2][2] m[2][3] | {z} |
|---|
| 70 | [ m[3][0] m[3][1] m[3][2] m[3][3] ] {1} |
|---|
| 71 | </pre> |
|---|
| 72 | */ |
|---|
| 73 | class _OgreExport Matrix4 |
|---|
| 74 | { |
|---|
| 75 | protected: |
|---|
| 76 | /// The matrix entries, indexed by [row][col]. |
|---|
| 77 | union { |
|---|
| 78 | Real m[4][4]; |
|---|
| 79 | Real _m[16]; |
|---|
| 80 | }; |
|---|
| 81 | public: |
|---|
| 82 | /** Default constructor. |
|---|
| 83 | @note |
|---|
| 84 | It does <b>NOT</b> initialize the matrix for efficiency. |
|---|
| 85 | */ |
|---|
| 86 | inline Matrix4() |
|---|
| 87 | { |
|---|
| 88 | } |
|---|
| 89 | |
|---|
| 90 | inline Matrix4( |
|---|
| 91 | Real m00, Real m01, Real m02, Real m03, |
|---|
| 92 | Real m10, Real m11, Real m12, Real m13, |
|---|
| 93 | Real m20, Real m21, Real m22, Real m23, |
|---|
| 94 | Real m30, Real m31, Real m32, Real m33 ) |
|---|
| 95 | { |
|---|
| 96 | m[0][0] = m00; |
|---|
| 97 | m[0][1] = m01; |
|---|
| 98 | m[0][2] = m02; |
|---|
| 99 | m[0][3] = m03; |
|---|
| 100 | m[1][0] = m10; |
|---|
| 101 | m[1][1] = m11; |
|---|
| 102 | m[1][2] = m12; |
|---|
| 103 | m[1][3] = m13; |
|---|
| 104 | m[2][0] = m20; |
|---|
| 105 | m[2][1] = m21; |
|---|
| 106 | m[2][2] = m22; |
|---|
| 107 | m[2][3] = m23; |
|---|
| 108 | m[3][0] = m30; |
|---|
| 109 | m[3][1] = m31; |
|---|
| 110 | m[3][2] = m32; |
|---|
| 111 | m[3][3] = m33; |
|---|
| 112 | } |
|---|
| 113 | |
|---|
| 114 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix. |
|---|
| 115 | */ |
|---|
| 116 | |
|---|
| 117 | inline Matrix4(const Matrix3& m3x3) |
|---|
| 118 | { |
|---|
| 119 | operator=(IDENTITY); |
|---|
| 120 | operator=(m3x3); |
|---|
| 121 | } |
|---|
| 122 | |
|---|
| 123 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion. |
|---|
| 124 | */ |
|---|
| 125 | |
|---|
| 126 | inline Matrix4(const Quaternion& rot) |
|---|
| 127 | { |
|---|
| 128 | Matrix3 m3x3; |
|---|
| 129 | rot.ToRotationMatrix(m3x3); |
|---|
| 130 | operator=(IDENTITY); |
|---|
| 131 | operator=(m3x3); |
|---|
| 132 | } |
|---|
| 133 | |
|---|
| 134 | |
|---|
| 135 | inline Real* operator [] ( size_t iRow ) |
|---|
| 136 | { |
|---|
| 137 | assert( iRow < 4 ); |
|---|
| 138 | return m[iRow]; |
|---|
| 139 | } |
|---|
| 140 | |
|---|
| 141 | inline const Real *const operator [] ( size_t iRow ) const |
|---|
| 142 | { |
|---|
| 143 | assert( iRow < 4 ); |
|---|
| 144 | return m[iRow]; |
|---|
| 145 | } |
|---|
| 146 | |
|---|
| 147 | inline Matrix4 concatenate(const Matrix4 &m2) const |
|---|
| 148 | { |
|---|
| 149 | Matrix4 r; |
|---|
| 150 | r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0]; |
|---|
| 151 | r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1]; |
|---|
| 152 | r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2]; |
|---|
| 153 | r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3]; |
|---|
| 154 | |
|---|
| 155 | r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0]; |
|---|
| 156 | r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1]; |
|---|
| 157 | r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2]; |
|---|
| 158 | r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3]; |
|---|
| 159 | |
|---|
| 160 | r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0]; |
|---|
| 161 | r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1]; |
|---|
| 162 | r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2]; |
|---|
| 163 | r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3]; |
|---|
| 164 | |
|---|
| 165 | r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0]; |
|---|
| 166 | r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1]; |
|---|
