| 1 | // (C) Copyright John Maddock 2005. |
|---|
| 2 | // Use, modification and distribution are subject to the |
|---|
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
|---|
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|---|
| 5 | |
|---|
| 6 | #include <boost/test/test_tools.hpp> |
|---|
| 7 | #include <boost/test/included/test_exec_monitor.hpp> |
|---|
| 8 | #include <boost/test/floating_point_comparison.hpp> |
|---|
| 9 | #include <boost/type_traits/is_same.hpp> |
|---|
| 10 | #include <boost/type_traits/is_floating_point.hpp> |
|---|
| 11 | #include <boost/mpl/if.hpp> |
|---|
| 12 | #include <boost/static_assert.hpp> |
|---|
| 13 | #include <boost/math/complex.hpp> |
|---|
| 14 | |
|---|
| 15 | #include <iostream> |
|---|
| 16 | #include <iomanip> |
|---|
| 17 | #include <cmath> |
|---|
| 18 | #include <typeinfo> |
|---|
| 19 | |
|---|
| 20 | #ifdef BOOST_NO_STDC_NAMESPACE |
|---|
| 21 | namespace std{ using ::sqrt; using ::tan; using ::tanh; } |
|---|
| 22 | #endif |
|---|
| 23 | |
|---|
| 24 | #ifndef VERBOSE |
|---|
| 25 | #undef BOOST_MESSAGE |
|---|
| 26 | #define BOOST_MESSAGE(x) |
|---|
| 27 | #endif |
|---|
| 28 | |
|---|
| 29 | // |
|---|
| 30 | // check_complex: |
|---|
| 31 | // Verifies that expected value "a" and found value "b" have a relative error |
|---|
| 32 | // less than "max_error" epsilons. Note that relative error is calculated for |
|---|
| 33 | // the complex number as a whole; this means that the error in the real or |
|---|
| 34 | // imaginary parts alone can be much higher than max_error when the real and |
|---|
| 35 | // imaginary parts are of very different magnitudes. This is important, because |
|---|
| 36 | // the Hull et al analysis of the acos and asin algorithms requires that very small |
|---|
| 37 | // real/imaginary components can be safely ignored if they are negligible compared |
|---|
| 38 | // to the other component. |
|---|
| 39 | // |
|---|
| 40 | template <class T> |
|---|
| 41 | bool check_complex(const std::complex<T>& a, const std::complex<T>& b, int max_error) |
|---|
| 42 | { |
|---|
| 43 | // |
|---|
| 44 | // a is the expected value, b is what was actually found, |
|---|
| 45 | // compute | (a-b)/b | and compare with max_error which is the |
|---|
| 46 | // multiple of E to permit: |
|---|
| 47 | // |
|---|
| 48 | bool result = true; |
|---|
| 49 | static const std::complex<T> zero(0); |
|---|
| 50 | static const T eps = std::pow(static_cast<T>(std::numeric_limits<T>::radix), 1 - std::numeric_limits<T>::digits); |
|---|
| 51 | if(a == zero) |
|---|
| 52 | { |
|---|
| 53 | if(b != zero) |
|---|
| 54 | { |
|---|
| 55 | if(boost::math::fabs(b) > eps) |
|---|
| 56 | { |
|---|
| 57 | result = false; |
|---|
| 58 | BOOST_ERROR("Expected {0,0} but got: " << b); |
|---|
| 59 | } |
|---|
| 60 | else |
|---|
| 61 | { |
|---|
| 62 | BOOST_MESSAGE("Expected {0,0} but got: " << b); |
|---|
| 63 | } |
|---|
| 64 | } |
|---|
| 65 | return result; |
|---|
| 66 | } |
|---|
| 67 | else if(b == zero) |
|---|
| 68 | { |
|---|
| 69 | if(boost::math::fabs(a) > eps) |
|---|
| 70 | { |
|---|
| 71 | BOOST_ERROR("Found {0,0} but expected: " << a); |
|---|
| 72 | return false;; |
|---|
| 73 | } |
|---|
| 74 | else |
|---|
| 75 | { |
|---|
| 76 | BOOST_MESSAGE("Found {0,0} but expected: " << a); |
|---|
| 77 | } |
|---|
| 78 | } |
|---|
| 79 | |
|---|
| 80 | T rel = boost::math::fabs((b-a)/b) / eps; |
|---|
| 81 | if( rel > max_error) |
|---|
| 82 | { |
|---|
| 83 | result = false; |
|---|
| 84 | BOOST_ERROR("Error in result exceeded permitted limit of " << max_error << " (actual relative error was " << rel << "e). Found " << b << " expected " << a); |
|---|
| 85 | } |
|---|
| 86 | return result; |
|---|
| 87 | } |
|---|
| 88 | |
|---|
| 89 | // |
|---|
| 90 | // test_inverse_trig: |
|---|
| 91 | // This is nothing more than a sanity check, computes trig(atrig(z)) |
|---|
| 92 | // and compare the result to z. Note that: |
|---|
| 93 | // |
|---|
| 94 | // atrig(trig(z)) != z |
|---|
| 95 | // |
|---|
| 96 | // for certain z because the inverse trig functions are multi-valued, this |
|---|
| 97 | // essentially rules this out as a testing method. On the other hand: |
|---|
| 98 | // |
|---|
| 99 | // trig(atrig(z)) |
|---|
| 100 | // |
|---|
| 101 | // can vary compare to z by an arbitrarily large amount. For one thing we |
|---|
| 102 | // have no control over the implementation of the trig functions, for another |
|---|
| 103 | // even if both functions were accurate to 1ulp (as accurate as transcendental |
|---|
| 104 | // number can get, thanks to the "table makers dilemma"), the errors can still |
|---|
| 105 | // be arbitrarily large - often the inverse trig functions will map a very large |
|---|
| 106 | // part of the complex domain into a small output domain, so you can never get |
|---|
| 107 | // back exactly where you started from. Consequently these tests are no more than |
|---|
| 108 | // sanity checks (just verifies that signs are correct and so on). |
|---|
| 109 | // |
|---|
| 110 | template <class T> |
|---|
