| 1 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" |
|---|
| 2 | "http://www.w3.org/TR/html4/loose.dtd"> |
|---|
| 3 | |
|---|
| 4 | <html> |
|---|
| 5 | <head> |
|---|
| 6 | <meta http-equiv="Content-Language" content="en-us"> |
|---|
| 7 | <meta http-equiv="Content-Type" content="text/html; charset=us-ascii"> |
|---|
| 8 | <link rel="stylesheet" type="text/css" href="../../../../boost.css"> |
|---|
| 9 | |
|---|
| 10 | <title>Tests and Examples</title> |
|---|
| 11 | </head> |
|---|
| 12 | |
|---|
| 13 | <body lang="en"> |
|---|
| 14 | <h1>Tests and Examples</h1> |
|---|
| 15 | |
|---|
| 16 | <h2>A first example</h2> |
|---|
| 17 | |
|---|
| 18 | <p>This example shows how to design a function which takes a polynomial and |
|---|
| 19 | a value and returns the sign of this polynomial at this point. This |
|---|
| 20 | function is a filter: if the answer is not guaranteed, the functions says |
|---|
| 21 | so. The reason of using a filter rather than a simple evaluation function |
|---|
| 22 | is: computations with floating-point numbers will incur approximations and |
|---|
| 23 | it can be enough to change the sign of the polynomial. So, in order to |
|---|
| 24 | validate the result, the function will use interval arithmetic.</p> |
|---|
| 25 | |
|---|
| 26 | <p>The first step is the inclusion of the appropriate headers. Because the |
|---|
| 27 | function will handle floating-point bounds, the easiest solution is:</p> |
|---|
| 28 | <pre> |
|---|
| 29 | #include <boost/numeric/interval.hpp> |
|---|
| 30 | </pre> |
|---|
| 31 | |
|---|
| 32 | <p>Now, let's begin the function. The polynomial is given by the array of |
|---|
| 33 | its coefficients and its size (strictly greater to its degree). In order to |
|---|
| 34 | simplify the code, two namespaces of the library are included.</p> |
|---|
| 35 | <pre> |
|---|
| 36 | int sign_polynomial(double x, double P[], int sz) { |
|---|
| 37 | using namespace boost::numeric; |
|---|
| 38 | using namespace interval_lib; |
|---|
| 39 | </pre> |
|---|
| 40 | |
|---|
| 41 | <p>Then we can define the interval type. Since no special behavior is |
|---|
| 42 | required, the default policies are enough:</p> |
|---|
| 43 | <pre> |
|---|
| 44 | typedef interval<double> I; |
|---|
| 45 | </pre> |
|---|
| 46 | |
|---|
| 47 | <p>For the evaluation, let's just use the Horner scheme with interval |
|---|
| 48 | arithmetic. The library overloads all the arithmetic operators and provides |
|---|
| 49 | mixed operations, so the only difference between the code with and without |
|---|
| 50 | interval arithmetic lies in the type of the iterated value |
|---|
| 51 | <code>y</code>:</p> |
|---|
| 52 | <pre> |
|---|
| 53 | I y = P[sz - 1]; |
|---|
| 54 | for(int i = sz - 2; i >= 0; i--) |
|---|
| 55 | y = y * x + P[i]; |
|---|
| 56 | </pre> |
|---|
| 57 | |
|---|
| 58 | <p>The last step is the computation of the sign of <code>y</code>. It is |
|---|
| 59 | done by choosing an appropriate comparison scheme and then doing the |
|---|
| 60 | comparison with the usual operators:</p> |
|---|
| 61 | <pre> |
|---|
| 62 | using namespace compare::certain; |
|---|
| 63 | if (y > 0.) return 1; |
|---|
| 64 | if (y < 0.) return -1; |
|---|
| 65 | return 0; |
|---|
| 66 | } |
|---|
| 67 | </pre> |
|---|
| 68 | |
|---|
| 69 | <p>The answer <code>0</code> does not mean the polynomial is zero at this |
|---|
| 70 | point. It only means the answer is not known since <code>y</code> contains |
|---|
| 71 | zero and thus does not have a precise sign.</p> |
|---|
| 72 | |
|---|
| 73 | <p>Now we have the expected function. However, due to the poor |
|---|
| 74 | implementations of floating-point rounding in most of the processors, it |
|---|
| 75 | can be useful to say to optimize the code; or rather, to let the library |
|---|
| 76 | optimize it. The main condition for this optimization is that the interval |
|---|