| 167 | r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2]; |
|---|
| 168 | r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3]; |
|---|
| 169 | |
|---|
| 170 | return r; |
|---|
| 171 | } |
|---|
| 172 | |
|---|
| 173 | /** Matrix concatenation using '*'. |
|---|
| 174 | */ |
|---|
| 175 | inline Matrix4 operator * ( const Matrix4 &m2 ) const |
|---|
| 176 | { |
|---|
| 177 | return concatenate( m2 ); |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | /** Vector transformation using '*'. |
|---|
| 181 | @remarks |
|---|
| 182 | Transforms the given 3-D vector by the matrix, projecting the |
|---|
| 183 | result back into <i>w</i> = 1. |
|---|
| 184 | @note |
|---|
| 185 | This means that the initial <i>w</i> is considered to be 1.0, |
|---|
| 186 | and then all the tree elements of the resulting 3-D vector are |
|---|
| 187 | divided by the resulting <i>w</i>. |
|---|
| 188 | */ |
|---|
| 189 | inline Vector3 operator * ( const Vector3 &v ) const |
|---|
| 190 | { |
|---|
| 191 | Vector3 r; |
|---|
| 192 | |
|---|
| 193 | Real fInvW = 1.0 / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] ); |
|---|
| 194 | |
|---|
| 195 | r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW; |
|---|
| 196 | r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW; |
|---|
| 197 | r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW; |
|---|
| 198 | |
|---|
| 199 | return r; |
|---|
| 200 | } |
|---|
| 201 | inline Vector4 operator * (const Vector4& v) const |
|---|
| 202 | { |
|---|
| 203 | return Vector4( |
|---|
| 204 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
|---|
| 205 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
|---|
| 206 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
|---|
| 207 | m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w |
|---|
| 208 | ); |
|---|
| 209 | } |
|---|
| 210 | inline Plane operator * (const Plane& p) const |
|---|
| 211 | { |
|---|
| 212 | Plane ret; |
|---|
| 213 | Matrix4 invTrans = inverse().transpose(); |
|---|
| 214 | Vector4 v4( p.normal.x, p.normal.y, p.normal.z, p.d ); |
|---|
| 215 | v4 = invTrans * v4; |
|---|
| 216 | ret.normal.x = v4.x; |
|---|
| 217 | ret.normal.y = v4.y; |
|---|
| 218 | ret.normal.z = v4.z; |
|---|
| 219 | ret.d = v4.w / ret.normal.normalise(); |
|---|
| 220 | |
|---|
| 221 | return ret; |
|---|
| 222 | } |
|---|
| 223 | |
|---|
| 224 | |
|---|
| 225 | /** Matrix addition. |
|---|
| 226 | */ |
|---|
| 227 | inline Matrix4 operator + ( const Matrix4 &m2 ) const |
|---|
| 228 | { |
|---|
| 229 | Matrix4 r; |
|---|
| 230 | |
|---|
| 231 | r.m[0][0] = m[0][0] + m2.m[0][0]; |
|---|
| 232 | r.m[0][1] = m[0][1] + m2.m[0][1]; |
|---|
| 233 | r.m[0][2] = m[0][2] + m2.m[0][2]; |
|---|
| 234 | r.m[0][3] = m[0][3] + m2.m[0][3]; |
|---|
| 235 | |
|---|
| 236 | r.m[1][0] = m[1][0] + m2.m[1][0]; |
|---|
| 237 | r.m[1][1] = m[1][1] + m2.m[1][1]; |
|---|
| 238 | r.m[1][2] = m[1][2] + m2.m[1][2]; |
|---|
| 239 | r.m[1][3] = m[1][3] + m2.m[1][3]; |
|---|
| 240 | |
|---|
| 241 | r.m[2][0] = m[2][0] + m2.m[2][0]; |
|---|
| 242 | r.m[2][1] = m[2][1] + m2.m[2][1]; |
|---|
| 243 | r.m[2][2] = m[2][2] + m2.m[2][2]; |
|---|
| 244 | r.m[2][3] = m[2][3] + m2.m[2][3]; |
|---|
| 245 | |
|---|
| 246 | r.m[3][0] = m[3][0] + m2.m[3][0]; |
|---|
| 247 | r.m[3][1] = m[3][1] + m2.m[3][1]; |
|---|
| 248 | r.m[3][2] = m[3][2] + m2.m[3][2]; |
|---|
| 249 | r.m[3][3] = m[3][3] + m2.m[3][3]; |
|---|
| 250 | |
|---|
| 251 | return r; |
|---|
| 252 | } |
|---|
| 253 | |
|---|
| 254 | /** Matrix subtraction. |
|---|
| 255 | */ |
|---|
| 256 | inline Matrix4 operator - ( const Matrix4 &m2 ) const |
|---|
| 257 | { |
|---|
| 258 | Matrix4 r; |
