| 1 | \documentclass[11pt]{report} |
|---|
| 2 | |
|---|
| 3 | %\input{defs} |
|---|
| 4 | \usepackage{math} |
|---|
| 5 | \usepackage{jweb} |
|---|
| 6 | \usepackage{lgrind} |
|---|
| 7 | \usepackage{times} |
|---|
| 8 | \usepackage{fullpage} |
|---|
| 9 | \usepackage{graphicx} |
|---|
| 10 | |
|---|
| 11 | \newif\ifpdf |
|---|
| 12 | \ifx\pdfoutput\undefined |
|---|
| 13 | \pdffalse |
|---|
| 14 | \else |
|---|
| 15 | \pdfoutput=1 |
|---|
| 16 | \pdftrue |
|---|
| 17 | \fi |
|---|
| 18 | |
|---|
| 19 | \ifpdf |
|---|
| 20 | \usepackage[ |
|---|
| 21 | pdftex, |
|---|
| 22 | colorlinks=true, %change to true for the electronic version |
|---|
| 23 | linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue |
|---|
| 24 | ]{hyperref} |
|---|
| 25 | \fi |
|---|
| 26 | |
|---|
| 27 | \ifpdf |
|---|
| 28 | \newcommand{\stlconcept}[1]{\href{http://www.sgi.com/tech/stl/#1.html}{{\small \textsf{#1}}}} |
|---|
| 29 | \newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}} |
|---|
| 30 | \newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}} |
|---|
| 31 | \newcommand{\myhyperref}[2]{\hyperref[#1]{#2}} |
|---|
| 32 | \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}} |
|---|
| 33 | \else |
|---|
| 34 | \newcommand{\myhyperref}[2]{#2} |
|---|
| 35 | \newcommand{\bglconcept}[1]{{\small \textsf{#1}}} |
|---|
| 36 | \newcommand{\pmconcept}[1]{{\small \textsf{#1}}} |
|---|
| 37 | \newcommand{\stlconcept}[1]{{\small \textsf{#1}}} |
|---|
| 38 | \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}} |
|---|
| 39 | \fi |
|---|
| 40 | |
|---|
| 41 | \newcommand{\code}[1]{{\small{\em \textbf{#1}}}} |
|---|
| 42 | |
|---|
| 43 | |
|---|
| 44 | % jweb -np isomorphism-impl.w; dot -Tps out.dot -o out.eps; dot -Tps in.dot -o in.eps; latex isomorphism-impl.tex; dvips isomorphism-impl.dvi -o isomorphism-impl.ps |
|---|
| 45 | |
|---|
| 46 | \setlength\overfullrule{5pt} |
|---|
| 47 | \tolerance=10000 |
|---|
| 48 | \sloppy |
|---|
| 49 | \hfuzz=10pt |
|---|
| 50 | |
|---|
| 51 | \makeindex |
|---|
| 52 | |
|---|
| 53 | \newcommand{\isomorphic}{\cong} |
|---|
| 54 | |
|---|
| 55 | \begin{document} |
|---|
| 56 | |
|---|
| 57 | \title{An Implementation of Isomorphism Testing} |
|---|
| 58 | \author{Jeremy G. Siek} |
|---|
| 59 | |
|---|
| 60 | \maketitle |
|---|
| 61 | |
|---|
| 62 | \section{Introduction} |
|---|
| 63 | |
|---|
| 64 | This paper documents the implementation of the \code{isomorphism()} |
|---|
| 65 | function of the Boost Graph Library. The implementation was by Jeremy |
|---|
| 66 | Siek with algorithmic improvements and test code from Douglas Gregor. |
|---|
| 67 | The \code{isomorphism()} function answers the question, ``are these |
|---|
| 68 | two graphs equal?'' By \emph{equal}, we mean the two graphs have the |
|---|
| 69 | same structure---the vertices and edges are connected in the same |
|---|
| 70 | way. The mathematical name for this kind of equality is |
|---|
| 71 | \emph{isomorphic}. |
|---|
| 72 | |
|---|
| 73 | An \emph{isomorphism} is a one-to-one mapping of the vertices in one |
|---|
| 74 | graph to the vertices of another graph such that adjacency is |
|---|
| 75 | preserved. Another words, given graphs $G_{1} = (V_{1},E_{1})$ and |
|---|
| 76 | $G_{2} = (V_{2},E_{2})$, an isomorphism is a function $f$ such that |
|---|
| 77 | for all pairs of vertices $a,b$ in $V_{1}$, edge $(a,b)$ is in $E_{1}$ |
|---|
| 78 | if and only if edge $(f(a),f(b))$ is in $E_{2}$. |
|---|
| 79 | |
|---|
| 80 | Both graphs must be the same size, so let $N = |V_1| = |V_2|$. The |
|---|
| 81 | graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists |
|---|
| 82 | between the two graphs, which we denote by $G_1 \isomorphic G_2$. |
|---|
| 83 | |
|---|
| 84 | In the following discussion we will need to use several notions from |
|---|
| 85 | graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of graph |
|---|
| 86 | $G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$. An |
|---|
| 87 | \emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$ |
|---|
| 88 | consists of the vertices in $V_s$, which is a subset of $V$, and every |
|---|
| 89 | edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$. We use |
|---|
| 90 | the notation $E[V_s]$ to mean the edges in $G[V_s]$. |
|---|
| 91 | |
|---|
| 92 | In some places we express a function as a set of pairs, so the set $f |
|---|
| 93 | = \{ \pair{a_1}{b_1}, \ldots, \pair{a_n}{b_n} \}$ |
|---|
| 94 | means $f(a_i) = b_i$ for $i=1,\ldots,n$. |
|---|
| 95 | |
|---|
| 96 | \section{Exhaustive Backtracking Search} |
|---|
| 97 | |
|---|
| 98 | The algorithm used by the \code{isomorphism()} function is, at |
|---|
| 99 | first approximation, an exhaustive search implemented via |
|---|
| 100 | backtracking. The backtracking algorithm is a recursive function. At |
|---|
| 101 | each stage we will try to extend the match that we have found so far. |
|---|
| 102 | So suppose that we have already determined that some subgraph of $G_1$ |
|---|
| 103 | is isomorphic to a subgraph of $G_2$. We then try to add a vertex to |
|---|
| 104 | each subgraph such that the new subgraphs are still isomorphic to one |
|---|
| 105 | another. At some point we may hit a dead end---there are no vertices |
|---|
| 106 | that can be added to extend the isomorphic subgraphs. We then |
|---|
| 107 | backtrack to previous smaller matching subgraphs, and try extending |
|---|
| 108 | with a different vertex choice. The process ends by either finding a |
|---|
| 109 | complete mapping between $G_1$ and $G_2$ and return true, or by |
|---|
| 110 | exhausting all possibilities and returning false. |
|---|
| 111 | |
|---|
| 112 | We are going to consider the vertices of $G_1$ in a specific order |
|---|
| 113 | (more about this later), so assume that the vertices of $G_1$ are |
|---|
| 114 | labeled $1,\ldots,N$ according to the order that we plan to add them |
|---|
| 115 | to the subgraph. Let $G_1[k]$ denote the subgraph of $G_1$ induced by |
|---|
| 116 | the first $k$ vertices, with $G_1[0]$ being an empty graph. At each |
|---|
| 117 | stage of the recursion we start with an isomorphism $f_{k-1}$ between |
|---|
| 118 | $G_1[k-1]$ and a subgraph of $G_2$, which we denote by $G_2[S]$, so |
|---|
| 119 | $G_1[k-1] \isomorphic G_2[S]$. The vertex set $S$ is the subset of |
|---|
| 120 | $V_2$ that corresponds via $f_{k-1}$ to the first $k-1$ vertices in |
|---|
| 121 | $G_1$. We try to extend the isomorphism by finding a vertex $v \in V_2 |
|---|
| 122 | - S$ that matches with vertex $k$. If a matching vertex is found, we |
|---|
| 123 | have a new isomorphism $f_k$ with $G_1[k] \isomorphic G_2[S \union \{ |
|---|
| 124 | v \}]$. |
|---|
| 125 | |
|---|
| 126 | \begin{tabbing} |
|---|
| 127 | IS\=O\=M\=O\=RPH($k$, $S$, $f_{k-1}$) $\equiv$ \\ |
|---|
| 128 | \>\textbf{if} ($k = |V_1|+1$) \\ |
|---|
| 129 | \>\>\textbf{return} true \\ |
|---|
| 130 | \>\textbf{for} each vertex $v \in V_2 - S$ \\ |
|---|
| 131 | \>\>\textbf{if} (MATCH($k$, $v$)) \\ |
|---|
| 132 | \>\>\>$f_k = f_{k-1} \union \pair{k}{v}$ \\ |
|---|
| 133 | \>\>\>ISOMORPH($k+1$, $S \union \{ v \}$, $f_k$)\\ |
|---|
| 134 | \>\>\textbf{else}\\ |
|---|
| 135 | \>\>\>\textbf{return} false \\ |
|---|
| 136 | \\ |
|---|
| 137 | ISOMORPH($0$, $G_1$, $\emptyset$, $G_2$) |
|---|
| 138 | \end{tabbing} |
|---|
| 139 | |
|---|
| 140 | The basic idea of the match operation is to check whether $G_1[k]$ is |
|---|
| 141 | isomorphic to $G_2[S \union \{ v \}]$. We already know that $G_1[k-1] |
|---|
| 142 | \isomorphic G_2[S]$ with the mapping $f_{k-1}$, so all we need to do |
|---|
| 143 | is verify that the edges in $E_1[k] - E_1[k-1]$ connect vertices that |
|---|
| 144 | correspond to the vertices connected by the edges in $E_2[S \union \{ |