| 77 | code should not be mixed with floating-point code. In this example, it is |
|---|
| 78 | the case, since all the operations done in the functions involve the |
|---|
| 79 | library. So the code can be rewritten:</p> |
|---|
| 80 | <pre> |
|---|
| 81 | int sign_polynomial(double x, double P[], int sz) { |
|---|
| 82 | using namespace boost::numeric; |
|---|
| 83 | using namespace interval_lib; |
|---|
| 84 | typedef interval<double> I_aux; |
|---|
| 85 | |
|---|
| 86 | I_aux::traits_type::rounding rnd; |
|---|
| 87 | typedef unprotect<I_aux>::type I; |
|---|
| 88 | |
|---|
| 89 | I y = P[sz - 1]; |
|---|
| 90 | for(int i = sz - 2; i >= 0; i--) |
|---|
| 91 | y = y * x + P[i]; |
|---|
| 92 | |
|---|
| 93 | using namespace compare::certain; |
|---|
| 94 | if (y > 0.) return 1; |
|---|
| 95 | if (y < 0.) return -1; |
|---|
| 96 | return 0; |
|---|
| 97 | } |
|---|
| 98 | </pre> |
|---|
| 99 | |
|---|
| 100 | <p>The difference between this code and the previous is the use of another |
|---|
| 101 | interval type. This new type <code>I</code> indicates to the library that |
|---|
| 102 | all the computations can be done without caring for the rounding mode. And |
|---|
| 103 | because of that, it is up to the function to care about it: a rounding |
|---|
| 104 | object need to be alive whenever the optimized type is used.</p> |
|---|
| 105 | |
|---|
| 106 | <h2>Other tests and examples</h2> |
|---|
| 107 | |
|---|
| 108 | <p>In <code>libs/numeric/interval/test/</code> and |
|---|
| 109 | <code>libs/numeric/interval/examples/</code> are some test and example |
|---|
| 110 | programs.. The examples illustrate a few uses of intervals. For a general |
|---|
| 111 | description and considerations on using this library, and some potential |
|---|
| 112 | domains of application, please read this <a href= |
|---|
| 113 | "guide.htm">mini-guide</a>.</p> |
|---|
| 114 | |
|---|
| 115 | <h3>Tests</h3> |
|---|
| 116 | |
|---|
| 117 | <p>The test programs are as follows. Please note that they require the use |
|---|
| 118 | of the Boost.test library and can be automatically tested by using |
|---|
| 119 | <code>bjam</code> (except for interval_test.cpp).</p> |
|---|
| 120 | |
|---|
| 121 | <p><b>add.cpp</b> tests if the additive and subtractive operators and the |
|---|
| 122 | respective _std and _opp rounding functions are correctly implemented. It |
|---|
| 123 | is done by using symbolic expressions as a base type.</p> |
|---|
| 124 | |
|---|
| 125 | <p><b>cmp.cpp</b>, <b>cmp_lex.cpp</b>, <b>cmp_set.cpp</b>, and |
|---|
| 126 | <b>cmp_tribool.cpp</b> test if the operators <code><</code> |
|---|
| 127 | <code>></code> <code><=</code> <code>>=</code> <code>==</code> |
|---|
| 128 | <code>!=</code> behave correctly for the default, lexicographic, set, and |
|---|
| 129 | tristate comparisons. <b>cmp_exp.cpp</b> tests the explicit comparison |
|---|
| 130 | functions <code>cer..</code> and <code>pos..</code> behave correctly. |
|---|
| 131 | <b>cmp_exn.cpp</b> tests if the various policies correctly detect |
|---|
| 132 | exceptional cases. All these tests use some simple intervals ([1,2] and |
|---|
| 133 | [3,4], [1,3] and [2,4], [1,2] and [2,3], etc).</p> |
|---|
| 134 | |
|---|
| 135 | <p><b>det.cpp</b> tests if the <code>_std</code> and <code>_opp</code> |
|---|
| 136 | versions in protected and unprotected mode produce the same result when |
|---|
| 137 | Gauss scheme is used on an unstable matrix (in order to exercise rounding). |
|---|
| 138 | The tests are done for <code>interval<float></code> and |
|---|
| 139 | <code>interval<double></code>.</p> |
|---|
| 140 | |
|---|
| 141 | <p><b>fmod.cpp</b> defines a minimalistic version of |
|---|
| 142 | <code>interval<int></code> and uses it in order to test |
|---|
| 143 | <code>fmod</code> on some specific interval values.</p> |
|---|
| 144 | |
|---|
| 145 | <p><b>mul.cpp</b> exercises the multiplication, the finite division, the |