| 111 | void test_inverse_trig(T) |
|---|
| 112 | { |
|---|
| 113 | using namespace std; |
|---|
| 114 | |
|---|
| 115 | static const T interval = static_cast<T>(2.0L/128.0L); |
|---|
| 116 | |
|---|
| 117 | T x, y; |
|---|
| 118 | |
|---|
| 119 | std::cout << std::setprecision(std::numeric_limits<T>::digits10+2); |
|---|
| 120 | |
|---|
| 121 | for(x = -1; x <= 1; x += interval) |
|---|
| 122 | { |
|---|
| 123 | for(y = -1; y <= 1; y += interval) |
|---|
| 124 | { |
|---|
| 125 | // acos: |
|---|
| 126 | std::complex<T> val(x, y), inter, result; |
|---|
| 127 | inter = boost::math::acos(val); |
|---|
| 128 | result = cos(inter); |
|---|
| 129 | if(!check_complex(val, result, 50)) |
|---|
| 130 | { |
|---|
| 131 | std::cout << "Error in testing inverse complex cos for type " << typeid(T).name() << std::endl; |
|---|
| 132 | std::cout << " val= " << val << std::endl; |
|---|
| 133 | std::cout << " acos(val) = " << inter << std::endl; |
|---|
| 134 | std::cout << " cos(acos(val)) = " << result << std::endl; |
|---|
| 135 | } |
|---|
| 136 | // asin: |
|---|
| 137 | inter = boost::math::asin(val); |
|---|
| 138 | result = sin(inter); |
|---|
| 139 | if(!check_complex(val, result, 5)) |
|---|
| 140 | { |
|---|
| 141 | std::cout << "Error in testing inverse complex sin for type " << typeid(T).name() << std::endl; |
|---|
| 142 | std::cout << " val= " << val << std::endl; |
|---|
| 143 | std::cout << " asin(val) = " << inter << std::endl; |
|---|
| 144 | std::cout << " sin(asin(val)) = " << result << std::endl; |
|---|
| 145 | } |
|---|
| 146 | } |
|---|
| 147 | } |
|---|
| 148 | |
|---|
| 149 | static const T interval2 = static_cast<T>(3.0L/256.0L); |
|---|
| 150 | for(x = -3; x <= 3; x += interval2) |
|---|
| 151 | { |
|---|
| 152 | for(y = -3; y <= 3; y += interval2) |
|---|
| 153 | { |
|---|
| 154 | // asinh: |
|---|
| 155 | std::complex<T> val(x, y), inter, result; |
|---|
| 156 | inter = boost::math::asinh(val); |
|---|
| 157 | result = sinh(inter); |
|---|
| 158 | if(!check_complex(val, result, 5)) |
|---|
| 159 | { |
|---|
| 160 | std::cout << "Error in testing inverse complex sinh for type " << typeid(T).name() << std::endl; |
|---|
| 161 | std::cout << " val= " << val << std::endl; |
|---|
| 162 | std::cout << " asinh(val) = " << inter << std::endl; |
|---|
| 163 | std::cout << " sinh(asinh(val)) = " << result << std::endl; |
|---|
| 164 | } |
|---|
| 165 | // acosh: |
|---|
| 166 | if(!((y == 0) && (x <= 1))) // can't test along the branch cut |
|---|
| 167 | { |
|---|
| 168 | inter = boost::math::acosh(val); |
|---|
| 169 | result = cosh(inter); |
|---|
| 170 | if(!check_complex(val, result, 60)) |
|---|
| 171 | { |
|---|
| 172 | std::cout << "Error in testing inverse complex cosh for type " << typeid(T).name() << std::endl; |
|---|
| 173 | std::cout << " val= " << val << std::endl; |
|---|
| 174 | std::cout << " acosh(val) = " << inter << std::endl; |
|---|
| 175 | std::cout << " cosh(acosh(val)) = " << result << std::endl; |
|---|
| 176 | } |
|---|
| 177 | } |
|---|
| 178 | // |
|---|
| 179 | // There is a problem in testing atan and atanh: |
|---|
| 180 | // The inverse functions map a large input range to a much |
|---|
| 181 | // smaller output range, so at the extremes too rather different |
|---|
| 182 | // inputs may map to the same output value once rounded to N places. |
|---|
| 183 | // Consequently tan(atan(z)) can suffer from arbitrarily large errors |
|---|
| 184 | // even if individually they each have a small error bound. On the other |
|---|
| 185 | // hand we can't test atan(tan(z)) either because atan is multi-valued, so |
|---|
| 186 | // round-tripping in this direction isn't always possible. |
|---|
| 187 | // The following heuristic is designed to make the best of a bad job, |
|---|
| 188 | // using atan(tan(z)) where possible and tan(atan(z)) when it's not. |
|---|
| 189 | // |
|---|
| 190 | static const int tanh_error = 20; |
|---|
| 191 | if((0 != x) && (0 != y) && ((std::fabs(y) < 1) || (std::fabs(x) < 1))) |
|---|
| 192 | { |
|---|
| 193 | // atanh: |
|---|
| 194 | val = boost::math::atanh(val); |
|---|
| 195 | inter = tanh(val); |
|---|
| 196 | result = boost::math::atanh(inter); |
|---|
| 197 | if(!check_complex(val, result, tanh_error)) |
|---|
| 198 | { |
|---|
| 199 | std::cout << "Error in testing inverse complex tanh for type " << typeid(T).name() << std::endl; |
|---|
| 200 | std::cout << " val= " << val << std::endl; |
|---|
| 201 | std::cout << " tanh(val) = " << inter << std::endl; |
|---|
| 202 | std::cout << " atanh(tanh(val)) = " << result << std::endl; |
|---|
| 203 | } |
|---|
| 204 | // atan: |
|---|
| 205 | if(!((x == 0) && (std::fabs(y) == 1))) // we can't test infinities here |
|---|
| 206 | { |
|---|
| 207 | val = std::complex<T>(x, y); |
|---|
| 208 | val = boost::math::atan(val); |
|---|
| 209 | inter = tan(val); |
|---|
| 210 | result = boost::math::atan(inter); |
|---|
| 211 | if(!check_complex(val, result, tanh_error)) |
|---|
| 212 | { |
|---|
| 213 | std::cout << "Error in testing inverse complex tan for type " << typeid(T).name() << std::endl; |