|---|
| 145 | v \}] - E_2[S]$. The edges in $E_1[k] - E_1[k-1]$ are all the |
|---|
| 146 | out-edges $(k,j)$ and in-edges $(j,k)$ of $k$ where $j$ is less than |
|---|
| 147 | or equal to $k$ according to the ordering. The edges in $E_2[S \union |
|---|
| 148 | \{ v \}] - E_2[S]$ consists of all the out-edges $(v,u)$ and |
|---|
| 149 | in-edges $(u,v)$ of $v$ where $u \in S$. |
|---|
| 150 | |
|---|
| 151 | \begin{tabbing} |
|---|
| 152 | M\=ATCH($k$, $v$) $\equiv$ \\ |
|---|
| 153 | \>$out \leftarrow \forall (k,j) \in E_1[k] - E_1[k-1] \Big( (v,f(j)) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\ |
|---|
| 154 | \>$in \leftarrow \forall (j,k) \in E_1[k] - E_1[k-1] \Big( (f(j),v) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\ |
|---|
| 155 | \>\textbf{return} $out \Land in$ |
|---|
| 156 | \end{tabbing} |
|---|
| 157 | |
|---|
| 158 | The problem with the exhaustive backtracking algorithm is that there |
|---|
| 159 | are $N!$ possible vertex mappings, and $N!$ gets very large as $N$ |
|---|
| 160 | increases, so we need to prune the search space. We use the pruning |
|---|
| 161 | techniques described in |
|---|
| 162 | \cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo} |
|---|
| 163 | that originated in |
|---|
| 164 | \cite{sussenguth65:_isomorphism,unger64:_isomorphism}. |
|---|
| 165 | |
|---|
| 166 | \section{Vertex Invariants} |
|---|
| 167 | \label{sec:vertex-invariants} |
|---|
| 168 | |
|---|
| 169 | One way to reduce the search space is through the use of \emph{vertex |
|---|
| 170 | invariants}. The idea is to compute a number for each vertex $i(v)$ |
|---|
| 171 | such that $i(v) = i(v')$ if there exists some isomorphism $f$ where |
|---|
| 172 | $f(v) = v'$. Then when we look for a match to some vertex $v$, we only |
|---|
| 173 | need to consider those vertices that have the same vertex invariant |
|---|
| 174 | number. The number of vertices in a graph with the same vertex |
|---|
| 175 | invariant number $i$ is called the \emph{invariant multiplicity} for |
|---|
| 176 | $i$. In this implementation, by default we use the out-degree of the |
|---|
| 177 | vertex as the vertex invariant, though the user can also supply there |
|---|
| 178 | own invariant function. The ability of the invariant function to prune |
|---|
| 179 | the search space varies widely with the type of graph. |
|---|
| 180 | |
|---|
| 181 | As a first check to rule out graphs that have no possibility of |
|---|
| 182 | matching, one can create a list of computed vertex invariant numbers |
|---|
| 183 | for the vertices in each graph, sort the two lists, and then compare |
|---|
| 184 | them. If the two lists are different then the two graphs are not |
|---|
| 185 | isomorphic. If the two lists are the same then the two graphs may be |
|---|
| 186 | isomorphic. |
|---|
| 187 | |
|---|
| 188 | Also, we extend the MATCH operation to use the vertex invariants to |
|---|
| 189 | help rule out vertices. |
|---|
| 190 | |
|---|
| 191 | \begin{tabbing} |
|---|
| 192 | M\=A\=T\=C\=H-INVAR($k$, $v$) $\equiv$ \\ |
|---|
| 193 | \>$out \leftarrow \forall (k,j) \in E_1[k] - E_1[k-1] \Big( (v,f(j)) \in E_2[S \union \{ v \}] - E_2[S] \Land i(v) = i(k) \Big)$ \\ |
|---|
| 194 | \>$in \leftarrow \forall (j,k) \in E_1[k] - E_1[k-1] \Big( (f(j),v) \in E_2[S \union \{ v \}] - E_2[S] \Land i(v) = i(k) \Big)$ \\ |
|---|
| 195 | \>\textbf{return} $out \Land in$ |
|---|
| 196 | \end{tabbing} |
|---|
| 197 | |
|---|
| 198 | \section{Vertex Order} |
|---|
| 199 | |
|---|
| 200 | A good choice of the labeling for the vertices (which determines the |
|---|
| 201 | order in which the subgraph $G_1[k]$ is grown) can also reduce the |
|---|
| 202 | search space. In the following we discuss two labeling heuristics. |
|---|
| 203 | |
|---|
| 204 | \subsection{Most Constrained First} |
|---|
| 205 | |
|---|
| 206 | Consider the most constrained vertices first. That is, examine |
|---|
| 207 | lower-degree vertices before higher-degree vertices. This reduces the |
|---|
| 208 | search space because it chops off a trunk before the trunk has a |
|---|
| 209 | chance to blossom out. We can generalize this to use vertex |
|---|
| 210 | invariants. We examine vertices with low invariant multiplicity |
|---|
| 211 | before examining vertices with high invariant multiplicity. |
|---|
| 212 | |
|---|
| 213 | \subsection{Adjacent First} |
|---|
| 214 | |
|---|
| 215 | The MATCH operation only considers edges when the other vertex already |
|---|
| 216 | has a mapping defined. This means that the MATCH operation can only |
|---|
| 217 | weed out vertices that are adjacent to vertices that have already been |
|---|
| 218 | matched. Therefore, when choosing the next vertex to examine, it is |
|---|
| 219 | desirable to choose one that is adjacent a vertex already in $S_1$. |
|---|
| 220 | |
|---|
| 221 | \subsection{DFS Order, Starting with Lowest Multiplicity} |
|---|
| 222 | |
|---|
| 223 | For this implementation, we combine the above two heuristics in the |
|---|
| 224 | following way. To implement the ``adjacent first'' heuristic we apply |
|---|
| 225 | DFS to the graph, and use the DFS discovery order as our vertex |
|---|
| 226 | order. To comply with the ``most constrained first'' heuristic we |
|---|
| 227 | order the roots of our DFS trees by invariant multiplicity. |
|---|
| 228 | |
|---|
| 229 | |
|---|
| 230 | \section{Implementation} |
|---|
| 231 | |
|---|
| 232 | The following is the public interface for the \code{isomorphism} |
|---|
| 233 | function. The input to the function is the two graphs $G_1$ and $G_2$, |
|---|
| 234 | mappings from the vertices in the graphs to integers (in the range |
|---|
| 235 | $[0,|V|)$), and a vertex invariant function object. The output of the |
|---|
| 236 | function is an isomorphism $f$ if there is one. The \code{isomorphism} |
|---|
| 237 | function returns true if the graphs are isomorphic and false |
|---|
| 238 | otherwise. The requirements on type template parameters are described |
|---|
| 239 | below in the section ``Concept checking''. |
|---|
| 240 | |
|---|
| 241 | @d Isomorphism Function Interface |
|---|
| 242 | @{ |
|---|
| 243 | template <typename Graph1, typename Graph2, |
|---|
| 244 | typename IndexMapping, |
|---|
| 245 | typename VertexInvariant1, typename VertexInvariant2, |
|---|
| 246 | typename IndexMap1, typename IndexMap2> |
|---|
| 247 | bool isomorphism(const Graph1& g1, const Graph2& g2, |
|---|
| 248 | IndexMapping f, |
|---|
| 249 | VertexInvariant1 invariant1, VertexInvariant2 invariant2, |
|---|
| 250 | IndexMap1 index_map1, IndexMap2 index_map2) |
|---|
| 251 | @} |
|---|
| 252 | |
|---|
| 253 | The main outline of the \code{isomorphism} function is as |
|---|
| 254 | follows. Most of the steps in this function are for setting up the |
|---|
| 255 | vertex ordering, first ordering the vertices by invariant multiplicity |
|---|
| 256 | and then by DFS order. The last step is the call to the |
|---|
| 257 | \code{isomorph} function which starts the backtracking search. |
|---|
| 258 | |
|---|
| 259 | @d Isomorphism Function Body |
|---|
| 260 | @{ |
|---|
| 261 | { |
|---|
| 262 | @<Some type definitions and iterator declarations@> |
|---|
| 263 | @<Concept checking@> |
|---|
| 264 | @<Quick return with false if $|V_1| \neq |V_2|$@> |
|---|
| 265 | @<Compute vertex invariants@> |
|---|
| 266 | @<Quick return if the graph's invariants do not match@> |
|---|
| 267 | @<Compute invariant multiplicity@> |
|---|
| 268 | @<Sort vertices by invariant multiplicity@> |
|---|
| 269 | @<Order the vertices by DFS discover time@> |
|---|
| 270 | @<Order the edges by DFS discover time@> |
|---|
| 271 | @<Invoke recursive \code{isomorph} function@> |
