1 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" |
---|
2 | "http://www.w3.org/TR/html4/loose.dtd"> |
---|
3 | |
---|
4 | <html> |
---|
5 | <head> |
---|
6 | <meta http-equiv="Content-Language" content="en-us"> |
---|
7 | <meta http-equiv="Content-Type" content="text/html; charset=us-ascii"> |
---|
8 | <link rel="stylesheet" type="text/css" href="../../../../boost.css"> |
---|
9 | |
---|
10 | <title>Checking policies</title> |
---|
11 | </head> |
---|
12 | |
---|
13 | <body> |
---|
14 | <h1>Checking policies</h1> |
---|
15 | |
---|
16 | <p>A checking policy controls how the <code>interval</code> class will deal |
---|
17 | with special cases like: empty intervals, infinite numbers, invalid |
---|
18 | values.</p> |
---|
19 | |
---|
20 | <p>For example, let's consider <code>operator+(interval, T)</code>. The |
---|
21 | second argument could be an invalid value (for a floating-point number, it |
---|
22 | is a NaN). What to do in such a case? First, we could say that the second |
---|
23 | argument can never be an invalid number. Second, we could also say such a |
---|
24 | situation can arise but is forbidden. Third, we could allow such values and |
---|
25 | generate an empty interval when encountered. And there is many other |
---|
26 | possibilities.</p> |
---|
27 | |
---|
28 | <p>It is the reason why such a policy is used: there is a lot of |
---|
29 | interesting behaviors and it would be sad to arbitrarily select one of |
---|
30 | these.</p> |
---|
31 | |
---|
32 | <h2>Requirements</h2> |
---|
33 | |
---|
34 | <p>The checking class should satisfy the following requirement (in the form |
---|
35 | of an interface):</p> |
---|
36 | <pre> |
---|
37 | /* requirements for checking policy */ |
---|
38 | struct checking |
---|
39 | { |
---|
40 | static T pos_inf(); |
---|
41 | static T neg_inf(); |
---|
42 | static T nan(); |
---|
43 | static bool is_nan(const T&); |
---|
44 | static T empty_lower(); |
---|
45 | static T empty_upper(); |
---|
46 | static bool is_empty(const T&, const T&); |
---|
47 | }; |
---|
48 | </pre> |
---|
49 | |
---|
50 | <p>The first two functions, <code>pos_inf</code> and <code>neg_inf</code>, |
---|
51 | are invoked each time the library has to create the infinite bound of an |
---|
52 | interval. For example, <code>interval::whole</code> computes |
---|
53 | <code>interval(checking::neg_inf(), checking::pos_inf())</code>. If |
---|
54 | infinite values are allowed and |
---|
55 | <code>std::numeric_limits<T>::infinity()</code> returns a correct |
---|
56 | value, such a value can be used.</p> |
---|
57 | |
---|
58 | <p>Next comes <code>nan</code>. This function is used each time a function |
---|
59 | need to return a value of type <code>T</code> but is unable to compute it. |
---|
60 | It only happens when one of the arguments of the function is invalid. For |
---|
61 | example, if you ask what the median value of an empty interval is, |
---|
62 | <code>nan</code> will be used. But please remember: <code>lower</code> and |
---|
63 | <code>upper</code> directly return the value stocked in the interval; so, |
---|
64 | if the interval is empty, <code>lower</code> will not answer |
---|
65 | <code>by</code> a call to <code>checking::nan</code> (but will return the |
---|
66 | same value than <code>checking::empty_lower</code> could return).</p> |
---|
67 | |
---|
68 | <p><code>empty_lower</code> and <code>empty_upper</code> respectively |
---|
69 | return the lower and upper bound of the empty interval. There is no |
---|
70 | requirements for <code>empty_lower</code> and <code>empty_upper</code> to |
---|
71 | return the same value than <code>checking::nan</code>. For example, if the |
---|
72 | type <code>T</code> does not have any invalid value, the |
---|
73 | <code>empty_</code> functions can return the [1;0] interval.</p> |
---|
74 | |
---|
75 | <p><code>is_nan</code> is used to test if a value of type <code>T</code> is |
---|
76 | invalid or not. <code>is_empty</code> tests if the interval formed by the |
---|
77 | two arguments is empty or not. Such tests will generally be at the |
---|
78 | beginning of each function which involves an argument of type |
---|
79 | <code>T</code>. If one of the inputs is declared invalid, the the function |
---|
80 | will try to produce an invalid value or an input interval.</p> |
---|
81 | |
---|
82 | <h2>Synopsis</h2> |
---|
83 | <pre> |
---|
84 | namespace boost { |
---|
85 | namespace numeric { |
---|
86 | namespace interval_lib { |
---|
87 | |
---|
88 | template<class T> |
---|
89 | struct checking_base; |
---|
90 | template<class T, class Checking = checking_base<T>, class Exception = exception_create_empty<T> > |
---|
91 | struct checking_no_empty; |
---|
92 | template<class T, class Checking = checking_base<T> > |
---|
93 | struct checking_no_nan; |
---|
94 | template<class T, class Checking = checking_base<T>, class Exception = exception_invalid_number<T> > |
---|
95 | struct checking_catch_nan; |
---|
96 | |
---|
97 | template<class T> struct exception_create_empty { T operator()(); }; |