|---|
| 214 | std::cout << " val= " << val << std::endl; |
|---|
| 215 | std::cout << " tan(val) = " << inter << std::endl; |
|---|
| 216 | std::cout << " atan(tan(val)) = " << result << std::endl; |
|---|
| 217 | } |
|---|
| 218 | } |
|---|
| 219 | } |
|---|
| 220 | else |
|---|
| 221 | { |
|---|
| 222 | // atanh: |
|---|
| 223 | inter = boost::math::atanh(val); |
|---|
| 224 | result = tanh(inter); |
|---|
| 225 | if(!check_complex(val, result, tanh_error)) |
|---|
| 226 | { |
|---|
| 227 | std::cout << "Error in testing inverse complex atanh for type " << typeid(T).name() << std::endl; |
|---|
| 228 | std::cout << " val= " << val << std::endl; |
|---|
| 229 | std::cout << " atanh(val) = " << inter << std::endl; |
|---|
| 230 | std::cout << " tanh(atanh(val)) = " << result << std::endl; |
|---|
| 231 | } |
|---|
| 232 | // atan: |
|---|
| 233 | if(!((x == 0) && (std::fabs(y) == 1))) // we can't test infinities here |
|---|
| 234 | { |
|---|
| 235 | inter = boost::math::atan(val); |
|---|
| 236 | result = tan(inter); |
|---|
| 237 | if(!check_complex(val, result, tanh_error)) |
|---|
| 238 | { |
|---|
| 239 | std::cout << "Error in testing inverse complex atan for type " << typeid(T).name() << std::endl; |
|---|
| 240 | std::cout << " val= " << val << std::endl; |
|---|
| 241 | std::cout << " atan(val) = " << inter << std::endl; |
|---|
| 242 | std::cout << " tan(atan(val)) = " << result << std::endl; |
|---|
| 243 | } |
|---|
| 244 | } |
|---|
| 245 | } |
|---|
| 246 | } |
|---|
| 247 | } |
|---|
| 248 | } |
|---|
| 249 | |
|---|
| 250 | // |
|---|
| 251 | // check_spots: |
|---|
| 252 | // Various spot values, mostly the C99 special cases (infinites and NAN's). |
|---|
| 253 | // TODO: add spot checks for the Wolfram spot values. |
|---|
| 254 | // |
|---|
| 255 | template <class T> |
|---|
| 256 | void check_spots(const T&) |
|---|
| 257 | { |
|---|
| 258 | typedef std::complex<T> ct; |
|---|
| 259 | ct result; |
|---|
| 260 | static const T two = 2.0; |
|---|
| 261 | T eps = std::pow(two, 1-std::numeric_limits<T>::digits); // numeric_limits<>::epsilon way too small to be useful on Darwin. |
|---|
| 262 | static const T zero = 0; |
|---|
| 263 | static const T mzero = -zero; |
|---|
| 264 | static const T one = 1; |
|---|
| 265 | static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L); |
|---|
| 266 | static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L); |
|---|
| 267 | static const T quarter_pi = static_cast<T>(0.78539816339744830961566084581987572L); |
|---|
| 268 | static const T three_quarter_pi = static_cast<T>(2.35619449019234492884698253745962716L); |
|---|
| 269 | //static const T log_two = static_cast<T>(0.69314718055994530941723212145817657L); |
|---|
| 270 | T infinity = std::numeric_limits<T>::infinity(); |
|---|
| 271 | bool test_infinity = std::numeric_limits<T>::has_infinity; |
|---|
| 272 | T nan = 0; |
|---|
| 273 | bool test_nan = false; |
|---|
| 274 | #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) |
|---|
| 275 | // numeric_limits reports that a quiet NaN is present |
|---|
| 276 | // but an attempt to access it will terminate the program!!!! |
|---|
| 277 | if(std::numeric_limits<T>::has_quiet_NaN) |
|---|
| 278 | nan = std::numeric_limits<T>::quiet_NaN(); |
|---|
| 279 | if(boost::math::detail::test_is_nan(nan)) |
|---|
| 280 | test_nan = true; |
|---|
| 281 | #endif |
|---|
| 282 | #if defined(__DECCXX) && !defined(_IEEE_FP) |
|---|
| 283 | // Tru64 cxx traps infinities unless the -ieee option is used: |
|---|
| 284 | test_infinity = false; |
|---|
| 285 | #endif |
|---|
| 286 | |
|---|
| 287 | // |
|---|
| 288 | // C99 spot tests for acos: |
|---|
| 289 | // |
|---|
| 290 | result = boost::math::acos(ct(zero)); |
|---|
| 291 | check_complex(ct(half_pi), result, 2); |
|---|
| 292 | |
|---|
| 293 | result = boost::math::acos(ct(mzero)); |
|---|
| 294 | check_complex(ct(half_pi), result, 2); |
|---|
| 295 | |
|---|
| 296 | result = boost::math::acos(ct(zero, mzero)); |
|---|
| 297 | check_complex(ct(half_pi), result, 2); |
|---|
| 298 | |
|---|
| 299 | result = boost::math::acos(ct(mzero, mzero)); |
|---|
| 300 | check_complex(ct(half_pi), result, 2); |
|---|
| 301 | |
|---|
| 302 | if(test_nan) |
|---|
| 303 | { |
|---|
| 304 | result = boost::math::acos(ct(zero,nan)); |
|---|
| 305 | BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200); |
|---|
| 306 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 307 | |
|---|
| 308 | result = boost::math::acos(ct(mzero,nan)); |
|---|
| 309 | BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200); |
|---|
| 310 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 311 | } |
|---|
| 312 | if(test_infinity) |
|---|
| 313 | { |
|---|
| 314 | result = boost::math::acos(ct(zero, infinity)); |
|---|
| 315 | BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200); |
|---|
| 316 | BOOST_CHECK(result.imag() == -infinity); |
|---|
| 317 | |
|---|
| 318 | result = boost::math::acos(ct(zero, -infinity)); |
|---|
