| 1 | /* integrate.hpp header file |
|---|
| 2 | * |
|---|
| 3 | * Copyright Jens Maurer 2000 |
|---|
| 4 | * Distributed under the Boost Software License, Version 1.0. (See |
|---|
| 5 | * accompanying file LICENSE_1_0.txt or copy at |
|---|
| 6 | * http://www.boost.org/LICENSE_1_0.txt) |
|---|
| 7 | * |
|---|
| 8 | * $Id: integrate.hpp,v 1.5 2004/07/27 03:43:34 dgregor Exp $ |
|---|
| 9 | * |
|---|
| 10 | * Revision history |
|---|
| 11 | * 01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock) |
|---|
| 12 | */ |
|---|
| 13 | |
|---|
| 14 | #ifndef INTEGRATE_HPP |
|---|
| 15 | #define INTEGRATE_HPP |
|---|
| 16 | |
|---|
| 17 | #include <boost/limits.hpp> |
|---|
| 18 | |
|---|
| 19 | template<class UnaryFunction> |
|---|
| 20 | inline typename UnaryFunction::result_type |
|---|
| 21 | trapezoid(UnaryFunction f, typename UnaryFunction::argument_type a, |
|---|
| 22 | typename UnaryFunction::argument_type b, int n) |
|---|
| 23 | { |
|---|
| 24 | typename UnaryFunction::result_type tmp = 0; |
|---|
| 25 | for(int i = 1; i <= n-1; ++i) |
|---|
| 26 | tmp += f(a+(b-a)/n*i); |
|---|
| 27 | return (b-a)/2/n * (f(a) + f(b) + 2*tmp); |
|---|
| 28 | } |
|---|
| 29 | |
|---|
| 30 | template<class UnaryFunction> |
|---|
| 31 | inline typename UnaryFunction::result_type |
|---|
| 32 | simpson(UnaryFunction f, typename UnaryFunction::argument_type a, |
|---|
| 33 | typename UnaryFunction::argument_type b, int n) |
|---|
| 34 | { |
|---|
| 35 | typename UnaryFunction::result_type tmp1 = 0; |
|---|
| 36 | for(int i = 1; i <= n-1; ++i) |
|---|
| 37 | tmp1 += f(a+(b-a)/n*i); |
|---|
| 38 | typename UnaryFunction::result_type tmp2 = 0; |
|---|
| 39 | for(int i = 1; i <= n ; ++i) |
|---|
| 40 | tmp2 += f(a+(b-a)/2/n*(2*i-1)); |
|---|
| 41 | |
|---|
| 42 | return (b-a)/6/n * (f(a) + f(b) + 2*tmp1 + 4*tmp2); |
|---|
| 43 | } |
|---|
| 44 | |
|---|
| 45 | // compute b so that f(b) = y; assume f is monotone increasing |
|---|
| 46 | template<class UnaryFunction> |
|---|
| 47 | inline typename UnaryFunction::argument_type |
|---|
| 48 | invert_monotone_inc(UnaryFunction f, typename UnaryFunction::result_type y, |
|---|
| 49 | typename UnaryFunction::argument_type lower = -1, |
|---|
| 50 | typename UnaryFunction::argument_type upper = 1) |
|---|
| 51 | { |
|---|
| 52 | while(upper-lower > 1e-6) { |
|---|
| 53 | double middle = (upper+lower)/2; |
|---|
| 54 | if(f(middle) > y) |
|---|
| 55 | upper = middle; |
|---|
| 56 | else |
|---|
| 57 | lower = middle; |
|---|
| 58 | } |
|---|
| 59 | return (upper+lower)/2; |
|---|
| 60 | } |
|---|
| 61 | |
|---|
| 62 | // compute b so that I(f(x), a, b) == y |
|---|
| 63 | template<class UnaryFunction> |
|---|
| 64 | inline typename UnaryFunction::argument_type |
|---|
| 65 | quantil(UnaryFunction f, typename UnaryFunction::argument_type a, |
|---|
| 66 | typename UnaryFunction::result_type y, |
|---|
| 67 | typename UnaryFunction::argument_type step) |
|---|
| 68 | { |
|---|
| 69 | typedef typename UnaryFunction::result_type result_type; |
|---|
| 70 | if(y >= 1.0) |
|---|
| 71 | return std::numeric_limits<result_type>::infinity(); |
|---|
| 72 | typename UnaryFunction::argument_type b = a; |
|---|
| 73 | for(result_type result = 0; result < y; b += step) |
|---|
| 74 | result += step*f(b); |
|---|
| 75 | return b; |
|---|
| 76 | } |
|---|
| 77 | |
|---|
| 78 | |
|---|
| 79 | #endif /* INTEGRATE_HPP */ |
|---|