|---|
| 259 | r.m[0][0] = m[0][0] - m2.m[0][0]; |
|---|
| 260 | r.m[0][1] = m[0][1] - m2.m[0][1]; |
|---|
| 261 | r.m[0][2] = m[0][2] - m2.m[0][2]; |
|---|
| 262 | r.m[0][3] = m[0][3] - m2.m[0][3]; |
|---|
| 263 | |
|---|
| 264 | r.m[1][0] = m[1][0] - m2.m[1][0]; |
|---|
| 265 | r.m[1][1] = m[1][1] - m2.m[1][1]; |
|---|
| 266 | r.m[1][2] = m[1][2] - m2.m[1][2]; |
|---|
| 267 | r.m[1][3] = m[1][3] - m2.m[1][3]; |
|---|
| 268 | |
|---|
| 269 | r.m[2][0] = m[2][0] - m2.m[2][0]; |
|---|
| 270 | r.m[2][1] = m[2][1] - m2.m[2][1]; |
|---|
| 271 | r.m[2][2] = m[2][2] - m2.m[2][2]; |
|---|
| 272 | r.m[2][3] = m[2][3] - m2.m[2][3]; |
|---|
| 273 | |
|---|
| 274 | r.m[3][0] = m[3][0] - m2.m[3][0]; |
|---|
| 275 | r.m[3][1] = m[3][1] - m2.m[3][1]; |
|---|
| 276 | r.m[3][2] = m[3][2] - m2.m[3][2]; |
|---|
| 277 | r.m[3][3] = m[3][3] - m2.m[3][3]; |
|---|
| 278 | |
|---|
| 279 | return r; |
|---|
| 280 | } |
|---|
| 281 | |
|---|
| 282 | /** Tests 2 matrices for equality. |
|---|
| 283 | */ |
|---|
| 284 | inline bool operator == ( const Matrix4& m2 ) const |
|---|
| 285 | { |
|---|
| 286 | if( |
|---|
| 287 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
|---|
| 288 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
|---|
| 289 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
|---|
| 290 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
|---|
| 291 | return false; |
|---|
| 292 | return true; |
|---|
| 293 | } |
|---|
| 294 | |
|---|
| 295 | /** Tests 2 matrices for inequality. |
|---|
| 296 | */ |
|---|
| 297 | inline bool operator != ( const Matrix4& m2 ) const |
|---|
| 298 | { |
|---|
| 299 | if( |
|---|
| 300 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
|---|
| 301 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
|---|
| 302 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
|---|
| 303 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
|---|
| 304 | return true; |
|---|
| 305 | return false; |
|---|
| 306 | } |
|---|
| 307 | |
|---|
| 308 | /** Assignment from 3x3 matrix. |
|---|
| 309 | */ |
|---|
| 310 | inline void operator = ( const Matrix3& mat3 ) |
|---|
| 311 | { |
|---|
| 312 | m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2]; |
|---|
| 313 | m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2]; |
|---|
| 314 | m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2]; |
|---|
| 315 | } |
|---|
| 316 | |
|---|
| 317 | inline Matrix4 transpose(void) const |
|---|
| 318 | { |
|---|
| 319 | return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0], |
|---|
| 320 | m[0][1], m[1][1], m[2][1], m[3][1], |
|---|
| 321 | m[0][2], m[1][2], m[2][2], m[3][2], |
|---|
| 322 | m[0][3], m[1][3], m[2][3], m[3][3]); |
|---|
| 323 | } |
|---|
| 324 | |
|---|
| 325 | /* |
|---|
| 326 | ----------------------------------------------------------------------- |
|---|
| 327 | Translation Transformation |
|---|
| 328 | ----------------------------------------------------------------------- |
|---|
| 329 | */ |
|---|
| 330 | /** Sets the translation transformation part of the matrix. |
|---|
| 331 | */ |
|---|
| 332 | inline void setTrans( const Vector3& v ) |
|---|
| 333 | { |
|---|
| 334 | m[0][3] = v.x; |
|---|
| 335 | m[1][3] = v.y; |
|---|
| 336 | m[2][3] = v.z; |
|---|
| 337 | } |
|---|
| 338 | |
|---|
| 339 | /** Extracts the translation transformation part of the matrix. |
|---|
| 340 | */ |
|---|
| 341 | inline Vector3 getTrans() const |
|---|
| 342 | { |
|---|
| 343 | return Vector3(m[0][3], m[1][3], m[2][3]); |
|---|
| 344 | } |
|---|
| 345 | |
|---|
| 346 | |
|---|
| 347 | /** Builds a translation matrix |
|---|
| 348 | */ |
|---|