| 319 | BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200); |
|---|
| 320 | BOOST_CHECK(result.imag() == infinity); |
|---|
| 321 | } |
|---|
| 322 | |
|---|
| 323 | if(test_nan) |
|---|
| 324 | { |
|---|
| 325 | result = boost::math::acos(ct(one, nan)); |
|---|
| 326 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 327 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 328 | } |
|---|
| 329 | if(test_infinity) |
|---|
| 330 | { |
|---|
| 331 | result = boost::math::acos(ct(-infinity, one)); |
|---|
| 332 | BOOST_CHECK_CLOSE(result.real(), pi, eps*200); |
|---|
| 333 | BOOST_CHECK(result.imag() == -infinity); |
|---|
| 334 | |
|---|
| 335 | result = boost::math::acos(ct(infinity, one)); |
|---|
| 336 | BOOST_CHECK(result.real() == 0); |
|---|
| 337 | BOOST_CHECK(result.imag() == -infinity); |
|---|
| 338 | |
|---|
| 339 | result = boost::math::acos(ct(-infinity, -one)); |
|---|
| 340 | BOOST_CHECK_CLOSE(result.real(), pi, eps*200); |
|---|
| 341 | BOOST_CHECK(result.imag() == infinity); |
|---|
| 342 | |
|---|
| 343 | result = boost::math::acos(ct(infinity, -one)); |
|---|
| 344 | BOOST_CHECK(result.real() == 0); |
|---|
| 345 | BOOST_CHECK(result.imag() == infinity); |
|---|
| 346 | |
|---|
| 347 | result = boost::math::acos(ct(-infinity, infinity)); |
|---|
| 348 | BOOST_CHECK_CLOSE(result.real(), three_quarter_pi, eps*200); |
|---|
| 349 | BOOST_CHECK(result.imag() == -infinity); |
|---|
| 350 | |
|---|
| 351 | result = boost::math::acos(ct(infinity, infinity)); |
|---|
| 352 | BOOST_CHECK_CLOSE(result.real(), quarter_pi, eps*200); |
|---|
| 353 | BOOST_CHECK(result.imag() == -infinity); |
|---|
| 354 | |
|---|
| 355 | result = boost::math::acos(ct(-infinity, -infinity)); |
|---|
| 356 | BOOST_CHECK_CLOSE(result.real(), three_quarter_pi, eps*200); |
|---|
| 357 | BOOST_CHECK(result.imag() == infinity); |
|---|
| 358 | |
|---|
| 359 | result = boost::math::acos(ct(infinity, -infinity)); |
|---|
| 360 | BOOST_CHECK_CLOSE(result.real(), quarter_pi, eps*200); |
|---|
| 361 | BOOST_CHECK(result.imag() == infinity); |
|---|
| 362 | } |
|---|
| 363 | if(test_nan) |
|---|
| 364 | { |
|---|
| 365 | result = boost::math::acos(ct(infinity, nan)); |
|---|
| 366 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 367 | BOOST_CHECK(std::fabs(result.imag()) == infinity); |
|---|
| 368 | |
|---|
| 369 | result = boost::math::acos(ct(-infinity, nan)); |
|---|
| 370 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 371 | BOOST_CHECK(std::fabs(result.imag()) == infinity); |
|---|
| 372 | |
|---|
| 373 | result = boost::math::acos(ct(nan, zero)); |
|---|
| 374 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 375 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 376 | |
|---|
| 377 | result = boost::math::acos(ct(nan, -zero)); |
|---|
| 378 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 379 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 380 | |
|---|
| 381 | result = boost::math::acos(ct(nan, one)); |
|---|
| 382 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 383 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 384 | |
|---|
| 385 | result = boost::math::acos(ct(nan, -one)); |
|---|
| 386 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 387 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 388 | |
|---|
| 389 | result = boost::math::acos(ct(nan, nan)); |
|---|
| 390 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 391 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 392 | |
|---|
| 393 | result = boost::math::acos(ct(nan, infinity)); |
|---|
| 394 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 395 | BOOST_CHECK(result.imag() == -infinity); |
|---|
| 396 | |
|---|
| 397 | result = boost::math::acos(ct(nan, -infinity)); |
|---|
| 398 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 399 | BOOST_CHECK(result.imag() == infinity); |
|---|
| 400 | } |
|---|
| 401 | |
|---|
| 402 | // |
|---|
| 403 | // C99 spot tests for acosh: |
|---|
| 404 | // |
|---|
| 405 | result = boost::math::acosh(ct(zero, zero)); |
|---|
| 406 | BOOST_CHECK(result.real() == 0); |
|---|
| 407 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 408 | |
|---|
| 409 | result = boost::math::acosh(ct(zero, mzero)); |
|---|
| 410 | BOOST_CHECK(result.real() == 0); |
|---|
| 411 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 412 | |
|---|
| 413 | result = boost::math::acosh(ct(mzero, zero)); |
|---|
| 414 | BOOST_CHECK(result.real() == 0); |
|---|
| 415 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 416 | |
|---|
| 417 | result = boost::math::acosh(ct(mzero, mzero)); |
|---|
| 418 | BOOST_CHECK(result.real() == 0); |
|---|
| 419 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 420 | |
|---|
| 421 | if(test_infinity) |
|---|
| 422 | { |
|---|
| 423 | result = boost::math::acosh(ct(one, infinity)); |
|---|
| 424 | BOOST_CHECK(result.real() == infinity); |
|---|
| 425 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 426 | |
|---|
| 427 | result = boost::math::acosh(ct(one, -infinity)); |
|---|
| 428 | BOOST_CHECK(result.real() == infinity); |
|---|