|---|
| 272 | } |
|---|
| 273 | @} |
|---|
| 274 | |
|---|
| 275 | There are some types that will be used throughout the function, which |
|---|
| 276 | we create shortened names for here. We will also need vertex |
|---|
| 277 | iterators for \code{g1} and \code{g2} in several places, so we define |
|---|
| 278 | them here. |
|---|
| 279 | |
|---|
| 280 | @d Some type definitions and iterator declarations |
|---|
| 281 | @{ |
|---|
| 282 | typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t; |
|---|
| 283 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 284 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 285 | typename graph_traits<Graph1>::vertex_iterator i1, i1_end; |
|---|
| 286 | typename graph_traits<Graph2>::vertex_iterator i2, i2_end; |
|---|
| 287 | @} |
|---|
| 288 | |
|---|
| 289 | We use the Boost Concept Checking Library to make sure that the type |
|---|
| 290 | arguments to the function fulfill there requirements. The |
|---|
| 291 | \code{Graph1} type must be a \bglconcept{VertexListGraph} and a |
|---|
| 292 | \bglconcept{EdgeListGraph}. The \code{Graph2} type must be a |
|---|
| 293 | \bglconcept{VertexListGraph} and a |
|---|
| 294 | \bglconcept{BidirectionalGraph}. The \code{IndexMapping} type that |
|---|
| 295 | represents the isomorphism $f$ must be a |
|---|
| 296 | \pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to |
|---|
| 297 | vertices in $G_2$. The two other index maps are |
|---|
| 298 | \pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to |
|---|
| 299 | unsigned integers. |
|---|
| 300 | |
|---|
| 301 | @d Concept checking |
|---|
| 302 | @{ |
|---|
| 303 | // Graph requirements |
|---|
| 304 | function_requires< VertexListGraphConcept<Graph1> >(); |
|---|
| 305 | function_requires< EdgeListGraphConcept<Graph1> >(); |
|---|
| 306 | function_requires< VertexListGraphConcept<Graph2> >(); |
|---|
| 307 | function_requires< BidirectionalGraphConcept<Graph2> >(); |
|---|
| 308 | |
|---|
| 309 | // Property map requirements |
|---|
| 310 | function_requires< ReadWritePropertyMapConcept<IndexMapping, vertex1_t> >(); |
|---|
| 311 | typedef typename property_traits<IndexMapping>::value_type IndexMappingValue; |
|---|
| 312 | BOOST_STATIC_ASSERT((is_same<IndexMappingValue, vertex2_t>::value)); |
|---|
| 313 | |
|---|
| 314 | function_requires< ReadablePropertyMapConcept<IndexMap1, vertex1_t> >(); |
|---|
| 315 | typedef typename property_traits<IndexMap1>::value_type IndexMap1Value; |
|---|
| 316 | BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value)); |
|---|
| 317 | |
|---|
| 318 | function_requires< ReadablePropertyMapConcept<IndexMap2, vertex2_t> >(); |
|---|
| 319 | typedef typename property_traits<IndexMap2>::value_type IndexMap2Value; |
|---|
| 320 | BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value)); |
|---|
| 321 | @} |
|---|
| 322 | |
|---|
| 323 | |
|---|
| 324 | \noindent If there are no vertices in either graph, then they are trivially |
|---|
| 325 | isomorphic. |
|---|
| 326 | |
|---|
| 327 | @d Quick return with false if $|V_1| \neq |V_2|$ |
|---|
| 328 | @{ |
|---|
| 329 | if (num_vertices(g1) != num_vertices(g2)) |
|---|
| 330 | return false; |
|---|
| 331 | @} |
|---|
| 332 | |
|---|
| 333 | |
|---|
| 334 | \subsection{Ordering by Vertex Invariant Multiplicity} |
|---|
| 335 | |
|---|
| 336 | The user can supply the vertex invariant functions as a |
|---|
| 337 | \stlconcept{AdaptableUnaryFunction} (with the addition of the |
|---|
| 338 | \code{max} function) in the \code{invariant1} and \code{invariant2} |
|---|
| 339 | parameters. We also define a default which uses the out-degree and |
|---|
| 340 | in-degree of a vertex. The following is the definition of the function |
|---|
| 341 | object for the default vertex invariant. User-defined vertex invariant |
|---|
| 342 | function objects should follow the same pattern. |
|---|
| 343 | |
|---|
| 344 | @d Degree vertex invariant |
|---|
| 345 | @{ |
|---|
| 346 | template <typename InDegreeMap, typename Graph> |
|---|
| 347 | class degree_vertex_invariant |
|---|
| 348 | { |
|---|
| 349 | public: |
|---|
| 350 | typedef typename graph_traits<Graph>::vertex_descriptor argument_type; |
|---|
| 351 | typedef typename graph_traits<Graph>::degree_size_type result_type; |
|---|
| 352 | |
|---|
| 353 | degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g) |
|---|
| 354 | : m_in_degree_map(in_degree_map), m_g(g) { } |
|---|
| 355 | |
|---|
| 356 | result_type operator()(argument_type v) const { |
|---|
| 357 | return (num_vertices(m_g) + 1) * out_degree(v, m_g) |
|---|
| 358 | + get(m_in_degree_map, v); |
|---|
| 359 | } |
|---|
| 360 | // The largest possible vertex invariant number |
|---|
| 361 | result_type max() const { |
|---|
| 362 | return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g); |
|---|
| 363 | } |
|---|
| 364 | private: |
|---|
| 365 | InDegreeMap m_in_degree_map; |
|---|
| 366 | const Graph& m_g; |
|---|
| 367 | }; |
|---|
| 368 | @} |
|---|
| 369 | |
|---|
| 370 | Since the invariant function may be expensive to compute, we |
|---|
| 371 | pre-compute the invariant numbers for every vertex in the two |
|---|
| 372 | graphs. The variables \code{invar1} and \code{invar2} are property |
|---|
| 373 | maps for accessing the stored invariants, which are described next. |
|---|
| 374 | |
|---|
| 375 | @d Compute vertex invariants |
|---|
| 376 | @{ |
|---|
| 377 | @<Setup storage for vertex invariants@> |
|---|
| 378 | for (tie(i1, i1_end) = vertices(g1); i1 != i1_end; ++i1) |
|---|
| 379 | invar1[*i1] = invariant1(*i1); |
|---|
| 380 | for (tie(i2, i2_end) = vertices(g2); i2 != i2_end; ++i2) |
|---|
| 381 | invar2[*i2] = invariant2(*i2); |
|---|
| 382 | @} |
|---|
| 383 | |
|---|
| 384 | \noindent We store the invariants in two vectors, indexed by the vertex indices |
|---|
| 385 | of the two graphs. We then create property maps for accessing these |
|---|
| 386 | two vectors in a more convenient fashion (they go directly from vertex |
|---|
| 387 | to invariant, instead of vertex to index to invariant). |
|---|
| 388 | |
|---|
| 389 | @d Setup storage for vertex invariants |
|---|
| 390 | @{ |
|---|
| 391 | typedef typename VertexInvariant1::result_type InvarValue1; |
|---|
| 392 | typedef typename VertexInvariant2::result_type InvarValue2; |
|---|
| 393 | typedef std::vector<InvarValue1> invar_vec1_t; |
|---|
| 394 | typedef std::vector<InvarValue2> invar_vec2_t; |
|---|
| 395 | invar_vec1_t invar1_vec(num_vertices(g1)); |
|---|
| 396 | invar_vec2_t invar2_vec(num_vertices(g2)); |
|---|
| 397 | typedef typename invar_vec1_t::iterator vec1_iter; |
|---|
| 398 | typedef typename invar_vec2_t::iterator vec2_iter; |
|---|
| 399 | iterator_property_map<vec1_iter, IndexMap1, InvarValue1, InvarValue1&> |
|---|
| 400 | invar1(invar1_vec.begin(), index_map1); |
|---|
| 401 | iterator_property_map<vec2_iter, IndexMap2, InvarValue2, InvarValue2&> |
|---|
| 402 | invar2(invar2_vec.begin(), index_map2); |
|---|
| 403 | @} |
|---|
| 404 | |
|---|
| 405 | As discussed in \S\ref{sec:vertex-invariants}, we can quickly rule out |
|---|
| 406 | the possibility of any isomorphism between two graphs by checking to |
|---|
| 407 | see if the vertex invariants can match up. We sort both vectors of vertex |
|---|
| 408 | invariants, and then check to see if they are equal. |
|---|
| 409 | |
|---|
| 410 | @d Quick return if the graph's invariants do not match |
|---|
| 411 | @{ |
|---|
| 412 | { // check if the graph's invariants do not match |
|---|
| 413 | invar_vec1_t invar1_tmp(invar1_vec); |
|---|
| 414 | invar_vec2_t invar2_tmp(invar2_vec); |
|---|
| 415 | std::sort(invar1_tmp.begin(), invar1_tmp.end()); |
|---|