|---|
| 146 | square and the square root with some integer intervals leading to exact |
|---|
| 147 | results.</p> |
|---|
| 148 | |
|---|
| 149 | <p><b>pi.cpp</b> tests if the interval value of π (for <code>int</code>, |
|---|
| 150 | <code>float</code> and <code>double</code> base types) contains the number |
|---|
| 151 | π (defined with 21 decimal digits) and if it is a subset of |
|---|
| 152 | [π±1ulp] (in order to ensure some precision).</p> |
|---|
| 153 | |
|---|
| 154 | <p><b>pow.cpp</b> tests if the <code>pow</code> function behaves correctly |
|---|
| 155 | on some simple test cases.</p> |
|---|
| 156 | |
|---|
| 157 | <p><b>test_float.cpp</b> exercises the arithmetic operations of the library |
|---|
| 158 | for floating point base types.</p> |
|---|
| 159 | |
|---|
| 160 | <p><b>interval_test.cpp</b> tests if the interval library respects the |
|---|
| 161 | inclusion property of interval arithmetic by computing some functions and |
|---|
| 162 | operations for both <code>double</code> and |
|---|
| 163 | <code>interval<double></code>.</p> |
|---|
| 164 | |
|---|
| 165 | <h2>Examples</h2> |
|---|
| 166 | |
|---|
| 167 | <p><b>filter.cpp</b> contains filters for computational geometry able to |
|---|
| 168 | find the sign of a determinant. This example is inspired by the article |
|---|
| 169 | <em>Interval arithmetic yields efficient dynamic filters for computational |
|---|
| 170 | geometry</em> by Brönnimann, Burnikel and Pion, 2001.</p> |
|---|
| 171 | |
|---|
| 172 | <p><b>findroot_demo.cpp</b> finds zeros of some functions by using |
|---|
| 173 | dichotomy and even produces gnuplot data for one of them. The processor has |
|---|
| 174 | to correctly handle elementary functions for this example to properly |
|---|
| 175 | work.</p> |
|---|
| 176 | |
|---|
| 177 | <p><b>horner.cpp</b> is a really basic example of unprotecting the interval |
|---|
| 178 | operations for a whole function (which computes the value of a polynomial |
|---|
| 179 | by using Horner scheme).</p> |
|---|
| 180 | |
|---|
| 181 | <p><b>io.cpp</b> shows some stream input and output operators for intervals |
|---|
| 182 | .The wide variety of possibilities explains why the library do not |
|---|
| 183 | implement i/o operators and they are left to the user.</p> |
|---|
| 184 | |
|---|
| 185 | <p><b>newton-raphson.cpp</b> is an implementation of a specialized version |
|---|
| 186 | of Newton-Raphson algorithm for finding the zeros of a function knowing its |
|---|
| 187 | derivative. It exercises unprotecting, full division, some set operations |
|---|
| 188 | and empty intervals.</p> |
|---|
| 189 | |
|---|
| 190 | <p><b>transc.cpp</b> implements the transcendental part of the rounding |
|---|
| 191 | policy for <code>double</code> by using an external library (the MPFR |
|---|
| 192 | subset of GMP in this case).</p> |
|---|
| 193 | <hr> |
|---|
| 194 | |
|---|
| 195 | <p><a href="http://validator.w3.org/check?uri=referer"><img border="0" src= |
|---|
| 196 | "http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Transitional" |
|---|
| 197 | height="31" width="88"></a></p> |
|---|
| 198 | |
|---|
| 199 | <p>Revised |
|---|
| 200 | <!--webbot bot="Timestamp" s-type="EDITED" s-format="%Y-%m-%d" startspan -->2006-12-24<!--webbot bot="Timestamp" endspan i-checksum="12172" --></p> |
|---|
| 201 | |
|---|
| 202 | <p><i>Copyright © 2002 Guillaume Melquiond, Sylvain Pion, Hervé |
|---|
| 203 | Brönnimann, Polytechnic University<br> |
|---|
| 204 | Copyright © 2003 Guillaume Melquiond</i></p> |
|---|
| 205 | |
|---|
| 206 | <p><i>Distributed under the Boost Software License, Version 1.0. (See |
|---|
| 207 | accompanying file <a href="../../../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> |
|---|
| 208 | or copy at <a href= |
|---|
| 209 | "http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</i></p> |
|---|
| 210 | </body> |
|---|
| 211 | </html> |
|---|