| 429 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 430 | } |
|---|
| 431 | |
|---|
| 432 | if(test_nan) |
|---|
| 433 | { |
|---|
| 434 | result = boost::math::acosh(ct(one, nan)); |
|---|
| 435 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 436 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 437 | } |
|---|
| 438 | if(test_infinity) |
|---|
| 439 | { |
|---|
| 440 | result = boost::math::acosh(ct(-infinity, one)); |
|---|
| 441 | BOOST_CHECK(result.real() == infinity); |
|---|
| 442 | BOOST_CHECK_CLOSE(result.imag(), pi, eps*200); |
|---|
| 443 | |
|---|
| 444 | result = boost::math::acosh(ct(infinity, one)); |
|---|
| 445 | BOOST_CHECK(result.real() == infinity); |
|---|
| 446 | BOOST_CHECK(result.imag() == 0); |
|---|
| 447 | |
|---|
| 448 | result = boost::math::acosh(ct(-infinity, -one)); |
|---|
| 449 | BOOST_CHECK(result.real() == infinity); |
|---|
| 450 | BOOST_CHECK_CLOSE(result.imag(), -pi, eps*200); |
|---|
| 451 | |
|---|
| 452 | result = boost::math::acosh(ct(infinity, -one)); |
|---|
| 453 | BOOST_CHECK(result.real() == infinity); |
|---|
| 454 | BOOST_CHECK(result.imag() == 0); |
|---|
| 455 | |
|---|
| 456 | result = boost::math::acosh(ct(-infinity, infinity)); |
|---|
| 457 | BOOST_CHECK(result.real() == infinity); |
|---|
| 458 | BOOST_CHECK_CLOSE(result.imag(), three_quarter_pi, eps*200); |
|---|
| 459 | |
|---|
| 460 | result = boost::math::acosh(ct(infinity, infinity)); |
|---|
| 461 | BOOST_CHECK(result.real() == infinity); |
|---|
| 462 | BOOST_CHECK_CLOSE(result.imag(), quarter_pi, eps*200); |
|---|
| 463 | |
|---|
| 464 | result = boost::math::acosh(ct(-infinity, -infinity)); |
|---|
| 465 | BOOST_CHECK(result.real() == infinity); |
|---|
| 466 | BOOST_CHECK_CLOSE(result.imag(), -three_quarter_pi, eps*200); |
|---|
| 467 | |
|---|
| 468 | result = boost::math::acosh(ct(infinity, -infinity)); |
|---|
| 469 | BOOST_CHECK(result.real() == infinity); |
|---|
| 470 | BOOST_CHECK_CLOSE(result.imag(), -quarter_pi, eps*200); |
|---|
| 471 | } |
|---|
| 472 | |
|---|
| 473 | if(test_nan) |
|---|
| 474 | { |
|---|
| 475 | result = boost::math::acosh(ct(infinity, nan)); |
|---|
| 476 | BOOST_CHECK(result.real() == infinity); |
|---|
| 477 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 478 | |
|---|
| 479 | result = boost::math::acosh(ct(-infinity, nan)); |
|---|
| 480 | BOOST_CHECK(result.real() == infinity); |
|---|
| 481 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 482 | |
|---|
| 483 | result = boost::math::acosh(ct(nan, one)); |
|---|
| 484 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 485 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 486 | |
|---|
| 487 | result = boost::math::acosh(ct(nan, infinity)); |
|---|
| 488 | BOOST_CHECK(result.real() == infinity); |
|---|
| 489 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 490 | |
|---|
| 491 | result = boost::math::acosh(ct(nan, -one)); |
|---|
| 492 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 493 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 494 | |
|---|
| 495 | result = boost::math::acosh(ct(nan, -infinity)); |
|---|
| 496 | BOOST_CHECK(result.real() == infinity); |
|---|
| 497 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 498 | |
|---|
| 499 | result = boost::math::acosh(ct(nan, nan)); |
|---|
| 500 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 501 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 502 | } |
|---|
| 503 | // |
|---|
| 504 | // C99 spot checks for asinh: |
|---|
| 505 | // |
|---|
| 506 | result = boost::math::asinh(ct(zero, zero)); |
|---|
| 507 | BOOST_CHECK(result.real() == 0); |
|---|
| 508 | BOOST_CHECK(result.imag() == 0); |
|---|
| 509 | |
|---|
| 510 | result = boost::math::asinh(ct(mzero, zero)); |
|---|
| 511 | BOOST_CHECK(result.real() == 0); |
|---|
| 512 | BOOST_CHECK(result.imag() == 0); |
|---|
| 513 | |
|---|
| 514 | result = boost::math::asinh(ct(zero, mzero)); |
|---|
| 515 | BOOST_CHECK(result.real() == 0); |
|---|
| 516 | BOOST_CHECK(result.imag() == 0); |
|---|
| 517 | |
|---|
| 518 | result = boost::math::asinh(ct(mzero, mzero)); |
|---|
| 519 | BOOST_CHECK(result.real() == 0); |
|---|
| 520 | BOOST_CHECK(result.imag() == 0); |
|---|
| 521 | |
|---|
| 522 | if(test_infinity) |
|---|
| 523 | { |
|---|
| 524 | result = boost::math::asinh(ct(one, infinity)); |
|---|
| 525 | BOOST_CHECK(result.real() == infinity); |
|---|
| 526 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 527 | |
|---|
| 528 | result = boost::math::asinh(ct(one, -infinity)); |
|---|
| 529 | BOOST_CHECK(result.real() == infinity); |
|---|
| 530 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 531 | |
|---|
| 532 | result = boost::math::asinh(ct(-one, -infinity)); |
|---|
| 533 | BOOST_CHECK(result.real() == -infinity); |
|---|
| 534 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 535 | |
|---|
| 536 | result = boost::math::asinh(ct(-one, infinity)); |
|---|
| 537 | BOOST_CHECK(result.real() == -infinity); |
|---|
| 538 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 539 | } |
|---|