| 416 | std::sort(invar2_tmp.begin(), invar2_tmp.end()); |
|---|
| 417 | if (! std::equal(invar1_tmp.begin(), invar1_tmp.end(), |
|---|
| 418 | invar2_tmp.begin())) |
|---|
| 419 | return false; |
|---|
| 420 | } |
|---|
| 421 | @} |
|---|
| 422 | |
|---|
| 423 | Next we compute the invariant multiplicity, the number of vertices |
|---|
| 424 | with the same invariant number. The \code{invar\_mult} vector is |
|---|
| 425 | indexed by invariant number. We loop through all the vertices in the |
|---|
| 426 | graph to record the multiplicity. |
|---|
| 427 | |
|---|
| 428 | @d Compute invariant multiplicity |
|---|
| 429 | @{ |
|---|
| 430 | std::vector<std::size_t> invar_mult(invariant1.max(), 0); |
|---|
| 431 | for (tie(i1, i1_end) = vertices(g1); i1 != i1_end; ++i1) |
|---|
| 432 | ++invar_mult[invar1[*i1]]; |
|---|
| 433 | @} |
|---|
| 434 | |
|---|
| 435 | \noindent We then order the vertices by their invariant multiplicity. |
|---|
| 436 | This will allow us to search the more constrained vertices first. |
|---|
| 437 | Since we will need to know the permutation from the original order to |
|---|
| 438 | the new order, we do not sort the vertices directly. Instead we sort |
|---|
| 439 | the vertex indices, creating the \code{perm} array. Once sorted, this |
|---|
| 440 | array provides a mapping from the new index to the old index. |
|---|
| 441 | We then use the \code{permute} function to sort the vertices of |
|---|
| 442 | the graph, which we store in the \code{g1\_vertices} vector. |
|---|
| 443 | |
|---|
| 444 | @d Sort vertices by invariant multiplicity |
|---|
| 445 | @{ |
|---|
| 446 | std::vector<size_type> perm; |
|---|
| 447 | integer_range<size_type> range(0, num_vertices(g1)); |
|---|
| 448 | std::copy(range.begin(), range.end(), std::back_inserter(perm)); |
|---|
| 449 | std::sort(perm.begin(), perm.end(), |
|---|
| 450 | detail::compare_invariant_multiplicity(invar1_vec.begin(), |
|---|
| 451 | invar_mult.begin())); |
|---|
| 452 | |
|---|
| 453 | std::vector<vertex1_t> g1_vertices; |
|---|
| 454 | for (tie(i1, i1_end) = vertices(g1); i1 != i1_end; ++i1) |
|---|
| 455 | g1_vertices.push_back(*i1); |
|---|
| 456 | permute(g1_vertices.begin(), g1_vertices.end(), perm.begin()); |
|---|
| 457 | @} |
|---|
| 458 | |
|---|
| 459 | \noindent The definition of the \code{compare\_multiplicity} predicate |
|---|
| 460 | is shown below. This predicate provides the glue that binds |
|---|
| 461 | \code{std::sort} to our current purpose. |
|---|
| 462 | |
|---|
| 463 | @d Compare multiplicity predicate |
|---|
| 464 | @{ |
|---|
| 465 | namespace detail { |
|---|
| 466 | template <typename InvarMap, typename MultMap> |
|---|
| 467 | struct compare_invariant_multiplicity_predicate |
|---|
| 468 | { |
|---|
| 469 | compare_invariant_multiplicity_predicate(InvarMap i, MultMap m) |
|---|
| 470 | : m_invar(i), m_mult(m) { } |
|---|
| 471 | |
|---|
| 472 | template <typename Vertex> |
|---|
| 473 | bool operator()(const Vertex& x, const Vertex& y) const |
|---|
| 474 | { return m_mult[m_invar[x]] < m_mult[m_invar[y]]; } |
|---|
| 475 | |
|---|
| 476 | InvarMap m_invar; |
|---|
| 477 | MultMap m_mult; |
|---|
| 478 | }; |
|---|
| 479 | template <typename InvarMap, typename MultMap> |
|---|
| 480 | compare_invariant_multiplicity_predicate<InvarMap, MultMap> |
|---|
| 481 | compare_invariant_multiplicity(InvarMap i, MultMap m) { |
|---|
| 482 | return compare_invariant_multiplicity_predicate<InvarMap, MultMap>(i,m); |
|---|
| 483 | } |
|---|
| 484 | } // namespace detail |
|---|
| 485 | @} |
|---|
| 486 | |
|---|
| 487 | |
|---|
| 488 | \subsection{Ordering by DFS Discover Time} |
|---|
| 489 | |
|---|
| 490 | To implement the ``visit adjacent vertices first'' heuristic, we order |
|---|
| 491 | the vertices according to DFS discover time. We replace the ordering |
|---|
| 492 | in \code{perm} with the new DFS ordering. Again, we use \code{permute} |
|---|
| 493 | to sort the vertices of graph \code{g1}. |
|---|
| 494 | |
|---|
| 495 | @d Order the vertices by DFS discover time |
|---|
| 496 | @{ |
|---|
| 497 | { |
|---|
| 498 | perm.clear(); |
|---|
| 499 | @<Compute DFS discover times@> |
|---|
| 500 | g1_vertices.clear(); |
|---|
| 501 | for (tie(i1, i1_end) = vertices(g1); i1 != i1_end; ++i1) |
|---|
| 502 | g1_vertices.push_back(*i1); |
|---|
| 503 | permute(g1_vertices.begin(), g1_vertices.end(), perm.begin()); |
|---|
| 504 | } |
|---|
| 505 | @} |
|---|
| 506 | |
|---|
| 507 | We implement the outer-loop of the DFS here, instead of calling the |
|---|
| 508 | \code{depth\_first\_search} function, because we want the roots of the |
|---|
| 509 | DFS tree's to be ordered by invariant multiplicity. We call |
|---|
| 510 | \code{depth\_\-first\_\-visit} to implement the recursive portion of |
|---|
| 511 | the DFS. The \code{record\_dfs\_order} adapts the DFS to record |
|---|
| 512 | the order in which DFS discovers the vertices. |
|---|
| 513 | |
|---|
| 514 | @d Compute DFS discover times |
|---|
| 515 | @{ |
|---|
| 516 | std::vector<default_color_type> color_vec(num_vertices(g1)); |
|---|
| 517 | for (typename std::vector<vertex1_t>::iterator ui = g1_vertices.begin(); |
|---|
| 518 | ui != g1_vertices.end(); ++ui) { |
|---|
| 519 | if (color_vec[get(index_map1, *ui)] |
|---|
| 520 | == color_traits<default_color_type>::white()) { |
|---|
| 521 | depth_first_visit |
|---|
| 522 | (g1, *ui, detail::record_dfs_order<Graph1, IndexMap1>(perm, |
|---|
| 523 | index_map1), |
|---|
| 524 | make_iterator_property_map(&color_vec[0], index_map1, |
|---|
| 525 | color_vec[0])); |
|---|
| 526 | } |
|---|
| 527 | } |
|---|
| 528 | @} |
|---|
| 529 | |
|---|
| 530 | \noindent The definition of the \code{record\_dfs\_order} visitor |
|---|
| 531 | class is as follows. The index of each vertex is recorded in the |
|---|
| 532 | \code{dfs\_order} vector (which is the \code{perm} vector) in the |
|---|
| 533 | \code{discover\_vertex} event point. |
|---|
| 534 | |
|---|
| 535 | @d Record DFS ordering visitor |
|---|
| 536 | @{ |
|---|
| 537 | namespace detail { |
|---|
| 538 | template <typename Graph1, typename IndexMap1> |
|---|
| 539 | struct record_dfs_order : public default_dfs_visitor { |
|---|
| 540 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 541 | typedef typename graph_traits<Graph1>::vertex_descriptor vertex; |
|---|
| 542 | |
|---|
| 543 | record_dfs_order(std::vector<size_type>& dfs_order, IndexMap1 index) |
|---|
| 544 | : dfs_order(dfs_order), index(index) { } |
|---|
| 545 | |
|---|
| 546 | void discover_vertex(vertex v, const Graph1& g) const { |
|---|
| 547 | dfs_order.push_back(get(index, v)); |
|---|
| 548 | } |
|---|
| 549 | std::vector<size_type>& dfs_order; |
|---|
| 550 | IndexMap1 index; |
|---|
| 551 | }; |
|---|
| 552 | } // namespace detail |
|---|
| 553 | @} |
|---|
| 554 | |
|---|
| 555 | |
|---|
| 556 | In the MATCH operation, we need to examine all the edges in the set |
|---|
| 557 | $E_1[k] - E_1[k-1]$. That is, we need to loop through all the edges of |
|---|
| 558 | the form $(k,j)$ or $(j,k)$ where $j \leq k$. To do this efficiently, |
|---|
| 559 | we create an array of all the edges in $G_1$ that has been sorted so |
|---|
| 560 | that $E_1[k] - E_1[k-1]$ forms a contiguous range. To each edge |
|---|
| 561 | $e=(u,v)$ we assign the number $\max(u,v)$, and then sort the edges by |
|---|
| 562 | this number. All the edges $(u,v) \in E_1[k] - E_1[k-1]$ can then be |
|---|
| 563 | identified because $\max(u,v) = k$. The following code creates an |
|---|
| 564 | array of edges and then sorts them. The \code{edge\_\-ordering\_\-fun} |
|---|
| 565 | function object is described next. |
|---|
| 566 | |
|---|
| 567 | @d Order the edges by DFS discover time |
|---|
| 568 | @{ |