| 349 | inline void makeTrans( const Vector3& v ) |
|---|
| 350 | { |
|---|
| 351 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x; |
|---|
| 352 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y; |
|---|
| 353 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z; |
|---|
| 354 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | inline void makeTrans( Real tx, Real ty, Real tz ) |
|---|
| 358 | { |
|---|
| 359 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx; |
|---|
| 360 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty; |
|---|
| 361 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz; |
|---|
| 362 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
|---|
| 363 | } |
|---|
| 364 | |
|---|
| 365 | /** Gets a translation matrix. |
|---|
| 366 | */ |
|---|
| 367 | inline static Matrix4 getTrans( const Vector3& v ) |
|---|
| 368 | { |
|---|
| 369 | Matrix4 r; |
|---|
| 370 | |
|---|
| 371 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x; |
|---|
| 372 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y; |
|---|
| 373 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z; |
|---|
| 374 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
|---|
| 375 | |
|---|
| 376 | return r; |
|---|
| 377 | } |
|---|
| 378 | |
|---|
| 379 | /** Gets a translation matrix - variation for not using a vector. |
|---|
| 380 | */ |
|---|
| 381 | inline static Matrix4 getTrans( Real t_x, Real t_y, Real t_z ) |
|---|
| 382 | { |
|---|
| 383 | Matrix4 r; |
|---|
| 384 | |
|---|
| 385 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x; |
|---|
| 386 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y; |
|---|
| 387 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z; |
|---|
| 388 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
|---|
| 389 | |
|---|
| 390 | return r; |
|---|
| 391 | } |
|---|
| 392 | |
|---|
| 393 | /* |
|---|
| 394 | ----------------------------------------------------------------------- |
|---|
| 395 | Scale Transformation |
|---|
| 396 | ----------------------------------------------------------------------- |
|---|
| 397 | */ |
|---|
| 398 | /** Sets the scale part of the matrix. |
|---|
| 399 | */ |
|---|
| 400 | inline void setScale( const Vector3& v ) |
|---|
| 401 | { |
|---|
| 402 | m[0][0] = v.x; |
|---|
| 403 | m[1][1] = v.y; |
|---|
| 404 | m[2][2] = v.z; |
|---|
| 405 | } |
|---|
| 406 | |
|---|
| 407 | /** Gets a scale matrix. |
|---|
| 408 | */ |
|---|
| 409 | inline static Matrix4 getScale( const Vector3& v ) |
|---|
| 410 | { |
|---|
| 411 | Matrix4 r; |
|---|
| 412 | r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
|---|
| 413 | r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
|---|
| 414 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0; |
|---|
| 415 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
|---|
| 416 | |
|---|
| 417 | return r; |
|---|
| 418 | } |
|---|
| 419 | |
|---|
| 420 | /** Gets a scale matrix - variation for not using a vector. |
|---|
| 421 | */ |
|---|
| 422 | inline static Matrix4 getScale( Real s_x, Real s_y, Real s_z ) |
|---|
| 423 | { |
|---|
| 424 | Matrix4 r; |
|---|
| 425 | r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
|---|
| 426 | r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
|---|
| 427 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0; |
|---|
| 428 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
|---|
| 429 | |
|---|
| 430 | return r; |
|---|
| 431 | } |
|---|
| 432 | |
|---|
| 433 | /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix. |
|---|
| 434 | @param m3x3 Destination Matrix3 |
|---|
| 435 | */ |
|---|