| 540 | |
|---|
| 541 | if(test_nan) |
|---|
| 542 | { |
|---|
| 543 | result = boost::math::asinh(ct(one, nan)); |
|---|
| 544 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 545 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 546 | |
|---|
| 547 | result = boost::math::asinh(ct(-one, nan)); |
|---|
| 548 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 549 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 550 | |
|---|
| 551 | result = boost::math::asinh(ct(zero, nan)); |
|---|
| 552 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 553 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 554 | } |
|---|
| 555 | |
|---|
| 556 | if(test_infinity) |
|---|
| 557 | { |
|---|
| 558 | result = boost::math::asinh(ct(infinity, one)); |
|---|
| 559 | BOOST_CHECK(result.real() == infinity); |
|---|
| 560 | BOOST_CHECK(result.imag() == 0); |
|---|
| 561 | |
|---|
| 562 | result = boost::math::asinh(ct(infinity, -one)); |
|---|
| 563 | BOOST_CHECK(result.real() == infinity); |
|---|
| 564 | BOOST_CHECK(result.imag() == 0); |
|---|
| 565 | |
|---|
| 566 | result = boost::math::asinh(ct(-infinity, -one)); |
|---|
| 567 | BOOST_CHECK(result.real() == -infinity); |
|---|
| 568 | BOOST_CHECK(result.imag() == 0); |
|---|
| 569 | |
|---|
| 570 | result = boost::math::asinh(ct(-infinity, one)); |
|---|
| 571 | BOOST_CHECK(result.real() == -infinity); |
|---|
| 572 | BOOST_CHECK(result.imag() == 0); |
|---|
| 573 | |
|---|
| 574 | result = boost::math::asinh(ct(infinity, infinity)); |
|---|
| 575 | BOOST_CHECK(result.real() == infinity); |
|---|
| 576 | BOOST_CHECK_CLOSE(result.imag(), quarter_pi, eps*200); |
|---|
| 577 | |
|---|
| 578 | result = boost::math::asinh(ct(infinity, -infinity)); |
|---|
| 579 | BOOST_CHECK(result.real() == infinity); |
|---|
| 580 | BOOST_CHECK_CLOSE(result.imag(), -quarter_pi, eps*200); |
|---|
| 581 | |
|---|
| 582 | result = boost::math::asinh(ct(-infinity, -infinity)); |
|---|
| 583 | BOOST_CHECK(result.real() == -infinity); |
|---|
| 584 | BOOST_CHECK_CLOSE(result.imag(), -quarter_pi, eps*200); |
|---|
| 585 | |
|---|
| 586 | result = boost::math::asinh(ct(-infinity, infinity)); |
|---|
| 587 | BOOST_CHECK(result.real() == -infinity); |
|---|
| 588 | BOOST_CHECK_CLOSE(result.imag(), quarter_pi, eps*200); |
|---|
| 589 | } |
|---|
| 590 | |
|---|
| 591 | if(test_nan) |
|---|
| 592 | { |
|---|
| 593 | result = boost::math::asinh(ct(infinity, nan)); |
|---|
| 594 | BOOST_CHECK(result.real() == infinity); |
|---|
| 595 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 596 | |
|---|
| 597 | result = boost::math::asinh(ct(-infinity, nan)); |
|---|
| 598 | BOOST_CHECK(result.real() == -infinity); |
|---|
| 599 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 600 | |
|---|
| 601 | result = boost::math::asinh(ct(nan, zero)); |
|---|
| 602 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 603 | BOOST_CHECK(result.imag() == 0); |
|---|
| 604 | |
|---|
| 605 | result = boost::math::asinh(ct(nan, mzero)); |
|---|
| 606 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 607 | BOOST_CHECK(result.imag() == 0); |
|---|
| 608 | |
|---|
| 609 | result = boost::math::asinh(ct(nan, one)); |
|---|
| 610 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 611 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 612 | |
|---|
| 613 | result = boost::math::asinh(ct(nan, -one)); |
|---|
| 614 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 615 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 616 | |
|---|
| 617 | result = boost::math::asinh(ct(nan, nan)); |
|---|
| 618 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 619 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 620 | |
|---|
| 621 | result = boost::math::asinh(ct(nan, infinity)); |
|---|
| 622 | BOOST_CHECK(std::fabs(result.real()) == infinity); |
|---|
| 623 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 624 | |
|---|
| 625 | result = boost::math::asinh(ct(nan, -infinity)); |
|---|
| 626 | BOOST_CHECK(std::fabs(result.real()) == infinity); |
|---|
| 627 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 628 | } |
|---|
| 629 | |
|---|
| 630 | // |
|---|
| 631 | // C99 special cases for atanh: |
|---|
| 632 | // |
|---|
| 633 | result = boost::math::atanh(ct(zero, zero)); |
|---|
| 634 | BOOST_CHECK(result.real() == zero); |
|---|
| 635 | BOOST_CHECK(result.imag() == zero); |
|---|
| 636 | |
|---|
| 637 | result = boost::math::atanh(ct(mzero, zero)); |
|---|
| 638 | BOOST_CHECK(result.real() == zero); |
|---|
| 639 | BOOST_CHECK(result.imag() == zero); |
|---|
| 640 | |
|---|
| 641 | result = boost::math::atanh(ct(zero, mzero)); |
|---|
| 642 | BOOST_CHECK(result.real() == zero); |
|---|
| 643 | BOOST_CHECK(result.imag() == zero); |
|---|
| 644 | |
|---|
| 645 | result = boost::math::atanh(ct(mzero, mzero)); |
|---|
| 646 | BOOST_CHECK(result.real() == zero); |
|---|
| 647 | BOOST_CHECK(result.imag() == zero); |
|---|
| 648 | |
|---|
| 649 | if(test_nan) |
|---|
| 650 | { |
|---|
| 651 | result = boost::math::atanh(ct(zero, nan)); |
|---|