---|
98 | template<class T> struct exception_invalid_number { void operator()(); }; |
---|
99 | |
---|
100 | } // namespace numeric |
---|
101 | } // namespace interval_lib |
---|
102 | } // namespace boost |
---|
103 | </pre> |
---|
104 | |
---|
105 | <h2>Predefined classes</h2> |
---|
106 | |
---|
107 | <p>In order to simplify the customization of the policy, some templates are |
---|
108 | already defined in the library.</p> |
---|
109 | |
---|
110 | <p>First of all, there is <code>checking_base</code>. Thanks to the |
---|
111 | information provided by <code>std::numeric_limits<T></code>, this |
---|
112 | class is able to generate a base for the policy. If <code>T</code> has |
---|
113 | quiet NaNs (as said by <code>numeric_limits::has_quiet_NaN</code>), then |
---|
114 | the value is used for <code>nan</code>, <code>empty_lower</code>, |
---|
115 | <code>empty_upper</code>; and a basic test is used for <code>is_nan</code> |
---|
116 | (it is <code>x!=x</code>). If <code>T</code> does not have quiet NaNs, then |
---|
117 | <code>nan</code> is an <code>assert(false)</code>, the empty interval is |
---|
118 | [1,0], and <code>is_nan</code> always return <code>false</code>. As for |
---|
119 | <code>nan</code>, <code>pos_inf</code> returns |
---|
120 | <code>numeric_limits::infinity()</code> if possible, or is an |
---|
121 | <code>assert(false</code>) otherwise. <code>neg_inf</code> returns the |
---|
122 | opposite. Finally, <code>is_empty(T l,T u)</code> is always defined by |
---|
123 | <code>!(l<=u)</code>.</p> |
---|
124 | |
---|
125 | <p>Next comes <code>checking_no_empty</code>. Using it means that each time |
---|
126 | an empty interval should be produced (by <code>empty_lower</code> and |
---|
127 | <code>empty_upper</code>), the function object given by the |
---|
128 | <code>Exception</code> argument of the template is invoked and the value it |
---|
129 | returns is propagated. So, if <code>Exception</code> is appropriately |
---|
130 | defined (for example it could throw an exception, hence the name of the |
---|
131 | argument), you can be sure no empty interval will ever be created. So |
---|
132 | <code>is_empty</code> will always return <code>false</code> (since there is |
---|
133 | no need to test for an empty interval). And as explained before, in that |
---|
134 | case we can also replace <code>nan</code> by an <code>assert(false)</code>; |
---|
135 | you will be sure no invalid number will ever be produced. If this template |
---|
136 | is not used, it implicitly means that all the functions can produce empty |
---|
137 | intervals and they correctly deal with empty interval arguments.</p> |
---|
138 | |
---|
139 | <p>Finally there are <code>checking_no_nan</code> and |
---|
140 | <code>checking_catch_nan</code>. The first one expresses the functions of |
---|
141 | the library will never get an invalid number as argument. So |
---|
142 | <code>is_nan</code> will only return <code>false</code>. The other one |
---|
143 | means the arguments can be an invalid number but in that case, |
---|
144 | <code>is_nan</code> will call the function object <code>Exception</code> |
---|
145 | and return <code>false</code>. Indeed, this template means invalid numbers |
---|
146 | should never make their way through to the body of the function. If none of |
---|
147 | this two templates is used, it implicitly means that all the functions can |
---|
148 | get invalid number arguments and they will correctly deal with them.</p> |
---|
149 | |
---|
150 | <p><code>exception_create_empty</code> throws |
---|
151 | <code>std::runtime_error</code> with the message <code>"boost::interval: |
---|
152 | empty interval created"</code> and <code>exception_invalid_number</code> |
---|
153 | throws <code>std::invalid_argument</code> with the message |
---|
154 | <code>"boost::interval: invalid number"</code>.</p> |
---|
155 | |
---|
156 | <h2>Customizing your own checking policy</h2> |
---|
157 | |
---|
158 | <p>In order to define a suitable policy, you need to correctly say what you |
---|
159 | expect from your interval class. First of all, are you interested in |
---|
160 | getting empty intervals at the end of a calculus? If you do not want to |
---|
161 | obtain empty intervals, <code>empty_lower</code> and |
---|
162 | <code>empty_upper</code> have to fail when invoked (they can throw an |
---|
163 | exception, set a flag, etc). However, if no function is able to produce an |
---|
164 | empty interval, it is no more necessary to do the test, so |
---|
165 | <code>is_empty</code> may always return <code>false</code>. In this case, a |
---|
166 | good compiler will do a lot of optimizations.</p> |
---|
167 | |
---|
168 | <p>You could also be interested in getting empty intervals at the end of |
---|
169 | the calculus. For example, if you need to transform an array of unsure |
---|
170 | values (or intervals) in a new array of intervals, you may not want to stop |
---|
171 | the conversion at the first encountered problem. So |
---|