| 436 | inline void extract3x3Matrix(Matrix3& m3x3) const |
|---|
| 437 | { |
|---|
| 438 | m3x3.m[0][0] = m[0][0]; |
|---|
| 439 | m3x3.m[0][1] = m[0][1]; |
|---|
| 440 | m3x3.m[0][2] = m[0][2]; |
|---|
| 441 | m3x3.m[1][0] = m[1][0]; |
|---|
| 442 | m3x3.m[1][1] = m[1][1]; |
|---|
| 443 | m3x3.m[1][2] = m[1][2]; |
|---|
| 444 | m3x3.m[2][0] = m[2][0]; |
|---|
| 445 | m3x3.m[2][1] = m[2][1]; |
|---|
| 446 | m3x3.m[2][2] = m[2][2]; |
|---|
| 447 | |
|---|
| 448 | } |
|---|
| 449 | |
|---|
| 450 | /** Extracts the rotation / scaling part as a quaternion from the Matrix. |
|---|
| 451 | */ |
|---|
| 452 | inline Quaternion extractQuaternion() const |
|---|
| 453 | { |
|---|
| 454 | Matrix3 m3x3; |
|---|
| 455 | extract3x3Matrix(m3x3); |
|---|
| 456 | return Quaternion(m3x3); |
|---|
| 457 | } |
|---|
| 458 | |
|---|
| 459 | static const Matrix4 ZERO; |
|---|
| 460 | static const Matrix4 IDENTITY; |
|---|
| 461 | /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1} |
|---|
| 462 | and inverts the Y. */ |
|---|
| 463 | static const Matrix4 CLIPSPACE2DTOIMAGESPACE; |
|---|
| 464 | |
|---|
| 465 | inline Matrix4 operator*(Real scalar) const |
|---|
| 466 | { |
|---|
| 467 | return Matrix4( |
|---|
| 468 | scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3], |
|---|
| 469 | scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3], |
|---|
| 470 | scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3], |
|---|
| 471 | scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]); |
|---|
| 472 | } |
|---|
| 473 | |
|---|
| 474 | /** Function for writing to a stream. |
|---|
| 475 | */ |
|---|
| 476 | inline _OgreExport friend std::ostream& operator << |
|---|
| 477 | ( std::ostream& o, const Matrix4& m ) |
|---|
| 478 | { |
|---|
| 479 | o << "Matrix4("; |
|---|
| 480 | for (size_t i = 0; i < 4; ++i) |
|---|
| 481 | { |
|---|
| 482 | o << " row" << (unsigned)i << "{"; |
|---|
| 483 | for(size_t j = 0; j < 4; ++j) |
|---|
| 484 | { |
|---|
| 485 | o << m[i][j] << " "; |
|---|
| 486 | } |
|---|
| 487 | o << "}"; |
|---|
| 488 | } |
|---|
| 489 | o << ")"; |
|---|
| 490 | return o; |
|---|
| 491 | } |
|---|
| 492 | |
|---|
| 493 | Matrix4 adjoint() const; |
|---|
| 494 | Real determinant() const; |
|---|
| 495 | Matrix4 inverse() const; |
|---|
| 496 | |
|---|
| 497 | /** Building a Matrix4 from orientation / scale / position. |
|---|
| 498 | @remarks |
|---|
| 499 | Transform is performed in the order scale, rotate, translation, i.e. translation is independent |
|---|
| 500 | of orientation axes, scale does not affect size of translation, rotation and scaling are always |
|---|
| 501 | centered on the origin. |
|---|
| 502 | */ |
|---|
| 503 | void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
|---|
| 504 | |
|---|
| 505 | /** Building an inverse Matrix4 from orientation / scale / position. |
|---|
| 506 | @remarks |
|---|
| 507 | As makeTransform except it build the inverse given the same data as makeTransform, so |
|---|
| 508 | performing -translation, -rotate, 1/scale in that order. |
|---|
| 509 | */ |
|---|
| 510 | void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
|---|
| 511 | |
|---|
| 512 | /** Check whether or not the matrix is affine matrix. |
|---|
| 513 | @remarks |
|---|
| 514 | An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1), |
|---|
| 515 | e.g. no projective coefficients. |
|---|
| 516 | */ |
|---|
| 517 | inline bool isAffine(void) const |
|---|
| 518 | { |
|---|
| 519 | return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1; |
|---|
| 520 | } |
|---|
| 521 | |
|---|
| 522 | /** Returns the inverse of the affine matrix. |
|---|
| 523 | @note |
|---|