| 652 | BOOST_CHECK(result.real() == zero); |
|---|
| 653 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 654 | |
|---|
| 655 | result = boost::math::atanh(ct(-zero, nan)); |
|---|
| 656 | BOOST_CHECK(result.real() == zero); |
|---|
| 657 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 658 | } |
|---|
| 659 | |
|---|
| 660 | if(test_infinity) |
|---|
| 661 | { |
|---|
| 662 | result = boost::math::atanh(ct(one, zero)); |
|---|
| 663 | BOOST_CHECK_EQUAL(result.real(), infinity); |
|---|
| 664 | BOOST_CHECK_EQUAL(result.imag(), zero); |
|---|
| 665 | |
|---|
| 666 | result = boost::math::atanh(ct(-one, zero)); |
|---|
| 667 | BOOST_CHECK_EQUAL(result.real(), -infinity); |
|---|
| 668 | BOOST_CHECK_EQUAL(result.imag(), zero); |
|---|
| 669 | |
|---|
| 670 | result = boost::math::atanh(ct(-one, -zero)); |
|---|
| 671 | BOOST_CHECK_EQUAL(result.real(), -infinity); |
|---|
| 672 | BOOST_CHECK_EQUAL(result.imag(), zero); |
|---|
| 673 | |
|---|
| 674 | result = boost::math::atanh(ct(one, -zero)); |
|---|
| 675 | BOOST_CHECK_EQUAL(result.real(), infinity); |
|---|
| 676 | BOOST_CHECK_EQUAL(result.imag(), zero); |
|---|
| 677 | |
|---|
| 678 | result = boost::math::atanh(ct(pi, infinity)); |
|---|
| 679 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 680 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 681 | |
|---|
| 682 | result = boost::math::atanh(ct(pi, -infinity)); |
|---|
| 683 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 684 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 685 | |
|---|
| 686 | result = boost::math::atanh(ct(-pi, -infinity)); |
|---|
| 687 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 688 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 689 | |
|---|
| 690 | result = boost::math::atanh(ct(-pi, infinity)); |
|---|
| 691 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 692 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 693 | } |
|---|
| 694 | if(test_nan) |
|---|
| 695 | { |
|---|
| 696 | result = boost::math::atanh(ct(pi, nan)); |
|---|
| 697 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 698 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 699 | |
|---|
| 700 | result = boost::math::atanh(ct(-pi, nan)); |
|---|
| 701 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 702 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 703 | } |
|---|
| 704 | |
|---|
| 705 | if(test_infinity) |
|---|
| 706 | { |
|---|
| 707 | result = boost::math::atanh(ct(infinity, pi)); |
|---|
| 708 | BOOST_CHECK(result.real() == zero); |
|---|
| 709 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 710 | |
|---|
| 711 | result = boost::math::atanh(ct(infinity, -pi)); |
|---|
| 712 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 713 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 714 | |
|---|
| 715 | result = boost::math::atanh(ct(-infinity, -pi)); |
|---|
| 716 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 717 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 718 | |
|---|
| 719 | result = boost::math::atanh(ct(-infinity, pi)); |
|---|
| 720 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 721 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 722 | |
|---|
| 723 | result = boost::math::atanh(ct(infinity, infinity)); |
|---|
| 724 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 725 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 726 | |
|---|
| 727 | result = boost::math::atanh(ct(infinity, -infinity)); |
|---|
| 728 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 729 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 730 | |
|---|
| 731 | result = boost::math::atanh(ct(-infinity, -infinity)); |
|---|
| 732 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 733 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 734 | |
|---|
| 735 | result = boost::math::atanh(ct(-infinity, infinity)); |
|---|
| 736 | BOOST_CHECK_EQUAL(result.real(), zero); |
|---|
| 737 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 738 | } |
|---|
| 739 | |
|---|
| 740 | if(test_nan) |
|---|
| 741 | { |
|---|
| 742 | result = boost::math::atanh(ct(infinity, nan)); |
|---|
| 743 | BOOST_CHECK(result.real() == 0); |
|---|
| 744 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 745 | |
|---|
| 746 | result = boost::math::atanh(ct(-infinity, nan)); |
|---|
| 747 | BOOST_CHECK(result.real() == 0); |
|---|
| 748 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 749 | |
|---|
| 750 | result = boost::math::atanh(ct(nan, pi)); |
|---|
| 751 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 752 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 753 | |
|---|
| 754 | result = boost::math::atanh(ct(nan, -pi)); |
|---|
| 755 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 756 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 757 | |
|---|
| 758 | result = boost::math::atanh(ct(nan, infinity)); |
|---|
| 759 | BOOST_CHECK(result.real() == 0); |
|---|
| 760 | BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200); |
|---|
| 761 | |
|---|
| 762 | result = boost::math::atanh(ct(nan, -infinity)); |