|---|
| 569 | typedef typename graph_traits<Graph1>::edge_descriptor edge1_t; |
|---|
| 570 | std::vector<edge1_t> edge_set; |
|---|
| 571 | std::copy(edges(g1).first, edges(g1).second, std::back_inserter(edge_set)); |
|---|
| 572 | |
|---|
| 573 | std::sort(edge_set.begin(), edge_set.end(), |
|---|
| 574 | detail::edge_ordering |
|---|
| 575 | (make_iterator_property_map(perm.begin(), index_map1, perm[0]), g1)); |
|---|
| 576 | @} |
|---|
| 577 | |
|---|
| 578 | \noindent The \code{edge\_order} function computes the ordering number |
|---|
| 579 | for an edge, which for edge $e=(u,v)$ is $\max(u,v)$. The |
|---|
| 580 | \code{edge\_\-ordering\_\-fun} function object simply returns |
|---|
| 581 | comparison of two edge's ordering numbers. |
|---|
| 582 | |
|---|
| 583 | @d Isomorph edge ordering predicate |
|---|
| 584 | @{ |
|---|
| 585 | namespace detail { |
|---|
| 586 | |
|---|
| 587 | template <typename VertexIndexMap, typename Graph> |
|---|
| 588 | std::size_t edge_order(const typename graph_traits<Graph>::edge_descriptor e, |
|---|
| 589 | VertexIndexMap index_map, const Graph& g) { |
|---|
| 590 | return std::max(get(index_map, source(e, g)), get(index_map, target(e, g))); |
|---|
| 591 | } |
|---|
| 592 | |
|---|
| 593 | template <typename VertexIndexMap, typename Graph> |
|---|
| 594 | class edge_ordering_fun { |
|---|
| 595 | public: |
|---|
| 596 | edge_ordering_fun(VertexIndexMap vip, const Graph& g) |
|---|
| 597 | : m_index_map(vip), m_g(g) { } |
|---|
| 598 | template <typename Edge> |
|---|
| 599 | bool operator()(const Edge& e1, const Edge& e2) const { |
|---|
| 600 | return edge_order(e1, m_index_map, m_g) < edge_order(e2, m_index_map, m_g); |
|---|
| 601 | } |
|---|
| 602 | VertexIndexMap m_index_map; |
|---|
| 603 | const Graph& m_g; |
|---|
| 604 | }; |
|---|
| 605 | template <class VertexIndexMap, class G> |
|---|
| 606 | inline edge_ordering_fun<VertexIndexMap,G> |
|---|
| 607 | edge_ordering(VertexIndexMap vip, const G& g) |
|---|
| 608 | { |
|---|
| 609 | return edge_ordering_fun<VertexIndexMap,G>(vip, g); |
|---|
| 610 | } |
|---|
| 611 | } // namespace detail |
|---|
| 612 | @} |
|---|
| 613 | |
|---|
| 614 | |
|---|
| 615 | We are now ready to enter the main part of the algorithm, the |
|---|
| 616 | backtracking search implemented by the \code{isomorph} function (which |
|---|
| 617 | corresponds to the ISOMORPH algorithm). The set $S$ is not |
|---|
| 618 | represented directly; instead we represent $V_2 - S$. Initially $S = |
|---|
| 619 | \emptyset$ so $V_2 - S = V_2$. We use the permuted indices for the |
|---|
| 620 | vertices of graph \code{g1}. We represent $V_2 - S$ with a bitset. We |
|---|
| 621 | use \code{std::vector} instead of \code{boost::dyn\_bitset} for speed |
|---|
| 622 | instead of space. |
|---|
| 623 | |
|---|
| 624 | @d Invoke recursive \code{isomorph} function |
|---|
| 625 | @{ |
|---|
| 626 | std::vector<char> not_in_S_vec(num_vertices(g2), true); |
|---|
| 627 | iterator_property_map<char*, IndexMap2, char, char&> |
|---|
| 628 | not_in_S(¬_in_S_vec[0], index_map2); |
|---|
| 629 | |
|---|
| 630 | return detail::isomorph(g1_vertices.begin(), g1_vertices.end(), |
|---|
| 631 | edge_set.begin(), edge_set.end(), g1, g2, |
|---|
| 632 | make_iterator_property_map(perm.begin(), index_map1, perm[0]), |
|---|
| 633 | index_map2, f, invar1, invar2, not_in_S); |
|---|
| 634 | @} |
|---|
| 635 | |
|---|
| 636 | |
|---|
| 637 | \subsection{Implementation of ISOMORPH} |
|---|
| 638 | |
|---|
| 639 | The ISOMORPH algorithm is implemented with the \code{isomorph} |
|---|
| 640 | function. The vertices of $G_1$ are searched in the order specified by |
|---|
| 641 | the iterator range \code{[k\_iter,last)}. The function returns true if |
|---|
| 642 | a isomorphism is found between the vertices of $G_1$ in |
|---|
| 643 | \code{[k\_iter,last)} and the vertices of $G_2$ in \code{not\_in\_S}. |
|---|
| 644 | The mapping is recorded in the parameter \code{f}. |
|---|
| 645 | |
|---|
| 646 | @d Signature for the recursive isomorph function |
|---|
| 647 | @{ |
|---|
| 648 | template <class VertexIter, class EdgeIter, class Graph1, class Graph2, |
|---|
| 649 | class IndexMap1, class IndexMap2, class IndexMapping, |
|---|
| 650 | class Invar1, class Invar2, class Set> |
|---|
| 651 | bool isomorph(VertexIter k_iter, VertexIter last, |
|---|
| 652 | EdgeIter edge_iter, EdgeIter edge_iter_end, |
|---|
| 653 | const Graph1& g1, const Graph2& g2, |
|---|
| 654 | IndexMap1 index_map1, |
|---|
| 655 | IndexMap2 index_map2, |
|---|
| 656 | IndexMapping f, Invar1 invar1, Invar2 invar2, |
|---|
| 657 | const Set& not_in_S) |
|---|
| 658 | @} |
|---|
| 659 | |
|---|
| 660 | \noindent The steps for this function are as follows. |
|---|
| 661 | |
|---|
| 662 | @d Body of the isomorph function |
|---|
| 663 | @{ |
|---|
| 664 | { |
|---|
| 665 | @<Some typedefs and variable declarations@> |
|---|
| 666 | @<Return true if matching is complete@> |
|---|
| 667 | @<Create a copy of $f_{k-1}$ which will become $f_k$@> |
|---|
| 668 | @<Compute $M$, the potential matches for $k$@> |
|---|
| 669 | @<Invoke isomorph for each vertex in $M$@> |
|---|
| 670 | } |
|---|
| 671 | @} |
|---|
| 672 | |
|---|
| 673 | \noindent Here we create short names for some often-used types |
|---|
| 674 | and declare some variables. |
|---|
| 675 | |
|---|
| 676 | @d Some typedefs and variable declarations |
|---|
| 677 | @{ |
|---|
| 678 | typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t; |
|---|
| 679 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 680 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 681 | |
|---|
| 682 | vertex1_t k = *k_iter; |
|---|
| 683 | @} |
|---|
| 684 | |
|---|
| 685 | \noindent We have completed creating an isomorphism if \code{k\_iter == last}. |
|---|
| 686 | |
|---|
| 687 | @d Return true if matching is complete |
|---|
| 688 | @{ |
|---|
| 689 | if (k_iter == last) |
|---|
| 690 | return true; |
|---|
| 691 | @} |
|---|
| 692 | |
|---|
| 693 | |
|---|
| 694 | In the pseudo-code for ISOMORPH, we iterate through each vertex in $v |
|---|
| 695 | \in V_2 - S$ and check if $k$ and $v$ can match. A more efficient |
|---|
| 696 | approach is to directly iterate through the potential matches for $k$, |
|---|
| 697 | for this often is many fewer vertices than $V_2 - S$. Let $M$ be the |
|---|
| 698 | set of potential matches for $k$. $M$ consists of all the vertices $v |
|---|
| 699 | \in V_2 - S$ such that if $(k,j)$ or $(j,k) \in E_1[k] - E_1[k-1]$ |
|---|
| 700 | then $(v,f(j)$ or $(f(j),v) \in E_2$ with $i(v) = i(k)$. Note that |
|---|
| 701 | this means if there are no edges in $E_1[k] - E_1[k-1]$ then $M = V_2 |
|---|
| 702 | - S$. In the case where there are edges in $E_1[k] - E_1[k-1]$ we |
|---|
| 703 | break the computation of $M$ into two parts, computing $out$ sets |
|---|
| 704 | which are vertices that can match according to an out-edge of $k$, and |
|---|
| 705 | computing $in$ sets which are vertices that can match according to an |
|---|
| 706 | in-edge of $k$. |
|---|
| 707 | |
|---|
| 708 | The implementation consists of a loop through the edges of $E_1[k] - |
|---|
| 709 | E_1[k-1]$. The straightforward implementation would initialize $M |
|---|
| 710 | \leftarrow V_2 - S$, and then intersect $M$ with the $out$ or $in$ set |
|---|
| 711 | for each edge. However, to reduce the cost of the intersection |
|---|
| 712 | operation, we start with $M \leftarrow \emptyset$, and on the first |
|---|
| 713 | iteration of the loop we do $M \leftarrow out$ or $M \leftarrow in$ |
|---|
| 714 | instead of an intersection operation. |
|---|
| 715 | |
|---|
| 716 | @d Compute $M$, the potential matches for $k$ |
|---|
| 717 | @{ |
|---|