| 524 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
|---|
| 525 | */ |
|---|
| 526 | Matrix4 inverseAffine(void) const; |
|---|
| 527 | |
|---|
| 528 | /** Concatenate two affine matrix. |
|---|
| 529 | @note |
|---|
| 530 | The matrices must be affine matrix. @see Matrix4::isAffine. |
|---|
| 531 | */ |
|---|
| 532 | inline Matrix4 concatenateAffine(const Matrix4 &m2) const |
|---|
| 533 | { |
|---|
| 534 | assert(isAffine() && m2.isAffine()); |
|---|
| 535 | |
|---|
| 536 | return Matrix4( |
|---|
| 537 | m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0], |
|---|
| 538 | m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1], |
|---|
| 539 | m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2], |
|---|
| 540 | m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3], |
|---|
| 541 | |
|---|
| 542 | m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0], |
|---|
| 543 | m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1], |
|---|
| 544 | m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2], |
|---|
| 545 | m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3], |
|---|
| 546 | |
|---|
| 547 | m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0], |
|---|
| 548 | m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1], |
|---|
| 549 | m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2], |
|---|
| 550 | m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3], |
|---|
| 551 | |
|---|
| 552 | 0, 0, 0, 1); |
|---|
| 553 | } |
|---|
| 554 | |
|---|
| 555 | /** 3-D Vector transformation specially for affine matrix. |
|---|
| 556 | @remarks |
|---|
| 557 | Transforms the given 3-D vector by the matrix, projecting the |
|---|
| 558 | result back into <i>w</i> = 1. |
|---|
| 559 | @note |
|---|
| 560 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
|---|
| 561 | */ |
|---|
| 562 | inline Vector3 transformAffine(const Vector3& v) const |
|---|
| 563 | { |
|---|
| 564 | assert(isAffine()); |
|---|
| 565 | |
|---|
| 566 | return Vector3( |
|---|
| 567 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], |
|---|
| 568 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3], |
|---|
| 569 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]); |
|---|
| 570 | } |
|---|
| 571 | |
|---|
| 572 | /** 4-D Vector transformation specially for affine matrix. |
|---|
| 573 | @note |
|---|
| 574 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
|---|
| 575 | */ |
|---|
| 576 | inline Vector4 transformAffine(const Vector4& v) const |
|---|
| 577 | { |
|---|
| 578 | assert(isAffine()); |
|---|
| 579 | |
|---|
| 580 | return Vector4( |
|---|
| 581 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
|---|
| 582 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
|---|
| 583 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
|---|
| 584 | v.w); |
|---|
| 585 | } |
|---|
| 586 | }; |
|---|
| 587 | |
|---|
| 588 | /* Removed from Vector4 and made a non-member here because otherwise |
|---|
| 589 | OgreMatrix4.h and OgreVector4.h have to try to include and inline each |
|---|
| 590 | other, which frankly doesn't work ;) |
|---|
| 591 | */ |
|---|
| 592 | inline Vector4 operator * (const Vector4& v, const Matrix4& mat) |
|---|
| 593 | { |
|---|
| 594 | return Vector4( |
|---|
| 595 | v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0], |
|---|
| 596 | v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1], |
|---|
| 597 | v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2], |
|---|
| 598 | v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3] |
|---|
| 599 | ); |
|---|
| 600 | } |
|---|
| 601 | |
|---|
| 602 | } |
|---|
| 603 | #endif |
|---|