|---|
| 763 | BOOST_CHECK(result.real() == 0); |
|---|
| 764 | BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200); |
|---|
| 765 | |
|---|
| 766 | result = boost::math::atanh(ct(nan, nan)); |
|---|
| 767 | BOOST_CHECK(boost::math::detail::test_is_nan(result.real())); |
|---|
| 768 | BOOST_CHECK(boost::math::detail::test_is_nan(result.imag())); |
|---|
| 769 | |
|---|
| 770 | } |
|---|
| 771 | } |
|---|
| 772 | |
|---|
| 773 | // |
|---|
| 774 | // test_boundaries: |
|---|
| 775 | // This is an accuracy test, sets the real and imaginary components |
|---|
| 776 | // of the input argument to various "boundary conditions" that exist |
|---|
| 777 | // inside the implementation. Then computes the result at double precision |
|---|
| 778 | // and again at float precision. The double precision result will be |
|---|
| 779 | // computed using the "regular" code, where as the float precision versions |
|---|
| 780 | // will calculate the result using the "exceptional value" handlers, so |
|---|
| 781 | // we end up comparing the values calculated by two different methods. |
|---|
| 782 | // |
|---|
| 783 | const float boundaries[] = { |
|---|
| 784 | 0, |
|---|
| 785 | 1, |
|---|
| 786 | 2, |
|---|
| 787 | (std::numeric_limits<float>::max)(), |
|---|
| 788 | (std::numeric_limits<float>::min)(), |
|---|
| 789 | std::numeric_limits<float>::epsilon(), |
|---|
| 790 | std::sqrt((std::numeric_limits<float>::max)()) / 8, |
|---|
| 791 | static_cast<float>(4) * std::sqrt((std::numeric_limits<float>::min)()), |
|---|
| 792 | 0.6417F, |
|---|
| 793 | 1.5F, |
|---|
| 794 | std::sqrt((std::numeric_limits<float>::max)()) / 2, |
|---|
| 795 | std::sqrt((std::numeric_limits<float>::min)()), |
|---|
| 796 | 1.0F / 0.3F, |
|---|
| 797 | }; |
|---|
| 798 | |
|---|
| 799 | void do_test_boundaries(float x, float y) |
|---|
| 800 | { |
|---|
| 801 | std::complex<float> r1 = boost::math::asin(std::complex<float>(x, y)); |
|---|
| 802 | std::complex<double> dr = boost::math::asin(std::complex<double>(x, y)); |
|---|
| 803 | std::complex<float> r2(static_cast<float>(dr.real()), static_cast<float>(dr.imag())); |
|---|
| 804 | check_complex(r2, r1, 5); |
|---|
| 805 | r1 = boost::math::acos(std::complex<float>(x, y)); |
|---|
| 806 | dr = boost::math::acos(std::complex<double>(x, y)); |
|---|
| 807 | r2 = std::complex<float>(std::complex<double>(dr.real(), dr.imag())); |
|---|
| 808 | check_complex(r2, r1, 5); |
|---|
| 809 | r1 = boost::math::atanh(std::complex<float>(x, y)); |
|---|
| 810 | dr = boost::math::atanh(std::complex<double>(x, y)); |
|---|
| 811 | r2 = std::complex<float>(std::complex<double>(dr.real(), dr.imag())); |
|---|
| 812 | check_complex(r2, r1, 5); |
|---|
| 813 | } |
|---|
| 814 | |
|---|
| 815 | void test_boundaries(float x, float y) |
|---|
| 816 | { |
|---|
| 817 | do_test_boundaries(x, y); |
|---|
| 818 | do_test_boundaries(-x, y); |
|---|
| 819 | do_test_boundaries(-x, -y); |
|---|
| 820 | do_test_boundaries(x, -y); |
|---|
| 821 | } |
|---|
| 822 | |
|---|
| 823 | void test_boundaries(float x) |
|---|
| 824 | { |
|---|
| 825 | for(unsigned i = 0; i < sizeof(boundaries)/sizeof(float); ++i) |
|---|
| 826 | { |
|---|
| 827 | test_boundaries(x, boundaries[i]); |
|---|
| 828 | test_boundaries(x, boundaries[i] + std::numeric_limits<float>::epsilon()*boundaries[i]); |
|---|
| 829 | test_boundaries(x, boundaries[i] - std::numeric_limits<float>::epsilon()*boundaries[i]); |
|---|
| 830 | } |
|---|
| 831 | } |
|---|
| 832 | |
|---|
| 833 | void test_boundaries() |
|---|
| 834 | { |
|---|
| 835 | for(unsigned i = 0; i < sizeof(boundaries)/sizeof(float); ++i) |
|---|
| 836 | { |
|---|
| 837 | test_boundaries(boundaries[i]); |
|---|
| 838 | test_boundaries(boundaries[i] + std::numeric_limits<float>::epsilon()*boundaries[i]); |
|---|
| 839 | test_boundaries(boundaries[i] - std::numeric_limits<float>::epsilon()*boundaries[i]);//here |
|---|
| 840 | } |
|---|
| 841 | } |
|---|
| 842 | |
|---|
| 843 | |
|---|
| 844 | int test_main(int, char*[]) |
|---|
| 845 | { |
|---|
| 846 | std::cout << "Running complex trig sanity checks for type float." << std::endl; |
|---|
| 847 | test_inverse_trig(float(0)); |
|---|
| 848 | std::cout << "Running complex trig sanity checks for type double." << std::endl; |
|---|
| 849 | test_inverse_trig(double(0)); |
|---|
| 850 | //test_inverse_trig((long double)(0)); |
|---|
| 851 | |
|---|
| 852 | std::cout << "Running complex trig spot checks for type float." << std::endl; |
|---|
| 853 | check_spots(float(0)); |
|---|
| 854 | std::cout << "Running complex trig spot checks for type double." << std::endl; |
|---|
| 855 | check_spots(double(0)); |
|---|
| 856 | std::cout << "Running complex trig spot checks for type long double." << std::endl; |
|---|
| 857 | check_spots((long double)(0)); |
|---|
| 858 | |
|---|
| 859 | std::cout << "Running complex trig boundary and accuracy tests." << std::endl; |
|---|
| 860 | test_boundaries(); |
|---|
| 861 | return 0; |
|---|
| 862 | } |
|---|
| 863 | |
|---|
| 864 | |
|---|
| 865 | |
|---|