| 718 | std::vector<vertex2_t> potential_matches; |
|---|
| 719 | bool some_edges = false; |
|---|
| 720 | |
|---|
| 721 | for (; edge_iter != edge_iter_end; ++edge_iter) { |
|---|
| 722 | if (get(index_map1, k) != edge_order(*edge_iter, index_map1, g1)) |
|---|
| 723 | break; |
|---|
| 724 | if (k == source(*edge_iter, g1)) { // (k,j) |
|---|
| 725 | @<Compute the $out$ set@> |
|---|
| 726 | if (some_edges == false) { |
|---|
| 727 | @<Perform $M \leftarrow out$@> |
|---|
| 728 | } else { |
|---|
| 729 | @<Perform $M \leftarrow M \intersect out$@> |
|---|
| 730 | } |
|---|
| 731 | some_edges = true; |
|---|
| 732 | } else { // (j,k) |
|---|
| 733 | @<Compute the $in$ set@> |
|---|
| 734 | if (some_edges == false) { |
|---|
| 735 | @<Perform $M \leftarrow in$@> |
|---|
| 736 | } else { |
|---|
| 737 | @<Perform $M \leftarrow M \intersect in$@> |
|---|
| 738 | } |
|---|
| 739 | some_edges = true; |
|---|
| 740 | } |
|---|
| 741 | if (potential_matches.empty()) |
|---|
| 742 | break; |
|---|
| 743 | } // for edge_iter |
|---|
| 744 | if (some_edges == false) { |
|---|
| 745 | @<Perform $M \leftarrow V_2 - S$@> |
|---|
| 746 | } |
|---|
| 747 | @} |
|---|
| 748 | |
|---|
| 749 | To compute the $out$ set, we iterate through the out-edges $(k,j)$ of |
|---|
| 750 | $k$, and for each $j$ we iterate through the in-edges $(v,f(j))$ of |
|---|
| 751 | $f(j)$, putting all of the $v$'s in $out$ that have the same vertex |
|---|
| 752 | invariant as $k$, and which are in $V_2 - S$. Figure~\ref{fig:out} |
|---|
| 753 | depicts the computation of the $out$ set. The implementation is as |
|---|
| 754 | follows. |
|---|
| 755 | |
|---|
| 756 | @d Compute the $out$ set |
|---|
| 757 | @{ |
|---|
| 758 | vertex1_t j = target(*edge_iter, g1); |
|---|
| 759 | std::vector<vertex2_t> out; |
|---|
| 760 | typename graph_traits<Graph2>::in_edge_iterator ei, ei_end; |
|---|
| 761 | for (tie(ei, ei_end) = in_edges(get(f, j), g2); ei != ei_end; ++ei) { |
|---|
| 762 | vertex2_t v = source(*ei, g2); // (v,f[j]) |
|---|
| 763 | if (invar1[k] == invar2[v] && not_in_S[v]) |
|---|
| 764 | out.push_back(v); |
|---|
| 765 | } |
|---|
| 766 | @} |
|---|
| 767 | |
|---|
| 768 | \noindent Here initialize $M$ with the $out$ set. Since we are |
|---|
| 769 | representing sets with sorted vectors, we sort \code{out} before |
|---|
| 770 | copying to \code{potential\_matches}. |
|---|
| 771 | |
|---|
| 772 | @d Perform $M \leftarrow out$ |
|---|
| 773 | @{ |
|---|
| 774 | indirect_cmp<IndexMap2,std::less<std::size_t> > cmp(index_map2); |
|---|
| 775 | std::sort(out.begin(), out.end(), cmp); |
|---|
| 776 | std::copy(out.begin(), out.end(), std::back_inserter(potential_matches)); |
|---|
| 777 | @} |
|---|
| 778 | |
|---|
| 779 | \noindent We use \code{std::set\_intersection} to implement $M |
|---|
| 780 | \leftarrow M \intersect out$. Since there is no version of |
|---|
| 781 | \code{std::set\_intersection} that works in-place, we create a |
|---|
| 782 | temporary for the result and then swap. |
|---|
| 783 | |
|---|
| 784 | @d Perform $M \leftarrow M \intersect out$ |
|---|
| 785 | @{ |
|---|
| 786 | indirect_cmp<IndexMap2,std::less<std::size_t> > cmp(index_map2); |
|---|
| 787 | std::sort(out.begin(), out.end(), cmp); |
|---|
| 788 | std::vector<vertex2_t> tmp_matches; |
|---|
| 789 | std::set_intersection(out.begin(), out.end(), |
|---|
| 790 | potential_matches.begin(), potential_matches.end(), |
|---|
| 791 | std::back_inserter(tmp_matches), cmp); |
|---|
| 792 | std::swap(potential_matches, tmp_matches); |
|---|
| 793 | @} |
|---|
| 794 | |
|---|
| 795 | % Shoot, there is some problem with f(j). Could have to do with the |
|---|
| 796 | % change from the edge set to just using out_edges and in_edges. |
|---|
| 797 | % Yes, have to visit edges in correct order to we don't hit |
|---|
| 798 | % part of f that is not yet defined. |
|---|
| 799 | |
|---|
| 800 | \vizfig{out}{Computing the $out$ set.} |
|---|
| 801 | |
|---|
| 802 | @c out.dot |
|---|
| 803 | @{ |
|---|
| 804 | digraph G { |
|---|
| 805 | node[shape=circle] |
|---|
| 806 | size="4,2" |
|---|
| 807 | ratio="fill" |
|---|
| 808 | |
|---|
| 809 | subgraph cluster0 { label="G_1" |
|---|
| 810 | k -> j_1 |
|---|
| 811 | k -> j_2 |
|---|
| 812 | k -> j_3 |
|---|
| 813 | } |
|---|
| 814 | |
|---|
| 815 | subgraph cluster1 { label="G_2" |
|---|
| 816 | |
|---|
| 817 | subgraph cluster2 { label="out" v_1 v_2 v_3 v_4 v_5 v_6 } |
|---|
| 818 | |
|---|
| 819 | v_1 -> fj_1 |
|---|
| 820 | v_2 -> fj_1 |
|---|
| 821 | v_3 -> fj_1 |
|---|
| 822 | |
|---|
| 823 | v_4 -> fj_2 |
|---|
| 824 | |
|---|
| 825 | v_5 -> fj_3 |
|---|
| 826 | v_6 -> fj_3 |
|---|
| 827 | |
|---|
| 828 | fj_1[label="f(j_1)"] |
|---|
| 829 | fj_2[label="f(j_2)"] |
|---|
| 830 | fj_3[label="f(j_3)"] |
|---|
| 831 | } |
|---|
| 832 | |
|---|
| 833 | j_1 -> fj_1[style=dotted] |
|---|
| 834 | j_2 -> fj_2[style=dotted] |
|---|
| 835 | j_3 -> fj_3[style=dotted] |
|---|
| 836 | } |
|---|
| 837 | @} |
|---|
| 838 | |
|---|
| 839 | The $in$ set is is constructed by iterating through the in-edges |
|---|
| 840 | $(j,k)$ of $k$, and for each $j$ we iterate through the out-edges |
|---|
| 841 | $(f(j),v)$ of $f(j)$. We put all of the $v$'s in $in$ that have the |
|---|
| 842 | same vertex invariant as $k$, and which are in $V_2 - |
|---|
| 843 | S$. Figure~\ref{fig:in} depicts the computation of the $in$ set. The |
|---|
| 844 | following code computes the $in$ set. |
|---|
| 845 | |
|---|
| 846 | @d Compute the $in$ set |
|---|
| 847 | @{ |
|---|
| 848 | vertex1_t j = source(*edge_iter, g1); |
|---|
| 849 | std::vector<vertex2_t> in; |
|---|
| 850 | typename graph_traits<Graph2>::out_edge_iterator ei, ei_end; |
|---|
| 851 | for (tie(ei, ei_end) = out_edges(get(f, j), g2); ei != ei_end; ++ei) { |
|---|
| 852 | vertex2_t v = target(*ei, g2); // (f[j],v) |
|---|
| 853 | if (invar1[k] == invar2[v] && not_in_S[v]) |
|---|
| 854 | in.push_back(v); |
|---|
| 855 | } |
|---|
| 856 | @} |
|---|
| 857 | |
|---|
| 858 | \noindent Here initialize $M$ with the $in$ set. Since we are |
|---|
| 859 | representing sets with sorted vectors, we sort \code{in} before |
|---|
| 860 | copying to \code{potential\_matches}. |
|---|
| 861 | |
|---|
| 862 | @d Perform $M \leftarrow in$ |
|---|
| 863 | @{ |
|---|
| 864 | indirect_cmp<IndexMap2,std::less<std::size_t> > cmp(index_map2); |
|---|
| 865 | std::sort(in.begin(), in.end(), cmp); |
|---|
| 866 | std::copy(in.begin(), in.end(), std::back_inserter(potential_matches)); |
|---|
| 867 | @} |
|---|
| 868 | |
|---|
| 869 | \noindent Again we use \code{std::set\_intersection} on |
|---|
| 870 | sorted vectors to implement $M \leftarrow M \intersect in$. |
|---|
| 871 | |
|---|
| 872 | @d Perform $M \leftarrow M \intersect in$ |
|---|
| 873 | @{ |
|---|
| 874 | indirect_cmp<IndexMap2, std::less<std::size_t> > cmp(index_map2); |
|---|
| 875 | std::sort(in.begin(), in.end(), cmp); |
|---|
| 876 | std::vector<vertex2_t> tmp_matches; |
|---|
| 877 | std::set_intersection(in.begin(), in.end(), |
|---|
| 878 | potential_matches.begin(), potential_matches.end(), |
|---|
| 879 | std::back_inserter(tmp_matches), cmp); |
|---|
| 880 | std::swap(potential_matches, tmp_matches); |
|---|
| 881 | @} |
|---|
| 882 | |
|---|
| 883 | \vizfig{in}{Computing the $in$ set.} |
|---|
| 884 | |
|---|
| 885 | @c in.dot |
|---|
| 886 | @{ |
|---|
| 887 | digraph G { |
|---|
| 888 | node[shape=circle] |
|---|
| 889 | size="3,2" |
|---|
| 890 | ratio="fill" |
|---|
| 891 | subgraph cluster0 { label="G1" |
|---|
| 892 | j_1 -> k |
|---|
| 893 | j_2 -> k |
|---|
| 894 | } |
|---|
| 895 | |
|---|
| 896 | subgraph cluster1 { label="G2" |
|---|
| 897 | |
|---|
| 898 | subgraph cluster2 { label="in" v_1 v_2 v_3 } |
|---|
| 899 | |
|---|