172 | <code>empty_lower</code> and <code>empty_upper</code> need to return |
---|
173 | suitable values in order to define an empty interval (you can use an upper |
---|
174 | bound which is not greater or equal than the lower bound for example); and |
---|
175 | <code>is_empty</code> must be able to distinguish empty intervals from the |
---|
176 | valid intervals.</p> |
---|
177 | |
---|
178 | <p>Another important question is: is it possible that some base numbers |
---|
179 | (objects of type <code>T</code>) are invalid? And if it is possible, are |
---|
180 | they allowed or not ? If it is not possible, no test is necessary; |
---|
181 | <code>is_nan</code> may always return <code>false</code>. In this case too, |
---|
182 | a good compiler will do a lot of optimizations. If function arguments can |
---|
183 | hold invalid numbers, two cases must be considered according to whether |
---|
184 | they are allowed or not. If they are allowed, <code>is_nan</code> just has |
---|
185 | to test if they are invalid or not. If they are forbidden, |
---|
186 | <code>is_nan</code> should fail (exception, assert, etc.) when invoked on |
---|
187 | an invalid argument and return <code>false</code> otherwise. The value |
---|
188 | returned by <code>nan</code> does not have any interest since the interval |
---|
189 | functions are guaranteed not to produce invalid interval bounds unless the |
---|
190 | user passes invalid numbers to the constructors. So you can put an assert |
---|
191 | inside if you do not trust the library. :-)</p> |
---|
192 | |
---|
193 | <p>And finally, you need to decide what to do with <code>nan</code> if it |
---|
194 | has not already been decided at the beginning, and with |
---|
195 | <code>pos_inf</code> and <code>neg_inf</code>. These functions should |
---|
196 | return a value or start an exceptional behavior (especially if the base |
---|
197 | type does not have corresponding values).</p> |
---|
198 | |
---|
199 | <h2>Some examples</h2> |
---|
200 | |
---|
201 | <ul> |
---|
202 | <li>If you need a checking policy that allows the library to correctly |
---|
203 | manipulate data, even if they contain invalid numbers and empty |
---|
204 | intervals, then <code>checking_base<T></code> is a |
---|
205 | possibility.</li> |
---|
206 | |
---|
207 | <li>If you do not want empty intervals to be created and are not sure all |
---|
208 | the numbers are valid, then <code>checking_catch_nan<T, |
---|
209 | checking_no_empty<T> ></code> can help you.</li> |
---|
210 | |
---|
211 | <li>If all the numbers will be valid and if no empty interval is supposed |
---|
212 | to be created (or if you do not want them to be created), then you can |
---|
213 | use <code>checking_no_nan<T, checking_no_empty<T> ></code>. |
---|
214 | Please note that if <code>T</code> does not have a way to represent |
---|
215 | invalid numbers, then this policy will behave the same way as |
---|
216 | <code>checking_no_empty<T></code>. This is the default policy and |
---|
217 | it is also called <code>interval_lib::checking_strict</code>.</li> |
---|
218 | |
---|
219 | <li>If all numerical data are valid but the algorithm can produce and |
---|
220 | manipulate empty intervals, then <code>checking_no_nan<T></code> |
---|
221 | should be used.</li> |
---|
222 | |
---|
223 | <li>Similarly, if invalid data have to be signaled and the algorithm can |
---|
224 | manipulate empty intervals, the <code>checking_catch_nan<T></code> |
---|
225 | is a solution.</li> |
---|
226 | |
---|
227 | <li>If you do not mind having undefined results when an empty interval or |
---|
228 | an interval number is produced, your best bet is to create your own |
---|
229 | policy by overloading <code>checking_base</code> and modifying |
---|
230 | <code>is_nan</code> et <code>is_empty</code> in order for them to always |
---|
231 | return <code>false</code>. It is probably the fastest checking policy |
---|
232 | available; however, it suffers from its deficient security.</li> |
---|
233 | </ul> |
---|
234 | <hr> |
---|
235 | |
---|
236 | <p><a href="http://validator.w3.org/check?uri=referer"><img border="0" src= |
---|
237 | "http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Transitional" |
---|
238 | height="31" width="88"></a></p> |
---|
239 | |
---|
240 | <p>Revised |
---|
241 | <!--webbot bot="Timestamp" s-type="EDITED" s-format="%Y-%m-%d" startspan -->2006-12-24<!--webbot bot="Timestamp" endspan i-checksum="12172" --></p> |
---|
242 | |
---|
243 | <p><i>Copyright © 2002 Guillaume Melquiond, Sylvain Pion, Hervé |
---|
244 | Brönnimann, Polytechnic University<br> |
---|
245 | Copyright © 2003-2004 Guillaume Melquiond</i></p> |
---|
246 | |
---|
247 | <p><i>Distributed under the Boost Software License, Version 1.0. (See |
---|
248 | accompanying file <a href="../../../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> |
---|
249 | or copy at <a href= |
---|
250 | "http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</i></p> |
---|
251 | </body> |
---|
252 | </html> |
---|