| 900 | v_1 -> fj_1 |
|---|
| 901 | v_2 -> fj_1 |
|---|
| 902 | |
|---|
| 903 | v_3 -> fj_2 |
|---|
| 904 | |
|---|
| 905 | fj_1[label="f(j_1)"] |
|---|
| 906 | fj_2[label="f(j_2)"] |
|---|
| 907 | } |
|---|
| 908 | |
|---|
| 909 | j_1 -> fj_1[style=dotted] |
|---|
| 910 | j_2 -> fj_2[style=dotted] |
|---|
| 911 | |
|---|
| 912 | } |
|---|
| 913 | @} |
|---|
| 914 | |
|---|
| 915 | In the case where there were no edges in $E_1[k] - E_1[k-1]$, then $M |
|---|
| 916 | = V_2 - S$, so here we insert all the vertices from $V_2$ that are not |
|---|
| 917 | in $S$. |
|---|
| 918 | |
|---|
| 919 | @d Perform $M \leftarrow V_2 - S$ |
|---|
| 920 | @{ |
|---|
| 921 | typename graph_traits<Graph2>::vertex_iterator vi, vi_end; |
|---|
| 922 | for (tie(vi, vi_end) = vertices(g2); vi != vi_end; ++vi) |
|---|
| 923 | if (not_in_S[*vi]) |
|---|
| 924 | potential_matches.push_back(*vi); |
|---|
| 925 | @} |
|---|
| 926 | |
|---|
| 927 | For each vertex $v$ in the potential matches $M$, we will create an |
|---|
| 928 | extended isomorphism $f_k = f_{k-1} \union \pair{k}{v}$. First |
|---|
| 929 | we create a local copy of $f_{k-1}$. |
|---|
| 930 | |
|---|
| 931 | @d Create a copy of $f_{k-1}$ which will become $f_k$ |
|---|
| 932 | @{ |
|---|
| 933 | std::vector<vertex2_t> my_f_vec(num_vertices(g1)); |
|---|
| 934 | typedef typename std::vector<vertex2_t>::iterator vec_iter; |
|---|
| 935 | iterator_property_map<vec_iter, IndexMap1, vertex2_t, vertex2_t&> |
|---|
| 936 | my_f(my_f_vec.begin(), index_map1); |
|---|
| 937 | |
|---|
| 938 | typename graph_traits<Graph1>::vertex_iterator i1, i1_end; |
|---|
| 939 | for (tie(i1, i1_end) = vertices(g1); i1 != i1_end; ++i1) |
|---|
| 940 | my_f[*i1] = get(f, *i1); |
|---|
| 941 | @} |
|---|
| 942 | |
|---|
| 943 | Next we enter the loop through every vertex $v$ in $M$, and extend the |
|---|
| 944 | isomorphism with $\pair{k}{v}$. We then update the set $S$ (by |
|---|
| 945 | removing $v$ from $V_2 - S$) and make the recursive call to |
|---|
| 946 | \code{isomorph}. If \code{isomorph} returns successfully, we have |
|---|
| 947 | found an isomorphism for the complete graph, so we copy our local |
|---|
| 948 | mapping into the mapping from the previous calling function. |
|---|
| 949 | |
|---|
| 950 | @d Invoke isomorph for each vertex in $M$ |
|---|
| 951 | @{ |
|---|
| 952 | for (std::size_t j = 0; j < potential_matches.size(); ++j) { |
|---|
| 953 | my_f[k] = potential_matches[j]; |
|---|
| 954 | @<Perform $S' = S - \{ v \}$@> |
|---|
| 955 | if (isomorph(boost::next(k_iter), last, edge_iter, edge_iter_end, g1, g2, |
|---|
| 956 | index_map1, index_map2, |
|---|
| 957 | my_f, invar1, invar2, my_not_in_S)) { |
|---|
| 958 | for (tie(i1, i1_end) = vertices(g1); i1 != i1_end; ++i1) |
|---|
| 959 | put(f, *i1, my_f[*i1]); |
|---|
| 960 | return true; |
|---|
| 961 | } |
|---|
| 962 | } |
|---|
| 963 | return false; |
|---|
| 964 | @} |
|---|
| 965 | |
|---|
| 966 | We need to create the new set $S' = S - \{ v \}$, which will be the |
|---|
| 967 | $S$ for the next invocation to \code{isomorph}. As before, we |
|---|
| 968 | represent $V_2 - S'$ instead of $S'$ and use a bitset. |
|---|
| 969 | |
|---|
| 970 | @d Perform $S' = S - \{ v \}$ |
|---|
| 971 | @{ |
|---|
| 972 | std::vector<char> my_not_in_S_vec(num_vertices(g2)); |
|---|
| 973 | iterator_property_map<char*, IndexMap2, char, char&> |
|---|
| 974 | my_not_in_S(&my_not_in_S_vec[0], index_map2); |
|---|
| 975 | typename graph_traits<Graph2>::vertex_iterator vi, vi_end; |
|---|
| 976 | for (tie(vi, vi_end) = vertices(g2); vi != vi_end; ++vi) |
|---|
| 977 | my_not_in_S[*vi] = not_in_S[*vi];; |
|---|
| 978 | my_not_in_S[potential_matches[j]] = false; |
|---|
| 979 | @} |
|---|
| 980 | |
|---|
| 981 | |
|---|
| 982 | \section{Appendix} |
|---|
| 983 | |
|---|
| 984 | Here we output the header file \code{isomorphism.hpp}. We add a |
|---|
| 985 | copyright statement, include some files, and then pull the top-level |
|---|
| 986 | code parts into namespace \code{boost}. |
|---|
| 987 | |
|---|
| 988 | @o isomorphism.hpp -d |
|---|
| 989 | @{ |
|---|
| 990 | |
|---|
| 991 | // (C) Copyright Jeremy Siek 2001. Permission to copy, use, modify, |
|---|
| 992 | // sell and distribute this software is granted provided this |
|---|
| 993 | // copyright notice appears in all copies. This software is provided |
|---|
| 994 | // "as is" without express or implied warranty, and with no claim as |
|---|
| 995 | // to its suitability for any purpose. |
|---|
| 996 | |
|---|
| 997 | // See http://www.boost.org/libs/graph/doc/isomorphism-impl.pdf |
|---|
| 998 | // for a description of the implementation of the isomorphism function |
|---|
| 999 | // defined in this header file. |
|---|
| 1000 | |
|---|
| 1001 | #ifndef BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 1002 | #define BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 1003 | |
|---|
| 1004 | #include <algorithm> |
|---|
| 1005 | #include <boost/graph/detail/set_adaptor.hpp> |
|---|
| 1006 | #include <boost/pending/indirect_cmp.hpp> |
|---|
| 1007 | #include <boost/graph/detail/permutation.hpp> |
|---|
| 1008 | #include <boost/graph/named_function_params.hpp> |
|---|
| 1009 | #include <boost/graph/graph_concepts.hpp> |
|---|
| 1010 | #include <boost/property_map.hpp> |
|---|
| 1011 | #include <boost/pending/integer_range.hpp> |
|---|
| 1012 | #include <boost/limits.hpp> |
|---|
| 1013 | #include <boost/static_assert.hpp> |
|---|
| 1014 | #include <boost/graph/depth_first_search.hpp> |
|---|
| 1015 | |
|---|
| 1016 | namespace boost { |
|---|
| 1017 | |
|---|
| 1018 | @<Degree vertex invariant@> |
|---|
| 1019 | |
|---|
| 1020 | namespace detail { |
|---|
| 1021 | @<Signature for the recursive isomorph function@> |
|---|
| 1022 | @<Body of the isomorph function@> |
|---|
| 1023 | } // namespace detail |
|---|
| 1024 | |
|---|
| 1025 | @<Record DFS ordering visitor@> |
|---|
| 1026 | @<Compare multiplicity predicate@> |
|---|
| 1027 | @<Isomorph edge ordering predicate@> |
|---|
| 1028 | |
|---|
| 1029 | @<Isomorphism Function Interface@> |
|---|
| 1030 | @<Isomorphism Function Body@> |
|---|
| 1031 | |
|---|
| 1032 | namespace detail { |
|---|
| 1033 | // Should move this, make is public |
|---|
| 1034 | template <typename Graph, typename InDegreeMap, typename Cat> |
|---|
| 1035 | void compute_in_degree(const Graph& g, const InDegreeMap& in_degree_map, |
|---|
| 1036 | Cat) |
|---|
| 1037 | { |
|---|
| 1038 | typename graph_traits<Graph>::vertex_iterator vi, vi_end; |
|---|
| 1039 | typename graph_traits<Graph>::out_edge_iterator ei, ei_end; |
|---|
| 1040 | for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) |
|---|
| 1041 | for (tie(ei, ei_end) = out_edges(*vi, g); ei != ei_end; ++ei) { |
|---|
| 1042 | typename graph_traits<Graph>::vertex_descriptor v = target(*ei, g); |
|---|
| 1043 | put(in_degree_map, v, get(in_degree_map, v) + 1); |
|---|
| 1044 | } |
|---|
| 1045 | } |
|---|
| 1046 | template <typename Graph, typename InDegreeMap> |
|---|
| 1047 | void compute_in_degree(const Graph& g, const InDegreeMap& in_degree_map, |
|---|
| 1048 | edge_list_graph_tag) |
|---|
| 1049 | { |
|---|
| 1050 | typename graph_traits<Graph>::edge_iterator ei, ei_end; |
|---|
| 1051 | for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) { |
|---|
| 1052 | typename graph_traits<Graph>::vertex_descriptor v = target(*ei, g); |
|---|
| 1053 | put(in_degree_map, v, get(in_degree_map, v) + 1); |
|---|
| 1054 | } |
|---|
| 1055 | } |
|---|
| 1056 | template <typename Graph, typename InDegreeMap> |
|---|
| 1057 | void compute_in_degree(const Graph& g, const InDegreeMap& in_degree_map) |
|---|
| 1058 | { |
|---|
| 1059 | typename graph_traits<Graph>::traversal_category cat; |
|---|
| 1060 | compute_in_degree(g, in_degree_map, cat); |
|---|
| 1061 | } |
|---|
| 1062 | |
|---|
| 1063 | |
|---|
| 1064 | template <typename Graph1, typename Graph2, |
|---|
| 1065 | typename IndexMapping, typename IndexMap1, typename IndexMap2, |
|---|
| 1066 | typename P, typename T, typename R> |
|---|
| 1067 | bool isomorphism_impl(const Graph1& g1, const Graph2& g2, |
|---|
| 1068 | IndexMapping f, |
|---|
| 1069 | IndexMap1 index_map1, IndexMap2 index_map2, |
|---|
| 1070 | const bgl_named_params<P,T,R>& params) |
|---|
| 1071 | { |
|---|
| 1072 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 1073 | |
|---|
| 1074 | // Compute the in-degrees |
|---|
| 1075 | std::vector<size_type> in_degree_vec1(num_vertices(g1), 0); |
|---|
| 1076 | typedef iterator_property_map<size_type*, IndexMap1, |
|---|
| 1077 | size_type, size_type&> InDegreeMap1; |
|---|
| 1078 | InDegreeMap1 in_degree_map1(&in_degree_vec1[0], index_map1); |
|---|
| 1079 | detail::compute_in_degree(g1, in_degree_map1); |
|---|
| 1080 | degree_vertex_invariant<InDegreeMap1, Graph1> |
|---|
| 1081 | default_invar1(in_degree_map1, g1); |
|---|
| 1082 | |
|---|
| 1083 | std::vector<size_type> in_degree_vec2(num_vertices(g2), 0); |
|---|
| 1084 | typedef iterator_property_map<size_type*, IndexMap2, |
|---|
| 1085 | size_type, size_type&> InDegreeMap2; |
|---|
| 1086 | InDegreeMap2 in_degree_map2(&in_degree_vec2[0], index_map2); |
|---|
| 1087 | detail::compute_in_degree(g2, in_degree_map2); |
|---|
| 1088 | degree_vertex_invariant<InDegreeMap2, Graph2> |
|---|
| 1089 | default_invar2(in_degree_map2, g2); |
|---|
| 1090 | |
|---|
| 1091 | return isomorphism(g1, g2, f, |
|---|
| 1092 | choose_param(get_param(params, vertex_invariant_t()), default_invar1), |
|---|
| 1093 | choose_param(get_param(params, vertex_invariant_t()), default_invar2), |
|---|
| 1094 | index_map1, index_map2); |
|---|
| 1095 | } |
|---|
| 1096 | |
|---|
| 1097 | } // namespace detail |
|---|
| 1098 | |
|---|
| 1099 | // Named parameter interface |
|---|
| 1100 | template <typename Graph1, typename Graph2, class P, class T, class R> |
|---|
| 1101 | bool isomorphism(const Graph1& g1, |
|---|
| 1102 | const Graph2& g2, |
|---|
| 1103 | const bgl_named_params<P,T,R>& params) |
|---|
| 1104 | { |
|---|
| 1105 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 1106 | typename std::vector<vertex2_t>::size_type |
|---|
| 1107 | n = is_default_param(get_param(params, vertex_isomorphism_t())) |
|---|
| 1108 | ? num_vertices(g1) : 1; |
|---|
| 1109 | std::vector<vertex2_t> f(n); |
|---|
| 1110 | vertex2_t x; |
|---|
| 1111 | return detail::isomorphism_impl |
|---|
| 1112 | (g1, g2, |
|---|
| 1113 | choose_param(get_param(params, vertex_isomorphism_t()), |
|---|
| 1114 | make_iterator_property_map(f.begin(), |
|---|
| 1115 | choose_const_pmap(get_param(params, vertex_index1), |
|---|
| 1116 | g1, vertex_index), x)), |
|---|
| 1117 | choose_const_pmap(get_param(params, vertex_index1), |
|---|
| 1118 | g1, vertex_index), |
|---|
| 1119 | choose_const_pmap(get_param(params, vertex_index2), |
|---|
| 1120 | g2, vertex_index), |
|---|
| 1121 | params); |
|---|
| 1122 | } |
|---|
| 1123 | |
|---|
| 1124 | // All defaults interface |
|---|
| 1125 | template <typename Graph1, typename Graph2> |
|---|
| 1126 | bool isomorphism(const Graph1& g1, const Graph2& g2) |
|---|
| 1127 | { |
|---|
| 1128 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 1129 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 1130 | std::vector<vertex2_t> f(num_vertices(g1)); |
|---|
| 1131 | |
|---|
| 1132 | // Compute the in-degrees |
|---|
| 1133 | std::vector<size_type> in_degree_vec1(num_vertices(g1), 0); |
|---|
| 1134 | typedef typename property_map<Graph1,vertex_index_t>::const_type IndexMap1; |
|---|
| 1135 | typedef iterator_property_map<size_type*, IndexMap1, |
|---|
| 1136 | size_type, size_type&> InDegreeMap1; |
|---|
| 1137 | InDegreeMap1 in_degree_map1(&in_degree_vec1[0], get(vertex_index, g1)); |
|---|
| 1138 | detail::compute_in_degree(g1, in_degree_map1); |
|---|
| 1139 | degree_vertex_invariant<InDegreeMap1, Graph1> |
|---|
| 1140 | invariant1(in_degree_map, g1); |
|---|
| 1141 | |
|---|
| 1142 | std::vector<size_type> in_degree_vec2(num_vertices(g2), 0); |
|---|
| 1143 | typedef typename property_map<Graph2,vertex_index_t>::const_type IndexMap2; |
|---|
| 1144 | typedef iterator_property_map<size_type*, IndexMap2, |
|---|
| 1145 | size_type, size_type&> InDegreeMap2; |
|---|
| 1146 | InDegreeMap2 in_degree_map2(&in_degree_vec2[0], get(vertex_index, g2)); |
|---|
| 1147 | detail::compute_in_degree(g2, in_degree_map2); |
|---|
| 1148 | degree_vertex_invariant<InDegreeMap2, Graph2> |
|---|
| 1149 | invariant2(in_degree_map, g2); |
|---|
| 1150 | |
|---|
| 1151 | return isomorphism |
|---|
| 1152 | (g1, g2, make_iterator_property_map(f.begin(), get(vertex_index, g1), vertex2_t()), |
|---|
| 1153 | invariant1, invariant2, get(vertex_index, g1), get(vertex_index, g2)); |
|---|
| 1154 | } |
|---|
| 1155 | |
|---|
| 1156 | // Verify that the given mapping iso_map from the vertices of g1 to the |
|---|
| 1157 | // vertices of g2 describes an isomorphism. |
|---|
| 1158 | // Note: this could be made much faster by specializing based on the graph |
|---|
| 1159 | // concepts modeled, but since we're verifying an O(n^(lg n)) algorithm, |
|---|
| 1160 | // O(n^4) won't hurt us. |
|---|
| 1161 | template<typename Graph1, typename Graph2, typename IsoMap> |
|---|
| 1162 | inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, |
|---|
| 1163 | IsoMap iso_map) |
|---|
| 1164 | { |
|---|
| 1165 | if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2)) |
|---|
| 1166 | return false; |
|---|
| 1167 | |
|---|
| 1168 | for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first; |
|---|
| 1169 | e1 != edges(g1).second; ++e1) { |
|---|
| 1170 | bool found_edge = false; |
|---|
| 1171 | for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first; |
|---|
| 1172 | e2 != edges(g2).second && !found_edge; ++e2) { |
|---|
| 1173 | if (source(*e2, g2) == get(iso_map, source(*e1, g1)) && |
|---|
| 1174 | target(*e2, g2) == get(iso_map, target(*e1, g1))) { |
|---|
| 1175 | found_edge = true; |
|---|
| 1176 | } |
|---|
| 1177 | } |
|---|
| 1178 | |
|---|
| 1179 | if (!found_edge) |
|---|
| 1180 | return false; |
|---|
| 1181 | } |
|---|
| 1182 | |
|---|
| 1183 | return true; |
|---|
| 1184 | } |
|---|
| 1185 | |
|---|
| 1186 | } // namespace boost |
|---|
| 1187 | |
|---|
| 1188 | #endif // BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 1189 | @} |
|---|
| 1190 | |
|---|
| 1191 | \bibliographystyle{abbrv} |
|---|
| 1192 | \bibliography{ggcl} |
|---|
| 1193 | |
|---|
| 1194 | \end{document} |
|---|
| 1195 | % LocalWords: Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS |
|---|
| 1196 | % LocalWords: ISOMORPH Invariants invariants typename IndexMapping bool const |
|---|
| 1197 | % LocalWords: VertexInvariant VertexIndexMap iterator typedef VertexG Idx num |
|---|
| 1198 | % LocalWords: InvarValue struct invar vec iter tmp_matches mult inserter permute ui |
|---|
| 1199 | % LocalWords: dfs cmp isomorph VertexIter EdgeIter IndexMap desc RPH ATCH pre |
|---|
| 1200 | |
|---|
| 1201 | % LocalWords: iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp |
|---|
| 1202 | % LocalWords: ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept |
|---|
| 1203 | % LocalWords: BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei |
|---|
| 1204 | % LocalWords: IndexMappingValue ReadablePropertyMapConcept namespace InvarMap |
|---|
| 1205 | % LocalWords: MultMap vip inline bitset typedefs fj hpp ifndef adaptor params |
|---|
| 1206 | % LocalWords: bgl param pmap endif |
|---|